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Abstract

Deep learning (DL) has been successfully applied to the diagnosis of ophthalmic diseases. However, rare diseases are commonly
neglected due to insufficient data. Here, we demonstrate that few-shot learning (FSL) using a generative adversarial network (GAN)
can improve the applicability of DL in the optical coherence tomography (OCT) diagnosis of rare diseases. Four major classes with a
large number of datasets and five rare disease classes with a few-shot dataset are included in this study. Before training the classifier,
we constructed GAN models to generate pathological OCT images of each rare disease from normal OCT images. The Inception-v3
architecture was trained using an augmented training dataset, and the final model was validated using an independent test dataset.
The synthetic images helped in the extraction of the characteristic features of each rare disease. The proposed DL model demon-
strated a significant improvement in the accuracy of the OCT diagnosis of rare retinal diseases and outperformed the traditional DL
models, Siamese network, and prototypical network. By increasing the accuracy of diagnosing rare retinal diseases through FSL,
clinicians can avoid neglecting rare diseases with DL assistance, thereby reducing diagnosis delay and patient burden.
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1 Introduction the screening stage. However, recent artificial intelligence-

based diagnostic or screening tools have targeted diseases that

In the USA, a rare disease is generally defined as a condition
with a prevalence of no more than one in 1250 individuals;
however, the exact prevalence rate for most of these diseases
is currently not available [1]. In primary care, a lack of aware-
ness and cognitive factors are considered to be the main rea-
sons for frequent misdiagnosis because clinicians cannot fo-
cus on all rare diseases at the same time [2]. Rare retinal
diseases affect a limited number of patients; however, they
impose a significant burden on society. Most patients with
such retinal diseases often encounter diagnostic delays during
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have a high prevalence, including diabetic retinopathy and
age-related macular degeneration [3]. Because of the lack of
sufficient clinical data, it is necessary to improve the accuracy
of diagnosing rare retinal diseases [4]. Optical coherence to-
mography (OCT) is the most important diagnostic tool for
screening rare retinal and optic nerve diseases, and it uses a
light wave-based mechanism to provide three-dimensional
retinal structural information [5]. Since the introduction of
the deep learning (DL) algorithm, automated diagnosis for
detecting multiple diseases from OCT imaging has attracted
considerable attention [6]. However, previous studies using
OCT images have been unable to detect rare diseases.
Machine learning techniques have successfully improved
clinical decision support in the field of ophthalmology [7, 8].
In particular, the recent availability of large volumes of retinal
image data has enabled DL techniques to make significant
contributions to diagnostic tasks [9]. However, conventional
DL models are still unable to accurately extract disease char-
acteristics from the insufficient clinical data that is available.
The use of limited datasets for conventional deep learning
training brings an over-fitting problem and may cause critical-
ly low classification performance in the validation set [10, 11].
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As large quantities of data are labeled by clinicians, the current
approaches have been limited to the few retinal diseases that
have a high prevalence. These DL models may disregard the
rare diseases for which they are not trained due to the lack of
sufficient labeled data [12]. However, humans can learn new
disease categories using a few characteristic images that are
available. To accurately detect rare diseases using an automat-
ed system, this gap between humans and DL needs to be
bridged. Recently, few-shot learning (FSL), which is a new
research area in the field of machine learning, has been receiv-
ing increasing attention because it requires a limited amount of
data for pattern extraction similar to human experts [13]. After
the introduction of generative adversarial network (GAN) for
data augmentation, the performance of FSL was significantly
improved due to the generation of synthetic images [14]. This
GAN:-based FSL technique provides an intuitive solution for
utilizing conventional DL methods that have generally been
used for large databases.

