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Different training strategy for deep learning based
AF detection

Xiangyu Zhang, Jianqing Li*, Zhipeng Cai, Li Zhang, Chengyu Liu*, Member, IEEE,

Abstract—Nowadays, deep learning-based models have been
widely developed for atrial fibrillation (AF) detection in elec-
trocardiogram (ECG) signals. However, due to the unavoidable
over-fitting problem, classification accuracy of the developed
models severely differed when applying on the tested independent
datasets. This situation is more significant for AF detection from
dynamic ECGs. In this study, we explored two potential training
strategies to address the over-fitting problem in AF detection. The
first one is to use the Fast Fourier transform (FFT) and Hanning-
window based filter to suppress the influence from individual dif-
ference. Another is to train the model on the wearable ECG data
rather than the traditional ECG data to improve the robustness
of model. Wearable ECG data from 29 patients with arrhythmia
were collected for at least 24 hours during the daily life, without
any activity limitation. To verify the effectiveness of the training
strategies, an LSTM and CNN based model was proposed and
tested. We tested the model on the independent wearable ECG
data, as well as in the MIT-BIH Atrial Fibrillation database and
PhysioNet/Computing in Cardiology Challenge 2017 database.
The model achieved 96.23%, 95.44%, and 95.28% accuracy on
the three databases. Compared with the accuracy of the model
on training set, when test on independent datasets, the accuracy
of the model trained with training strategies only reduced by
2% while the accuracy of the model trained without training
strategies reduced by about 15%. Thus, the proposed training
strategies significantly enhanced the detection accuracy for the
developed deep learning models. It would be one recommendation
to train a deep learning based AF detector with good model
robustness and generalization.

Index Terms—Atrial fibrillation (AF),
(ECG), deep learning model, wearable ECG.

electrocardiogram

I. INTRODUCTION

OWADAYS, smart wearable devices have become a hot

topic, especially in the measurement of physiological sig-
nals [1] . Development of wearable electrocardiogram (ECG)
devices makes the real-time and continuous individual ECG
monitoring available [2]. Atrial fibrillation (AF) is a very
common type of cardiac arrhythmia, characterized by two
features: the absence of P waves and highly irregular variation
of R-R intervals [3], [4]. AF may lead to stroke and congestive
heart failure (CHF) and increase the death rate for AF patients
[5]. Early diagnosis allows better treatment and prevention of
secondary diseases like stroke [6]. Its reliable detection is an
important target of long-term bio-signal monitoring and is still
an unmet challenge even for clinical ambulatory ECG [4].
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Traditional feature based AF detection methods usually
extract features from time-, frequency-, or amplitude-domain
[7]-19]. Features from entropy domain were also used for AF
detection [10]-[15]. Deep learning based models with unique
hierarchical structure extract deep-level features brought new
solutions to the analysis of biological signals [16]-[19]. There
is also an increasing trend in the deep learning research for
AF detection [20], [21]. Convolutional neural network (CNN)
and recurrent neural network (RNN) are two mainstream
architectures of supervised deep learning method.

CNN based AF detection models can be simply divided
into two categories: 2D CNN model and 1D CNN model.
Researchers using 2D CNN based models convert 1D signal
to 2D representation. Xia et al. applied short-term Fourier
transform (STFT) and stationary wavelet transform (SWT) to
obtain 2D matrix input suitable for deep 2D CNN models
[22]. Qayyum et al. convert ECG signals into 2D images by
STFT, and used pre-trained CNN models for transfer learning
[23] . Lorenz plot imaging of ECG RR intervals was also
used as input images to training 2D CNN based model for AF
classification [4]. 1D CNN models were usually trained using
ECG signal as input directly [24], [25].

RNN is another type of network, which architectures al-
lowing the network to retain and utilise state information of
the input sequence. Thus, RNN is suitable for processing time
series signals [26]. Fausta used LSTM based deep learning
model and RR interval signals to detect AF [27]. Chang
proposed an AF detection method exploited the spectral and
temporal characteristics of AF ECG signals with a multi-
lead LSTM model [28]. Maknickas proposed a three-layer
LSTM deep learning model using pre-computed QRS complex
features for classification [29]. Furthermore, deep learning
models combined CNN with RNN were also proposed in
past few years. Andersen et al. developed a CNN and LSTM
combined deep learning classification model using RR interval
as input [30].

