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Abstract: 

Background: Virtual reality simulators and machine learning have the potential to augment 

understanding, assessment and training of psychomotor performance in neurosurgery residents. 

Objective: This study outlines the first application of machine learning to distinguish “skilled” 

and “novice” psychomotor performance during a virtual reality neurosurgical task.  

Methods: Twenty-three neurosurgeons and senior neurosurgery residents comprising the "skilled" 

group and 92 junior neurosurgery residents and medical students the "novice" group. The task 

involved removing a series of virtual brain tumors without causing injury to surrounding tissue. 

Over 100 features were extracted and 68 selected using t-test analysis. These features were 

provided to 4 classifiers: K-Nearest Neighbors, Parzen Window, Support Vector Machine, and 

Fuzzy K-Nearest Neighbors. Equal Error Rate was used to assess classifier performance. 

Results: Ratios of train set size to test set size from 10% to 90% and 5 to 30 features, chosen by 

the forward feature selection algorithm, were employed. A working point of 50% train to test set 

size ratio and 15 features resulted in an equal error rates as low as 8.3% using the Fuzzy K-Nearest 

Neighbors classifier. 

Conclusion: Machine learning may be one component helping realign the traditional 

apprenticeship educational paradigm to a more objective model based on proven performance 

standards.   

Keywords: Artificial intelligence, Classifiers, Machine learning, Neurosurgery skill assessment, 

Surgical education, Tumor resection, Virtual reality simulation  
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1. Introduction 

Virtual reality simulators have been proposed as tools to understand, assess and train neurosurgery 

residents.1-5 An important element of simulator performance is the capacity of simulators to 

distinguish operator expertise. Most studies on operator performance have utilized “metrics.” 6-16 

A useful definition of “metrics” is that they are standards of reference by which performance, 

efficiency, and progress can be assessed. Individual metric can be used to assess aspects of operator 

performance. Applied forces,9,17-21 bimanual dexterity,15,22,23 and stress23 have all been studied. An 

operator’s performance metric(s) can be compared with previously defined proficiency 

benchmarks and that operator is placed into 1 of 2 or more groups with specific levels of 

psychomotor expertise.24,25 Neurosurgical tasks are complicated, involving multiple cognitive 

processes and psychomotor skills, and larger sets of more complex and interacting metrics may be 

required to differentiate groups. 

Artificial intelligence utilizing machine learning algorithms (classifiers) have the capacity to use 

extensive data sets involving numbers of features to separate groups.26-30 Machine learning has 

been reviewed in neurosurgery28 and to characterize performance during otolaryngology and 

dental virtual reality procedures.31-36 Machine learning classifiers have not been utilized to 

differentiate “skilled” and “novice” neurosurgical psychomotor performance using a virtual reality 

simulator with haptic feedback. The question addressed in this communication is “do the 4 

classifiers utilized in our study, K-Nearest Neighbors, Parzen Window, Support Vector Machine, 

and Fuzzy K-Nearest Neighbors have the ability to differentiate “skilled” from “novice” 

neurosurgical psychomotor performance using a virtual reality simulation platform?”  

2. Methods 

2.1. Subjects 

115 individuals including 16 board certified practicing neurosurgeons from 3 institutions and 7 

senior residents (PGY 4-6) from one university made up the expert group (n=23). Eight junior 

residents (PGY 1-3) and 84 medical students comprised the novice group (n=92). No participant 

had had previous experience with the simulator utilized and participants signed an approved 

Research Ethics Board consent. 
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2.2. NeuroVR 

The NeuroTouch, now known as NeuroVR (CAE Healthcare, Montreal, Canada), virtual reality 

simulation platform was used.5 Tumor resections were performed using the simulated ultrasonic 

aspirator held in the dominant hand (Fig. 1A). 