Recently, few-shot learning techniques have been adopted
to diagnose rare diseases. Parbhu et al. showed that a proto-
typical network, which is a metric learning technique, is ef-
fective for dermatological disease diagnosis using real-world
imbalanced datasets [15]. Quellec et al. used a similar metric
learning technique using the K-nearest neighbor to classify
fundus photographs with rare diseases [12]. Few-shot metric
learning using Siamese networks has been used to detect plant
diseases with very small datasets [16]. A gradient-based meta-
learning approach has been used to improve diagnostic per-
formance with a few-shot skin disease dataset [17]. Burlina
et al. demonstrated the feasibility of using low-shot learning
based on automated data augmentation to classify fundus pho-
tographs with rare conditions [18]. Several researchers have
utilized generative models to enlarge training datasets in order
to improve the detection accuracy of diseases using very small
datasets [19, 20]. Few-shot learning based on data augmenta-
tion has also been used to detect pathological chest images of
patients with COVID-19 [21]. These previous studies demon-
strated that few-shot learning techniques could achieve reli-
able performance and outperform classical machine learning
models when using small training datasets.

To the best of our knowledge, no study has been conducted
on detecting rare diseases using the concept of FSL with OCT.
Therefore, the purpose of this study is to build a convolutional
neural network (CNN) model to detect rare diseases using
OCT images. Because limited training data is available on rare
retinal diseases, our approach was based on FSL using GAN-
based data augmentation. In particular, the cycle-consistent
GAN (CycleGAN) was adopted to generate images without
matching paired images. CycleGAN is a type of unsupervised
machine learning model used for mapping different image
domains, and it has demonstrated reliable performance in var-
ious academic fields. We conducted experiments to evaluate
the qualitative effectiveness of our method and to validate this
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technique. We also compared the proposed method with other
well-known few-shot learning techniques.

2 Methods

This study was conducted using a publicly accessible OCT
image database obtained from a previous study by Kermany
[6] and additional anonymized OCT images of rare retinal
diseases collected by the authors. Figure 1 illustrates the FSL
methods used in our study. Our proposed method (Fig. 1(b))
involves transfer learning with GAN-based augmentation,
which comprises two stages: (1) development of CycleGAN
models for each rare disease for few-shot OCT image augmen-
tation and (2) fine-tuning training and validation of the DL
classification model. The backbone DL models for transfer
learning were pretrained using the ImageNet database.

2.1 Data collection

Figure 2 shows the data distribution and typical OCT images
of the major and rare diseases considered in this study. The
large database obtained from Kermany’s previous study
(https://data.mendeley.com/datasets/rscbjbr9sj/2) consists of
OCT images showing the characteristics of a normal retina
as well as that of major retinal diseases [6], including
diabetic macular edema [22], drusen [23], and choroidal
neovascularization [23], which are considered to be highly
prevalent diseases. This database was collected from various
eye hospitals and includes labeling data confirmed by expert
ophthalmologists. The detailed diagnosis procedure is
described in Kermany’s original work [6]. Additional retinal
image datasets were extracted from Google Images and
Google search engine by searching for keywords such as
central serous chorioretinopathy, macular telangiectasia,
macular hole, Stargardt disease, and retinitis pigmentosa.
These rare diseases were selected based on a previous
review on OCT diagnosis [24]. According to the Orphan
database, central serous chorioretinopathy [25], Stargardt
disease [26], and retinitis pigmentosa [27] are considered as
rare retinal diseases [28]. Because macular telangiectasia [29]
and macular hole [30] also have very low prevalence, it is
reasonable to consider them as relatively rare diseases. The
images showing the characteristics of these rare diseases were
manually classified by two board-certified ophthalmologists
with prior knowledge about data sources and related docu-
ments, and the ambiguous images were isolated to clarify
the image domains. Since the OCT images fitted perfectly
with the typical characteristics of each disease, OCT exami-
nation was sufficient to diagnose rare diseases in the present
study. There was no disagreement between the two ophthal-
mologists. The OCT images with rare retinal diseases collect-
ed by our team are available at the Mendeley Data repository
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Fig. 1 Few-shot learning techniques for rare disease OCT diagnosis in
the present study. a Deep learning model using transfer learning without
augmentation. b Transfer learning model with data augmentation based

(https://data.mendeley.com/datasets/btvoyrdbmyv). The
detailed links of the collected OCT image sources are listed
in Supplementary Materials.