All these deep learning methods had achieved good AF
detection performance, but whether these models can be
applied to dynamic ECG data remains unknown. Most of these
deep learning methods use data from one database and test
performance by cross-validation method. However, for a single
data set, there is no way of knowing how reliable a particular
cross validation performance estimate is [31] . In fact, it is hard
to evaluate the over-fitting degree of the developed models. So,
how to reduce the over-fitting and improve the generalization
ability of the model is a very important research [20]. Chang et
al. tested their model on separated set and obtained an accuracy
of 85%, while the model achieved an accuracy of 98.3% in



the training phase [28]. Model proposed by Andersen achieved
an accuracy of 97.80% on training data and an accuracy of
87.40% on new recordings [30]. The over-fitting of these
models mainly caused by 2 reasons:

a) the similarity between different ECG signals collected
from one person, which can lead to the trained model extracted
more personal features beyond AF [30].

b) the individual difference between different patients,
which was the main reason of the accuracy drops sharply when
model test on independent database.

Therefore, in this study, two strategies were explored to
improve the robustness and generalization ability of the model.
One training strategy was that an FFT and Hanning-window
based filter was utilized to remove the individual difference
in the ECG waveform. By so doing, ECG data collected
from different patients holds a similar property of waveform
characteristics after preprocessing. which means the individual
waveform difference between patients was eliminated. The
other training strategy was that using wearable ECG segments
as training data to improve the robustness of the proposed
model. Twenty-nine patients were monitored by wearable
device for at least 24 hours with no activity restrictions. To
verify the effectiveness of the training strategies, an LSTM
and CNN based detection model was proposed and test on
separate databases. ECG signals from 20 patients were used
for training model and ECG signals form the rest patients
were used as separate dataset. MIT-BIH Atrial Fibrillation
Database (AFDB) and the PhysioNet/CinC Challenge 2017
database (CinC 2017) were also used as separate databases.

II. DATASETS
A. wearable ECG database I & I

Wearable ECG data was collected by a wearable ECG
monitoring device developed by the authors’ team and Lenovo,
with a sampling frequency of 400 Hz. The ECG signals was
stored in the ECG module and was uploaded to the cloud
server via WiFi module. Twenty-nine patients aged 26 to 65
participated in the collection, eleven of them suffered from
AF and four of them have a history of premature contractions.
Twenty-four hours ECG signal was collected from each patient
with no activity restrictions. Then, the collected ECG episodes
was labeled to AF class and non-AF class by Cardiologists.

ECGs from 20 patients (10 with AF, 2 with premature con-
tractions and 8 without abnormal heart rhythm) was selected
as wearable dataset I. Rest ECGs from 9 patients (1 with AF,
2 with premature contractions and 6 without abnormal heart
rhythm) were selected as wearable dataset II.

ECGs in the wearable dataset I was divided into ten fold
without overlapping for cross validation. Each fold includes an
AF patient and an non-AF patient. Because of the similarity of
ECG segments within one person, only 4,000 ECG segments
of each patient were randomly picked out. Thus, a total of
80,000 ECG segments were extracted. For the 10-fold cross
validation, 72,000 segments were used as training and the
remaining 8,000 were used as validation database for the
model training. All ECG segments from the 9 patients in
wearable dataset II were extracted and were used as the test.

B. MIT-BIH atrial fibrillation database

The MIT-BIH atrial fibrillation database (AFDB) consists
of 25 long term ECG recordings of human subjects with atrial
fibrillation (mostly paroxysmal) [32]. Each recording is 10 h
duration, and contain two leads of ECG signals sampled at 250
Hz. The rhythm annotation files were prepared manually; these
contain thythm annotations of types (AFIB (atrial fibrillation),
(AFL (atrial flutter), (J (AV junctional rhythm), and (N (used
to indicate all other rhythms).