2.3. Simulation Scenarios 

Figure 1B outlines the 6 scenarios used in this study utilized data involving the resection of 9 

identical simulated brain tumors on 2  occasions (total of 18 procedures) separated by removal of 

tumors with different complexities. The simulated operative procedure utilized for these studies 

can be seen in electronic Supplementary Material 1 in a previous publication.9 To maximize tumor 

differences and increase participant difficulty, each of the 6 scenarios utilized had 3 tumors of 

varying complexities involving color (black, glioma-like and white: similar to background) and 

Young’s modulus stiffness (3 kPa, soft, 9 kPa, medium and 15 kPa, hard). The background with 

soft tumor stiffness, 3 kPa represented the surrounding ‘normal’ white matter (Fig. 1C). Scenario 

1 included 3 black tumors with different stiffness. Scenario 2 included 3 glioma-like tumors with 

different stiffness and Scenario 3 included white tumors with different stiffness. In Scenarios 4 

through 6, all three simulated tumors included in each scenario had the same stiffness but were 

visually different. Scenario 4 included 3 soft tumors with different visual properties. Scenario 5 

included 3 medium stiffness tumors with different visual properties and Scenario 6 included 3 hard 

tumors with different visual properties.9 Three minutes was allowed for each tumors removal with 

a 1-minute rest time given between tumor resections to decrease fatigue. The trial involved 54 

minutes of active tumor resection, 71 minutes in total. To develop procedure familiarity operators 

resected a practice scenario but this data was not used. Participants were unaware of study purpose 

or metrics utilized and were instructed to resect each tumor with minimal removal of the 

background tissue.  



6 
 

   

(A) (B) (C) 

FIGURE 1. The hand position of the operator holding the simulated ultrasonic aspirator (A), the 6 simulated tumor 

scenarios with tumor color and sequence (B) and lateral view of the brain tumor geometry and ellipsoidal shape 

utilized in each scenario demonstrating the three identical tumors, tumor buried underneath simulated “normal’ 

tissue and the R1and the R2 plus R3 regions studied (C). 

2.4. Feature extraction 

The 3 processing steps, including feature extraction, feature selection, and classification are seen 

in Figure 2. Features may be considered inputs which are provided to machine learning algorithms 

to help define level of expertise. The simulator recorded signals including tool tip coordinates, tool 

tip orientation angles, contact force between virtual tool and virtual tissue and foot pedal activation 

state versus time. Although these signals provide useful information, previous investigations on 

developing a model for psychomotor performance for virtual reality tumor resections have outlined 

complex interacting human and task factors involved in differentiating skilled and novice 

performance.20 Different parametric features could be extracted from these and other derived 

signal features with the goal to differentiate the skilled and novice groups.37 
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FIGURE 2. Flowchart of the proposed feature selection and classification. 

2.4.1. Motion-based features 

To obtain motion-based parametric features, first, signals such as velocity (first derivative), 

acceleration (second derivative) and jerk (third derivative) for position and angle signals were 

acquired. Then, based on signal features, parametric temporal, and spatial features were extracted. 

Speed 

Velocity was computed as the first derivative of motion profile and then speed was considered as 

the magnitude of the velocity profile. Some features based on the speed values used included mean 

speed, maximum speed, number of local maximum in the velocity vector and movement arrest 

period ratio.38 

Acceleration 

Acceleration was computed as the second derivative of the motion profile. Features based on the 

acceleration signal measured included mean acceleration, maximum acceleration and the integral 

of the acceleration vector (IAV)39 as given by: 

where x, y and z are Cartesian coordinates and T is the duration of the task. 

Jerk 

 

     (1) 𝐼𝐴𝑉 = ∫ √(
𝑑2𝑥

𝑑𝑡2
)

2

+ (
𝑑2𝑦

𝑑𝑡2
)

2

+ (
𝑑2𝑧

𝑑𝑡2
)

2𝑇

0

 𝑑𝑡 
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Jerk is defined as the third derivative of motion profile applied for motor skill assessment. A 

normalized three dimensional jerk39 metric is used in this study, given by: 

where T is task completion time and 𝐴𝑚 is the amplitude of the motion. 

2.4.2. Force-based features 

Not being able to measure forces applied by the neurosurgical aspirator during patient related 

procedures has limited our understanding of the forces that the human brain is exposed to by this 

instrument. The simulation platform utilized has the ability to analyze force feedback generated 

by the haptic device. This data has been utilized to create force pyramids and force heat maps to 

assess psychomotor function, automaticity, and force fingerprints for virtual reality tumor 

resections.9,17,18,20  Force-based features extracted in this study comprise force derivatives, integral 

of the force, the range of the applied forces and the interquartile range, i.e., the first quartile 

subtracted from the third quartile. In addition to the above mentioned force-based features, 

parametric features including temporal and spatial features were also extracted from the force 

signal and its derivatives. We also used the 2 features proposed previously to indicate 

consistency,40 given by: 

and one feature to indicate the smoothness of the force application, 40 given by: 

where T is task completion time and  𝑓𝑖𝑞𝑟 is the interquartile range of the force profile. 