2.2 Characteristics of the datasets

Table 1 shows the OCT characteristics and epidemiologic data
of retinal diseases. The initial training dataset contained a total
of nine classes, including 26,860 normal retinas, 11,348 dia-
betic macular edema, 8616 drusen, 37,205 choroidal neovas-
cularization, 25 central serous chorioretinopathy, 20 macular
telangiectasia, 25 macular hole, 15 Stargardt disease, and 12
retinitis pigmentosa images. The aim of extracting these ex-
tremely imbalanced datasets was to diagnose rare retinal
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diseases using the FSL framework. For the test dataset, we
collected 250 normal retinas (sampled from the original test
dataset to balance the major classes), 250 diabetic macular
edema, 250 drusen, 250 choroidal neovascularization, 5 cen-
tral serous chorioretinopathy, 4 macular telangiectasia, 5 mac-
ular hole, 4 Stargardt disease, and 4 retinitis pigmentosa
datasets. The training and test datasets were split randomly,
and they exhibited no overlap.

2.3 Few-shot image translation using CycleGAN

FSL learns new patterns from a limited number of training
datasets. There are mainly three popular categories of FSL,
namely meta-learning, metric learning, and augment-based
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Fig. 2 Datasets pertaining to the optical coherence tomography (OCT) images of major and rare diseases considered in the present study
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Table 1 Optical coherence tomography characteristics and prevalence of retinal diseases in the present study

Disease OCT Characteristic Prevalence (per Rare disease category

10,000 individuals)

CNV Disruption of retinal pigment epithelium, subretinal fluid, cystoid macular ~ 2.3% among Major ocular disease
edema, exudation, subretinal hemorrhages or scar >70 years [23]

DME Thickening of the fovea throughout the whole layer of the retina, cystoid ~3.8% among Major ocular disease
changes diabetes [22]

Drusen Retinal pigment epithelium layer deformation or thickening with irregularities 4.8% among Major ocular disease
and undulations >50 years [23]

CSC Subretinal fluid under the central macula, foveal distortion 0.061% [25] Definitely rare disease*

Macular hole Retinal layer break and tissue defect involving the fovea 0.11% [30] Relatively rare disease

MacTel Temporal foveal cystic pit enlargement secondary to loss of outer nuclear ~0.022% [29] Relatively rare disease

layer and ellipsoid zone
Retinitis Pigmentosa
macular lesions
Stargardt disease
whole retinal layers

mild inner retinal layer thinning and severe outer retinal layer thinning, cystic 0.17% [27]

disruption or complete loss of both outer retinal layers at fovea, thinning of  0.01% [26]

Definitely rare disease*

Definitely rare disease*

CNV, choroidal neovascularization; CSC, central serous chorioretinopathy; DME, diabetic macular edema; MacTel, macular telangiectasia; OCT, optical

coherence tomography

" Included in the Orphanet rare disease database [28]

techniques [31]. Inspired by previous works using GAN for
FSL [32, 33], we adopted CycleGAN-based augmentation for
rare retinal diseases to increase the accuracy of diagnosis.
CycleGAN was developed to overcome the limitation of
paired data when two generators and two discriminators are
used. Figure 3 shows the detailed framework of CycleGAN,
which is considered to be a powerful DL technique that per-
forms image domain transfer and face transfer. Because there
is no database that includes both pathological OCT images
and matched normal OCT images, supervised GAN tech-
niques, such as conditional GAN and Pix2Pix, are not appli-
cable in this study. CycleGAN is a type of unsupervised ma-
chine learning technique used for mapping different domains,
and several researchers have already used it for few-shot and
small data domain transfer [32-34]. The detailed mathemati-
cal implementation of CycleGAN is described in
Supplementary Materials.

We developed CycleGAN augmentation models for each
rare retinal disease (central serous chorioretinopathy, macular
telangiectasia, macular hole, Stargardt disease, and retinitis
pigmentosa). The major classes did not require data augmen-
tation because they had sufficient OCT images to train con-
ventional DL models. Each CycleGAN model was trained
based on two domains, including normal retina and one spe-
cific rare disease. The few-shot OCT images with rare dis-
eases were augmented using both linear and elastic transfor-
mations. Linear transformation included left and right flip,
width and height translation from —5 to +5%, random rotation
from —30° to +30°, zooming from O to 20%, and random
brightness change from —10 to +10%. Elastic transformation
was achieved using a Gaussian kernel [35]. We defined this
transformation as “the basic augmentation step.” In our expe-
rience, 40% of the original images with basic augmentation
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should be retained for training the classifier. In this training
step, 2000 normal retinal OCT images were randomly sam-
pled from Kermany’s study, and 2000 pathological images
were generated by basic augmentation with few-shot samples.
The five trained CycleGAN models translated normal OCT
images to match the pathological images with each rare dis-
ease. Expert ophthalmologists reviewed the generated images
and removed images possessing severe artifacts. A total of
5000 pathological OCT images, including 3000 CycleGAN-
based and 2000 basic augmented images, were prepared for
each rare disease to train the diagnostic classifier model.