In this study, ECG signals labeled as (J and (N were regard
as non-AF ECG data and signals labeled (AFIB were set as
AF ECG data. And then the ECG signal parts longer than 10
seconds (4,000 points) were divided into 10 seconds segments
with no overlapping, meanwhile, the last 10-second signal of
each ECG signal parts was also added to make sure no data
missing after dividing. After segmentation, we obtained 33,484
AF segments and 49,980 non-AF segments after segmenting.

C. The PhysioNet/CinC Challenge 2017 database

ECG recordings in the PhysioNet/CinC Challenge 2017
database, collected using the AliveCor device and training
set contains 8,528 single lead ECG recordings lasting from
9 s to just over 60 s ECG recordings were sampled as 300
Hz and they have been band pass filtered by the AliveCor
device [3]. It contains 4 different types of rhythm: AF (atrial
fibrillation), normal (normal rhythm), other (used to indicate
all other rhythms) and noise.

In this study, noise data was abandoned, while normal and
other rthythm data were regard as non-AF class and AF rhythm
data was set as AF class. By the way, the ECG signal parts
longer than 10 seconds (4,000 points) were also divided into 10
seconds segments with no overlapping and the last 10 seconds
data of each recording was added. In addition, the segments
was relabeled by Cardiologists. Finally, a total of 1,821 AF
segments and 17,399 non-AF segments were obtained.

ITII. METHOD
A. preprocessing

Wearable ECG signals usually contain different kinds of
noise, band pass filter was a good method to alleviate the
impact of noise. In this work, a Butterworth-bandpass filter
with a passband of 0.05-45 Hz was used to remove the baseline
drift and reduce the high-frequency noise.

The difference in ECG signals between different people
is usually manifested in the following two aspects: The dif-
ference in the morphology difference of QRS complex and
the overall amplitude range of the signal. FFT and Hanning-
window based filter was used to reduce the individual dif-
ferences of QRS complex. ECG segments were transformed
by FFT firstly. Then, the frequency range of 1-45 Hz was
intercepted by Hanning window for each FFT-transformed
signal, and the Inverse Fast Fourier Transform (IFFT) was
performed to obtain the filtered signal. As shown in Fig. 1, the
sub-figures in the left column (A, B and C) were three ECG
segments with obvious rhythm and waveform differences;
the sub-figures in the right column (D, E and F) were the
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Fig. 1. ECG signals from different people and pre-processed ECG signals. A, B,

C are ECG segments from different patients, A was the ECG signal of normal

rhythm; B was the ECG signal of patient with atrial fibrillation; C was the ECG signal of patient with premature beats. D, E and F were the corresponding

signal after preprocessing.
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Fig. 2. The proposed classification model based on LSTM and CNN

corresponding ECG segments after eliminating the individual
differences in the QRS complex.

The minimum-maximum normalization method was
adopted to amplify the filtered ECG segments into the
interval [0, 1]. Thereby, the FFT and Hanning-window based
filter and normalization method removed the morphology
difference of QRS complex and the overall amplitude
difference in ECG signals between patients.

B. network structure and optimization method

As showed in Fig. 2, the classification model proposed in
this paper was mainly composed of three parts: LSTM module,
1D-CNN module, and Softmax classification module.

The ECG data after preprocessed was firstly passed through
a 1D-maxpooling layer with a stride size of 8 to reduce the
signal processing time length. By so doing, the input of the
LSTM module was transformed to a time series with a length
of 500. The output dimension was set to 200, and the output
at each time step was recorded as a feature extracted from the
input ECG segment.

The 1D CNN module consists of three 1D CNN Blocks, and
one CNN block consists of four layers: a 1D convolutional
layer, a batch normalization layer, a 1D-maxpooling layer,
and an activation layer with activation function of tanh. Each
block uses 32 convolution kernels, and the convolution kernel
length was 3. The last CNN block did not use 1D-maxpooling
layer. The features extracted by 1D CNN were stretched into
a feature sequence of 4,000 points by flatten layer. Then the
feature sequence was classified to AF or non-AF class by
SoftMax layer.