We started with a list of over 100 parametric features many of which were eliminated in the 

subsequent feature selection process. The list of all signal features is included in Table 1. 

TABLE 1. List of signal features 

 

     (2) 
𝐽𝑒𝑟𝑘𝑛𝑜𝑟𝑚 = √ 𝑇5

2𝐴𝑚
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𝑑𝑡3)
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𝑑3𝑧
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𝑥(𝑡): position in the 𝑥-direction 𝑗𝑧(𝑡) =  
𝑑𝑎𝑧(𝑡)

𝑑𝑡
∶ jerk in the 𝑧-direction 

𝑦(𝑡): position in the 𝑦-direction 𝑗𝑓(𝑡) =  
𝑑𝑎𝑓(𝑡)

𝑑𝑡
∶ third derivative of force signal 

𝑧(𝑡): position in the 𝑧-direction 𝑅𝑜𝑙𝑙(𝑡) :  Rotation around the front-to-back axis 

𝑓(𝑡): 𝑓𝑜𝑟𝑐𝑒 𝑣𝑅𝑜𝑙𝑙(𝑡) =
𝑑𝑅𝑜𝑙𝑙(𝑡)

𝑑𝑡
∶ first derivative of Roll signal 

𝑣𝑥(𝑡) =  
𝑑𝑥(𝑡)

𝑑𝑡
∶ velocity in the 𝑥-direction 𝑎𝑅𝑜𝑙𝑙(𝑡) =

𝑑𝑣𝑅𝑜𝑙𝑙(𝑡)

𝑑𝑡
∶ second derivative of Roll signal 

𝑣𝑦(𝑡) =  
𝑑𝑦(𝑡)

𝑑𝑡
∶ velocity in the 𝑦-direction 𝑗𝑅𝑜𝑙𝑙(𝑡) =

𝑑𝑎𝑅𝑜𝑙𝑙(𝑡)

𝑑𝑡
∶ third derivative of Roll signal 

𝑣𝑧(𝑡) =  
𝑑𝑧(𝑡)

𝑑𝑡
∶ velocity in the 𝑧-direction 𝑃𝑖𝑡𝑐ℎ(𝑡): Rotation around the side-to-side axis 

𝑣𝑓(𝑡) =
𝑑𝑓(𝑡)

𝑑𝑡
 : first derivative of the force signal 𝑣𝑃𝑖𝑡𝑐ℎ(𝑡) =

𝑑𝑃𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
∶ first derivative of Pitch signal 

𝑉(𝑡) = √𝑑𝑥

𝑑𝑡

2
+

𝑑𝑦

𝑑𝑡

2
+

𝑑𝑧

𝑑𝑡

2
  : magnitude of velocity 𝑎𝑃𝑖𝑡𝑐ℎ(𝑡) =

𝑑𝑣𝑃𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
∶ second derivative of Pitch signal 

𝑎𝑥(𝑡) =  
𝑑𝑣𝑥(𝑡)

𝑑𝑡
∶ acceleration in the  𝑥-direction 𝑗𝑃𝑖𝑡𝑐ℎ(𝑡) =

𝑑𝑎𝑝𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
∶ third derivative of Pitch signal 

𝑎𝑦(𝑡) =  
𝑑𝑣𝑦(𝑡)

𝑑𝑡
∶ acceleration in the 𝑦-direction 𝑌𝑎𝑤(𝑡):   Rotation around the vertical axis 

𝑎𝑧(𝑡) =  
𝑑𝑣𝑧(𝑡)

𝑑𝑡
∶ acceleration in the 𝑧-direction 𝑣𝑌𝑎𝑤(𝑡) =

𝑑𝑌𝑎𝑤(𝑡)

𝑑𝑡
∶ first derivative of Yaw signal 

𝑎𝑓(𝑡) =  
𝑑𝑣𝑓(𝑡)