To use a verified and pre-designed image generator, all the
input images needed to be resized to a pixel resolution of
256 x 256 x 3, which is the basic setup of a CycleGAN.
Therefore, we used the default parameter settings, that is, the
ADAM optimizer with a batch size of 1, to optimize the GAN
networks. To visualize the effect of CycleGAN-based aug-
mentation, the t-distributed stochastic neighbor embedding
(t-SNE) algorithm was executed using sampled instances.
The feature vectors from the last layer of the pre-trained
Inception-v3 model were extracted to train the t-SNE.

2.4 Development of CNN model

After data augmentation for rare retinal diseases, we trained
the deep CNN using the Inception-v3 model, which is the
most popular DL network developed by Google, to build a
multi-class diagnosis model. The Inception-v3 model has
been used successfully in many previous studies, demonstrat-
ing state-of-the-art performance with a saliency map [6, 9].
Figure 4 shows the training and validation processes. The first
validation scheme involved fivefold cross-validation using the
entire dataset including training and test datasets (Fig. 4(a)). In



Med Biol Eng Comput (2021) 59:401-415

CycleGAN

real/fake
discriminator for y Normal OCT

(Major class)

405
Generators . 2 T
G:X—Y Synthesized OCT Final training dataset for
(Minor classes) GAN-based augmentation
Normal — CSC

+ transfer learning

H

(proposed DL model
using GAN)

Normal — Macular hole
Normal (N = 26,860)

H

DME (N = 11,348)
Drusen (N = 8,616)

Normal — MacTel

Imbalanced data
including a rare

b disease
FGw) —x||, + [6(FGY) - ®
[I7 (X?) x|, ” (FO) -y, discriminator for x 6,9% °

:cycle consistency o0 %g° ®

o oo ©

o o

Domain X : Normal

H

CNV (N = 37,205)

Normal — Retinitis pigmentosa CSC (N =5,000)

MacTel (N = 5,000)
Macular hole (N = 5,000)

H

Normal — Stargardt disease

Retinitis pigmentosa (N = 5,000)

Domain ¥: Disease

O Real image

{ ™) Generated fake image

H

Stargardt disease (N = 5,000)

GAN-based o B data
data augmentation including a rare disease Dataset including =
o CycleGAN-based s W

% © . augmented P

© %0 b dataset

o o0 ° 0,0

° ©’ /0od0

0%°
o ©

Fig. 3 CycleGAN-based augmentation for rare diseases and image classification processes. The CycleGAN model was trained using the few-shot rare
disease OCT image, generating new pathological OCT images with rare diseases

this scheme, even during GAN training, the verification
datasets were thoroughly separated from the training sets so
that the GAN models could maintain full independence of the
verification sets. Because the independent test dataset for the
major classes was selected from Kermany’s previous work
[6], the second scheme involved training the CNN model
using the training set and validating it with the test dataset
(Fig. 4(b)). The final training dataset for the diagnostic FLS
models contained a total of nine classes (Fig. 2), including
26,860 normal retina, 11,348 diabetic macular edema, 8616
drusen, 37,205 choroidal neovascularization, 5000 central se-
rous chorioretinopathy, 5000 macular telangiectasia, 5000
macular hole, 5000 Stargardt disease, and 5000 retinitis
pigmentosa images (Fig. 3). A tenth of the training dataset
was used as the validation set to estimate how well the model
had been trained. We downloaded the Inception-v3 model,