The model used a cross entropy loss function and was
trained by Adam optimization method. In order to prevent
over-fitting, the batch normalization layer was added after the
LSTM layer, and the dropout mechanism was added after each
convolution layer and fully-connected layer. Meanwhile, the
L2 regularization method of the fully-connected layer was
also implied to improve the model generalization ability. Early
stopping training method was also used to reduce over-fitting.
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Fig. 3. Training and test flowchart of the three different model

C. model performance evaluation method

In order to measure the model performance, the sensitivity
(Se), specificity (Sp) and accuracy (Acc) were calculated as:

TP

Se = m X 100% (l)
TN

TN+TP

A, — 1
= TPy TNy FP LN < 0% )

IV. RESULT

A. result of model adopting FFT and hanning-window based
Sfilter

To evaluate the effectiveness of the proposed training strate-
gies, three models with same network structure were trained.
As is showed in Fig. 3. In order to verify the effectiveness
of the FFT and hanning-window based filter, model B was
trained with filtered ECG data while model A trained with
ECG data which were not filtered. The ten fold validation and
test result of the model was showed in Table I.

The average validation accuracy, sensitivity and specificity
of model A were 98.91%, 98.50% and 99.42%. And the av-
erage validation accuracy, sensitivity and specificity of model
B were 98.92%, 98.87% and 99.12%. However, when test on
wearable datasets, the test accuracy of model B was 89.99% on
the CinC 2017 challenge database and 88.10% on the wearable
database II. Model A only achieved an accuracy of 84.67% on
the CinC 2017 challenge database and 83.38% on the wearable
database II. Compared with the results of cross-validation on
the training set, the test accuracy reduced by about 10% for
model B and 15% for model A.

B. result of model using wearable ECG as training data

In order to verify the effectiveness of using wearable ECG
as training data, model B was trained on AFDB while model C
was trained on wearable database 1. Both two models adopted

the FFT and hanning-window based filter in preprocessing.
In the test phase, model B was test on CinC 2017 challenge
database and wearable database II. Model C was test on wear-
able database II, AFDB and CinC 2017 challenge database.
Model C achieved an average validation accuracy of
97.71%, sensitivity of 98.13% and specificity of 97.29% in
the training database, and also got an excellent performance
on test databases. The test accuracy of model C was 96.23% on
the CinC 2017 challenge database and 95.44% on the wearable
database II. The model C was also tested on AFDB with an
accuracy of 95.28%. There was only about 2% decrease in
accuracy when model C test on separate databases. The test
result shows that although the model C got the worst validation
accuracy, model C maintained a good generalization ability.

V. DISCUSSION
A. effectiveness of training strategies

In this study, we proposed two training strategies to improve
the robustness and the generalization capability of the trained
model. One strategy was that a FFT and Hanning-window
based filter was utilized to remove the individual difference in
the ECG waveform. Model A and B were trained with same
ECG segments, but the ECG data of model B were filtered in
preprocessing. Model A and B obtained approximate cross
validation result on the training database with the average
validation accuracy of 98.91% and 98.92%. However, there
was a nearly 5% accuracy improvement when adopting the
proposed filter in preprocessing. Therefore, the proposed filter
plays an important role in overcoming over-fitting.

The other training strategy was that using wearable ECG
segments as training data to improve the robustness of the
proposed model. Model B and C were trained with same pre-
processing method but different ECG segments from different
databases. Model C was trained with wearable ECG data while
model B was trained by ECG from AFDB. The test accuracy
of model C on two wearable datasets were 96.23%, 95.44%,
which were close to the validation accuracy. However, the test
accuracy of model B on wearable databases II and CinC 2017
database draw-down about 10% compared to the validation
accuracy of model B. Therefore, it can be conclude that the
model trained with wearable ECG data was more robust than
model trained with ECG signals from traditional databases.

B. classification capability of different deep learning models

In this work, the proposed LSTM-CNN based model shows
a relatively similar result on AFDB compared to other models
proposed by Zhou [25], Xia [22], Wang [24], Andersen [30],
and Faust [27]. The accuracy of model input with 4 s ECG
was 97.4% [24] while the model proposed by Xia achieved the
accuracy of 98.29% with input of 5 s ECG [22]. The accuracy
of our model with input of 10 s ECG was 98.92%, and the
model proposed by Chang [28] achieved 98.50%. The best
accuracy of 99% was achieved by the model with input of
30 s ECG [25]. It demonstrates a trend that the accuracy of
the model becomes higher when the input length of the model
increases.