𝑑𝑡
∶ second derivative of force signal 𝑎𝑌𝑎𝑤(𝑡) =

𝑑𝑣𝑌𝑎𝑤(𝑡)

𝑑𝑡
∶ second derivative of Yaw signal 

𝑗𝑥(𝑡) =  
𝑑𝑎𝑥(𝑡)

𝑑𝑡
∶ jerk in the  𝑥-direction 

𝑗𝑦𝑎𝑤(𝑡) =
𝑑𝑎𝑌𝑎𝑤(𝑡)

𝑑𝑡
∶ third derivative of Yaw signal 

𝑗𝑦(𝑡) =  
𝑑𝑎𝑦(𝑡)

𝑑𝑡
∶ jerk in the 𝑦-direction 

2.5. Feature normalization 

Since the parametric feature values are not in the same order of size for comparison and to train 

classifiers, the obtained features were normalized exponentially:  

where Zi is the normalized value and xi is a data point (𝑥1,𝑥2,…, 𝑥𝑛). 

  

 

(6)  𝑍𝑖 = 𝑒
− 

𝑥𝑖
𝑚𝑎𝑥(𝑥)                                                                                             
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2.6. Feature selection 

Feature selection follows feature extraction to decrease computational complexity and maintain 

classifier performance.41 Irrelevant features are identified and only useful ones are provided to 

classifiers since irrelevant features may result in overfitting and increase resource use. In these 

techniques, an efficient search strategy is adopted to determine a feature subset. Then the new 

selected subset can be evaluated based on evaluation criteria.42 Feature selection was carried out 

in 2 steps, first, the features with a defined statistical differentiation were identified and second, 

features improving classifier performance were selected. 

2.6.1. Statistical feature selection 

For each feature a t-test was applied and the resultant p-values were compared for all features as a 

measure of the usefulness of each individual feature to separate groups. Among the extracted 

preliminary features, 68 were able to differentiate the 2 groups with a statistically significant 

difference of p<0.05 provided in Table 2. 
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TABLE 2. List of 68 selected parametric features that provide the best classification. The best 30 features 

are marked by one asterisk (*) and the best 15 features by two asterisks (**). 

1                                         ∑ t(jx ≤ 0)/T            𝑇: task completion time 35* 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(𝑓) 

2 ∑ 𝑁(𝑓 > 0.1) 36* 
∑ 𝑓

𝑅4

 

𝑅4: region beneath the tumor bulk 

3*                          𝑠𝑡𝑑(𝑓)/𝑠𝑡𝑑(𝑣𝑥)        𝑠𝑡𝑑: standard deviation         37 max(𝑓) − min (𝑓) 

4 
(max(𝑣𝑥) − min(𝑣𝑥)) ∗ (max(𝑣𝑦) − min (𝑣𝑦)) ∗ (max (𝑣𝑧)

− min (𝑣𝑧)) 
38                            𝑠𝑡𝑑(𝑓)      𝑠𝑡𝑑: standard deviation         

5 𝑖𝑞𝑟(𝑓) 39 𝑖𝑞𝑟(𝑥) ∗ 𝑖𝑞𝑟(𝑦) ∗ 𝑖𝑞𝑟(𝑧) 

6 √
𝑇3

2(𝑖𝑞𝑟(𝑓))2
∑ 𝑎𝑓

2 40** √
𝑇

2(𝑖𝑞𝑟(𝑓))2
∑ 𝑣𝑓

2 

7 (∑ |𝑓𝑖+1 − 𝑓𝑖|𝑁−1
𝑖=1 )/𝑇 41 ∑ √𝑎𝑥𝑖

2 + 𝑎𝑦𝑖
2 + 𝑎𝑧𝑖

2

𝑖
 

8** (∑ |𝑣𝑖+1 − 𝑣𝑖|𝑁−1
𝑖=1 )/𝑇(𝑠𝑡𝑑(𝑓)) 42* (∑ |𝑎𝑖+1 − 𝑎𝑖|𝑁−1

𝑖=1 )/𝑇 

9** (∑ 𝑡(𝑚𝑎𝑥(𝑎𝑥)))/𝑇 43 
∫ |𝑓|

𝑡2

𝑡1
   

 𝑡1: 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑎𝑘   𝑡2: 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑎𝑘  

10* 𝑁𝑧𝑒𝑟𝑜−𝑐𝑟𝑜𝑠𝑠(𝑣𝑥) 44* (∑ 𝑡(𝑚𝑖𝑛(𝑎𝑥)))/𝑇 

11* (∑ 𝑡 (𝑚𝑖𝑛(𝑎𝑦)))/𝑇 45** (∑ 𝑡 (𝑚𝑎𝑥(𝑎𝑦)))/𝑇 

12 (∑ 𝑡(𝑚𝑎𝑥(𝑎𝑧)))/𝑇 46 𝑁𝑧𝑒𝑟𝑜−𝑐𝑟𝑜𝑠𝑠(𝑣𝑦) 

13 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(𝑃𝑖𝑡𝑐ℎ) 47** (∑ 𝑡(𝑚𝑖𝑛(𝑎𝑧)))/𝑇 

14* (∑ 𝑡 (𝑚𝑖𝑛(𝑎𝑓)))/𝑇 48* (∑ 𝑡 (𝑚𝑎𝑥(𝑎𝑓)))/𝑇 

15 𝑚𝑒𝑎𝑛(𝑉) 49 max (𝑉) 

16*                              𝑠𝑡𝑑(𝑓)/𝑠𝑡𝑑(𝑣𝑧)     𝑠𝑡𝑑: standard deviation             50** √
𝑇5

2(𝑖𝑞𝑟(𝑓))2
∑ 𝑗𝑓

2 

17** ∑ 𝑓𝑙𝑜𝑤 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 / ∑  𝑓ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦   51**                                   𝑠𝑡𝑑(𝑓)/𝑠𝑡𝑑(𝑣𝑦)   𝑠𝑡𝑑: standard deviation         

18 (∑ 𝑡(𝑚𝑎𝑥(𝑧)))/𝑇 52* 𝑁𝑚𝑖𝑛𝑖𝑚𝑢𝑚(x) 

19                               𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(𝑣𝑓)      𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚: Number of extermum points 53** 𝑁𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑣𝑥) 

20** 𝑁𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑎𝑥) 54** (∑ 𝑡(𝑚𝑎𝑥(𝑓)))/ ∑ 𝑡(𝑚𝑖𝑛(𝑓))) 
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21 𝑁𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑎𝑦) 55 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(𝑎𝑓) 

22 𝑁𝑚𝑎𝑥(𝑥) + 𝑁𝑚𝑎𝑥(𝑦) + 𝑁𝑚𝑎𝑥(𝑧) 56 ∑ 𝑡(𝑣𝑓 ≥ 0)/ ∑ 𝑡(𝑣𝑓) ≤ 0 

23** 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(x) 57 𝑁𝑚𝑖𝑛(𝑥) + 𝑁𝑚𝑖𝑛(𝑦) + 𝑁𝑚𝑖𝑛(𝑧) 

24 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(z) 58 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(y) 

25 (∑ |𝑃𝑖𝑡𝑐ℎ𝑖+1 − 𝑃𝑖𝑡𝑐ℎ𝑖|𝑁−1
𝑖=1 )/𝑇 59* ∑ |𝑌𝑎𝑤𝑖+1 − 𝑌𝑎𝑤𝑖|

𝑁−1

𝑖=1
 

26 (∑ |𝑣𝑅𝑜𝑙𝑙𝑖+1
− 𝑣𝑅𝑜𝑙𝑙 𝑖

|𝑁−1
𝑖=1 )/𝑇 60 (∑ |𝑣𝑃𝑖𝑡𝑐ℎ𝑖+1

− 𝑣𝑃𝑖𝑡𝑐ℎ𝑖
|𝑁−1

𝑖=1 )/𝑇 

27* 𝑚𝑒𝑎𝑛(𝑅𝑜𝑙𝑙) ∗ 𝑇 max(𝑣𝑅𝑜𝑙𝑙) − min (𝑣𝑅𝑜𝑙𝑙⁄ ) 61 𝑚𝑒𝑎𝑛(𝑃𝑖𝑡𝑐ℎ) ∗ 𝑇 max(𝑣𝑃𝑖𝑡𝑐ℎ) − min (𝑣𝑃𝑖𝑡𝑐ℎ⁄ ) 