TABLE I
PERFORMANCE OF THREE DIFFERENT MODELS ON VALIDATION AND TEST DATABASES

models method

validation performance

test performance
test database p

training database

Se (B)  Sp () Ace (%) Se (%) Sp (%) Ace (%)

CinC 2017 database 75.67 85.61 84.67

model A LSTM+CNN AFDB 98.50 99.42 98.91 wearable database T 92.64 3237 33.38

. CinC 2017 database 79.79 91.06 89.99

model B Filter+tLSTM+CNN AFDB 98.87 99.12 98.92 wearable database I 91.40 8775 3810

CinC 2017 database 92.09 96.66 96.23

model C  Filter+LSTM+CNN  wearable database I 98.13 97.29 97.71 wearable database II 97.73 95.19 95.44

AFDB 96.46 94.49 95.28

TABLE II
THE PERFORMANCE OF METHODS ON INDEPENDENT DATA OR SEPARATE DATABASE
. validation performance test performance
author method training database Se (%) S, @) Ace (%) test database Sc @) Sy (%) Ae (%)

Limam [33] CNN+LSTM CinC 2017 (85%) 82.5 98.70 90.60 CinC 2017 (15%) 72.70 98.60 85.60
Aderson [30] 30 RR+LSTM+CNN AFDB 9898 9695  97.80 Nekon 9896 8604 8740
. separate data 86.88 79.55 83.21
Chang [28] STFT+LSTM six databases 97.80 99.20 98.50 CinC 2017 70.17 N 75.60
CinC 2017 92.09 96.66 96.23
Proposed Filter+LSTM+CNN  wearable database I~ 98.13 97.29 97.71 wearable database I~ 97.73 95.19 95.44
AFDB 96.46 94.49 95.28

RR interval based methods proposed by Andersen [30] and
Faust [27] with a slightly worse accuracy mainly because
of the QRS detection error. The RR interval based models
also requires longer ECG segments, which means that these
models maybe not suitable for real-time analysis. Compared to
these methods of converting ECG segments to spectrograms
as 2D matrix, our method used 1D ECG segments as input
directly reduced the input size and computational complexity.
Compared to other 1D CNN models proposed by Wang [24]
and Zhou [25], our model used 1D max-pooling method to
reduce the input length. The input size of our model was only
500*1 which contains information of 10s ECG, and achieved
a close result to the model proposed by Zhou [25]. Therefore,
our model achieved the second best result with the shortest
input length.

C. generalization ability of different deep learning models

As shown in Table II, some previously proposed deep
learning models were also tested on separate databases or
independent ECG data. Limam [33] used 15% ECG signals
from CinC 2017 database as independent test data, and the
accuracy of the model on the test set is 85.60% which was
about 5% lower than the result on training set. Aderson [30]
tested model on two independent databases, and the accuracy
dropped by about 10%. The model proposed by Chang [28]
got an accuracy of 83.21% on separate data from six databases
and 75.60% on CinC 2017 database while the model achieved
an validation accuracy of 98.50% in training phase. The test
results of the model trained with proposed training strategies
only reduced by 1% or 2% on separate databases. Thus, the
proposed training strategies shows its ability of improving the
robustness and generalization ability of the model.

VI. CONCLUSION

In this work, we proposed two training strategies to over-
come the over-fitting in deep learning models. FFT and

hanning-window based filter was used to remove the individual
difference in ECG waveform. Wearable ECG signals which
contained complex noise were used to improve the robustness
of the proposed model. The model was test on three different
ECG database and the result on all test databases reflects that
the proposed model maintained good generalization capability
when test on separate databases. The comparative experi-
ments also illustrate that the selected training strategies can
effectively improve the robustness and generalization ability
of deep learning based AF detection models. The selected
training strategies would be regarded as one reference method
of eliminating over-fitting for future deep learning based AF
detection models.
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