28 𝑁𝑚𝑖𝑛(𝑌𝑎𝑤) + 𝑁𝑚𝑖𝑛(𝑃𝑖𝑡𝑐ℎ) + 𝑁𝑚𝑖𝑛(𝑅𝑜𝑙𝑙) 62** 𝑁𝑚𝑎𝑥(𝑌𝑎𝑤) + 𝑁𝑚𝑎𝑥(𝑃𝑖𝑡𝑐ℎ) + 𝑁𝑚𝑎𝑥(𝑅𝑜𝑙𝑙) 

29 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(𝑃𝑖𝑡𝑐ℎ) 63 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(𝑌𝑎𝑤) 

30 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(𝑣𝑌𝑎𝑤) 64** 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(𝑅𝑜𝑙𝑙) 

31** 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(𝑣𝑅𝑜𝑙𝑙) 65* 𝑁𝑒𝑥𝑡𝑒𝑟𝑚𝑢𝑚(𝑣𝑃𝑖𝑡𝑐ℎ) 

32* ∑ 𝑡(𝑚𝑎𝑥(𝑃𝑖𝑡𝑐ℎ)) − ∑ 𝑡(𝑚𝑖𝑛(𝑃𝑖𝑡𝑐ℎ)/𝑇 66 ∑ |𝑗𝑃𝑖𝑡𝑐ℎ𝑖+1
− 𝑗𝑃𝑖𝑡𝑐ℎ𝑖

|/𝑚𝑒𝑎𝑛|𝑗𝑃𝑖𝑡𝑐ℎ|
𝑁−1

𝑖=1
 

33 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑝𝑒𝑑𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 67 ∑ 𝑡(𝑚𝑎𝑥(𝑌𝑎𝑤)) − ∑ 𝑡(𝑚𝑖𝑛(𝑌𝑎𝑤)/𝑇 

34 ∑ 𝑓

𝑅3

 68 ∑ 𝑓

𝑅1

 

 

2.6.2. Forward feature selection  

To find the most relevant features, forward feature selection, backward feature selection and 

genetic algorithms were applied. The forward feature selection algorithm provided best results and 

was therefore employed. This algorithm starts with an empty set and adds features one by one 

outlining the best feature set of particular size.42   This algorithm was applied to rank the best 5, 10, 

15, 20, 25 and 30 features of 68 selected utilizing the statistics previously employed. The feature 

selection was done irrespective of the subsequent classifiers to be used in the next stage. 

  



13 
 
2.7. Classification 

Four classifiers, K-Nearest Neighbors with k = 7, Parzen Window, Support Vector Machine and 

Fuzzy K-Nearest Neighbors with k=7 were applied to classify skilled and novice groups. To 

improve the configuration of the train and test sets, train set was selected randomly and 

increasingly from 10% to 90% of all data. For cross validation of each train set size, classification 

process was repeated 20 times, each time with a randomly selected train set of that size. Equal 

error rate (EER) is obtained when sensitivity and specificity become equal. A classifier may have 

a good sensitivity and a poor specificity and vice versa. Equal error rate is a commonly-used 

measure to evaluate classifier performance since it evaluates its sensitivity and specificity at the 

same time.43 Equal error rates were measured for different working points of both different train 

set sizes and different number of premier features. 

3. Results 

3.1. Influence of train set size  

All classifiers were applied on 5, 10, 15, 20, 25 and 30 superior features for 20 iterations. Figure 

3 outlines the ability of each classifier to discriminate between skilled and novice groups in the 6 

different scenarios for different train set sizes between 10% and 90% with 10% increments. The 

overall trend of classifiers’ performance are similar for all scenarios. We used 50% train set size 

as the working point, since increasing the train set size did not significantly improve classifier 

performance. For this train set size, the minimum equal error rate value in Scenario 1, 2, 4, and 5 

were obtained for the Fuzzy K-Nearest Neighbors  classifier (𝐸𝐸𝑅1=9.6%, 𝐸𝐸𝑅2=13.7%, 

𝐸𝐸𝑅4=11.1% 𝐸𝐸𝑅5=12.0%). In scenario 3 the Parzen Window classifier resulted in minimum 

equal error rate (𝐸𝐸𝑅3=10.8%) and in scenario 6, the minimum equal error rate was acquired for 

K-Nearest Neighbors classifier (𝐸𝐸𝑅6=14.3%).  
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(A) (B) 

  

(C) (D) 

  

(E) (F) 

FIGURE 3. Classification results for different train set divisions (%), Scenario 1 (A), Scenario 2 (B), Scenario 3 (C), 

Scenario 4 (D), Scenario 5 (E), and Scenario 6 (F) with resultant equal error rates (EER) percentages values (%) for 

each scenario and classifier employed: K-Nearest Neighbors (KNN), Parzen Window (PW), Support Vector Machine 

(SVM), and Fuzzy K-Nearest Neighbors (FKNN). 
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3.2. Influence of number of premier features 

Performance of classifiers was then assessed based on different numbers of selected premier 

features. Figure 4 demonstrates equal error rate values based on number of superior features and 

average of all train sets for 20 iterations.  Fuzzy K-Nearest Neighbors demonstrated best overall 

performance.  The results indicate that overall classifier performance was improved when the 

number of premier features was increased to 15. For higher feature numbers, performance either 

decreased or did not significantly improve. Using 15 premier features, minimum equal error rates 

were obtained utilizing the Fuzzy K-Nearest Neighbors classifier in most scenarios (𝐸𝐸𝑅1=9.3%, 

𝐸𝐸𝑅2=14.4%, 𝐸𝐸𝑅3=10.0%, 𝐸𝐸𝑅4=9.2%, 𝐸𝐸𝑅6=14.5%). 
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(A) (B) 

  

(C) (D) 

  

(E) (F) 

FIGURE 4. Classification results for different number of selected premier features, Scenario 1 (A), Scenario 2 (B), 

Scenario 3 (C), Scenario 4 (D), Scenario 5 (E), Scenario 6 (F) with resultant equal error rates (EER) percentage 

values (%) for each scenario and each classifier employed: K-Nearest Neighbors (KNN), Parzen Window (PW), 

Support Vector Machine (SVM), and Fuzzy K-Nearest Neighbors (FKNN). 
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3.3. Performance at selected working point 

Figure 5 provides a comparison of classifier performance for all scenarios when working point is 

considered as 50% train set size and 15 best features and outlines that Fuzzy K-Nearest Neighbors 

classifier has the best performance with equal error rates ranging from 8.3%-14.5%. In Table 2 the 

best 30 features are marked with one asterisk (*) and the best 15 features with two asterisks (**). 

Six of best 15 features and 12 of the best 30 features involved force while the remaining features 

were associated with motion. 

 

FIGURE 5. Classification results for selected working point (15 best features and 50% train set size) with resultant 

equal error rates (EER) of average percentage values (%) for each scenario and each classifier employed: K-Nearest 

Neighbors (KNN), Parzen Window (PW), Support Vector Machine (SVM), and Fuzzy K-Nearest Neighbors 

(FKNN). 

4. Discussion 

Machine learning is a subset of artificial intelligence, using algorithms (classifiers), which gives 

computers the capacity to "learn" patterns (progressively improve performance on a specific task) 

when provided with sufficient data, without needing explicit programming.26 Supervised, 

unsupervised, semi-supervised and reinforcement learning algorithms can be used.26-28 In 

supervised classifiers, feature data is provided which maximize the ability of classifiers to separate 

groups by minimizing the error. These techniques have been employed in neurosurgical diagnosis, 

presurgical planning and outcome prediction.28 In otolaryngology and dental virtual reality 

procedures,  participants ranged from 1 to 7 skilled (experts) and 5 to 40 novice (less skilled) and 

differentiated skilled and novice groups from 75 to 100%. 

  

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Data
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4.1. Differentiating skilled and novice performance 

Machine learning classifiers had not been used to differentiate skilled and novice groups using 

virtual reality cerebral tumor procedures. The scenarios utilized in this study involved aspirator 

skills used in human tumor resections, part of the surgical armamentarium of neurosurgeons and 

senior residents, but not yet acquired by all junior residents and medical students. It seemed 

reasonable to define a skilled and novice (less skilled) group based on the required skill set needed 

for the 6 scenarios studied.9,25 We applied 4 different supervised machine learning classifiers to 

the data set involving these participants. Our results demonstrate that all 4 classifier distinguished 

skilled and novice groups with equal error rates as low as 8.3% indicating the usefulness of 

classifiers in differentiating participants doing virtual reality procedures. The Fuzzy K-Nearest-

Neighbors classifier provided optimal performance and this may relate to its ability to assigns 

fuzzy rather than crisp membership to the skilled and novice groups.44 The Support Vector 

Machine classifier had the least ability to separate groups since it is known to degrade when 

classifying unbalanced groups. 

4.2. Misclassification 

Table 3 presents the range of individuals misclassified by the Fuzzy K-Nearest-Neighbors 

classifier. Using this classifier, 19-21 out of 23 skilled individuals and 78-84 out of 92 novices 

were correctly classified. Some neurosurgeons in this study had cerebrovascular, spinal and 

functional specialization with little exposure to tumor resection which may be one reason for 

misclassification.  Some junior residents may have been misclassified since they had mastered the 

required surgical skills.  Studies involving more complex scenarios, larger resident numbers and 

better understanding of which factors and/or combination of metrics to use to better differentiate 

groups are needed. The potential of machine learning classifiers applied to virtual reality 

procedures in surgical disciplines is that the new features identified will result in new “metrics” 

which can then be evaluated in other model systems. These results may not only help us understand 

the psychomotor skills needed to increase surgical skills but aid in resident assessment and training 

and improve patient outcomes. 
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TABLE 3. The range of numbers of individuals correctly and incorrectly classified by the Fuzzy K-Nearest-

Neighbors classifier in the 6 different scenarios. 

 Classified as skilled Classified as novice  

S
k

il
le

d
 

19-21 3-4 N=23 

N
o

v
ic

e
 

8-14 78-84 N=92   

 N=23 N=92 N=115 

4.3. Strengths and Limitations of the Study 

The importance of these results lie in their potential educational application to aid in neurosurgical 

resident training and helping to further define the psychomotor skill sets of expert surgeons.7 

Machine learning and artificial intelligence as applied to virtual reality surgical studies should be 

seen as useful adjuncts and not a replacement for standard residency training. By relying on 68 

features, these machine learning classifiers can automatically capture multiple aspects of 

psychomotor performance and segregate participants into ‘skilled’ or ‘novice’ group. However, 

this should be seen as an initial step of a formative educational process, prompting instructors to 

further assess and coach a resident’s performance to a desired level.  

The classifiers and simulator platform utilized to distinguish neurosurgical skill levels in this study 

have limitations. First, many of the parametric features included in this investigation have not been 

assessed in more complex scenarios. Therefore, it is not known if the same classifiers would also 

be applicable to these scenarios. Whether these parametric features are the most appropriate or 

other metrics such as the force pyramid or automaticity will be more useful needs to be accessed.17-

20 Second, a simulated aspirator was utilized in the dominant hand which is not representative of 

the bimanual psychomotor skills and multiple instruments employed during patient tumor 

resections. Previous studies have demonstrated differences in ergonomics between right and left 

handed operators and this issue was not addressed in this investigation and deserves further study.17 

Third, the different visual and haptic complexities of simulated tumors utilized and task duration 

may not adequately discriminate operator performance. More complex and realistic tumor 

scenarios with simulated bleeding involving use of bimanual instruments are being studied using 
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classifiers which may be more useful.  Defining large populations of residents and neurosurgeons 

with equivalent experience with virtual reality simulation is challenging. Sixteen practicing board 

certified neurosurgeons from 3 institutions with different areas of expertise participated in this 

study which is felt to be representative of a general neurosurgical population. We only enrolled 

residents and medical students from one institution which limits extension of these results. The 

authors believe that increasing study participants from multiple institutions may further our ability 

to improve classifier performance to distinguish neurosurgical skill levels at various stages of 

resident training.  

5. Conclusion 

We presented the first investigation of the application of machine learning in assessing surgical 

skill level during virtual reality tumor resection. The importance of our results lies in their potential 

educational application in neurosurgical resident training and helping further define the 

psychomotor skill set of the skilled surgeon. Machine learning may be one component in helping 

to realign the present apprenticeship educational paradigm to a more objective model based on 

proven performance standards. 
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