Training dataset Test dataset

OCT data Normal (N = 26,860) Normal (N = 250)
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which was pre-trained on the ImageNet database, and per-
formed fine-tuning of the weights of the pre-trained networks
(Fig. 1(b)). This process generally keeps the weights of some
bottom layers to avoid over-fitting and performs delicate mod-
ification of the high-level features. To use the images gener-
ated by CycleGAN for the CNN model, the size of the input
images for the Inception-v3 model was resized to a pixel res-
olution of 299 x 299 x 3. The model was trained with an ep-
och of 250 and a batch size of 10. The ADAM optimizer was
also used with a categorical cross-entropy loss. In our exper-
iments based on transfer learning, it tuned a fully connected
layer of the CNNs. The backbone convolutional layers of
Inception-v3 were left frozen, and the last fully connected
layer was trained using the ADAM optimizer.

Because there is a growing demand for explainable artifi-
cial intelligence methods [36], we adopted the Grad-CAM

o 5-fold cross-validation

Split1 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Combining
the whole split2  Fold1 Fold 2 Fold 3 Fold 4 Fold 5
datasets
Split3  Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
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Fig. 4 Two training and validation schemes for the deep learning model for major and rare disease classification. a Five-fold cross-validation using the

whole data set. b Independent test dataset validation
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technique to generate the saliency map. Grad-CAM visualizes
the decisional areas of the CNN model using the gradients of
any target flowing into the final convolutional network.
Finally, it produces heat-maps that highlight the important
area of interest and interprets the decision of the Inception-
v3 model.

Google CoLab Pro, which is a cloud service for dissemi-
nating the DL research, was adopted to implement the
CycleGAN and Inception-v3 models. Google CoLab Pro pro-
vides a development environment with Tensorflow-based DL
libraries and a robust graphic processing unit (GPU). This
enables rapid processing of a heavy DL network without the
need for a personal GPU.

2.5 Other types of few-shot learning

For comparison, FSL techniques based on metric-learning
were also implemented. A convolutional Siamese neural net-
work was developed to find the relationship between two
comparable classes [37]. Recently, researchers have reported
that Siamese networks perform well in complicated FSL tasks
with shared weights of the backbone CNN model [16]. We
used Inception-v3 as identical subnetworks for the classes,
and the Siamese network was designed as described in the
MATLAB 2020b (MathWorks Inc., Natick, MA, USA) ex-
ample (Fig. 2(c)). In this study, both the prototypical network
and K-nearest neighbor learn an embedding based on the
Euclidean distance to classify a new instance. To reduce the
feature space dimension, we used the Inception-v3 model
trained without data augmentation as a backbone CNN model
for both prototypical network and K-nearest neighbor tech-
niques. The prototypical network learns a metric space by
computing the distance to the prototype representations of
each class (Fig. 2(d)) [15]. We set the K value as 3 for the
K-nearest neighbor model according to Quellec’s work [12].

2.6 Segmentation model using a few-shot dataset

To verify that the segmentation of pathological lesions
with few-shot rare disease data is possible, we built an
additional segmentation CycleGAN model. The training
process was based on a total of 72 ground-truth images,
including the images of sampled major diseases and few-
shot rare diseases. In these images, the sub-retinal fluid,
intra-retinal cyst, and pigmented epithelial detachment
were manually labeled by two board-certified ophthalmol-
ogists. We performed basic augmentation of these ground-
truth images into 1000 images. Finally, 1000 augmented
ground-truth segmentation images and 1000 randomly
sampled pathological OCT images were used to train the
segmentation CycleGAN model.
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2.7 Statistical analysis

The main focus of this study was the accuracy of the classifi-
cation model. The performance of the Inception-v3 model was
evaluated based on the accuracies of the whole classes and
sub-group of rare diseases. The assessment of diagnostic per-
formance for each class was based on the area under the re-
ceiver operating characteristic curve (AUC). To establish the
performance of the imbalanced classification, we calculated
the unweighted Cohen’s k values, relative classifier informa-
tion (RCI), and Matthews correlation coefficient from all the
classes [38, 39]. To evaluate our FSL from a clinical perspec-
tive, all the OCT images in the test dataset were reviewed by
an independent expert ophthalmologist who did not have any
prior information about the disease names, distribution, and
sources.

The basic augmentation step before training the GAN and
Inception-v3 models was performed using the
imageDataAugmenter and imgaussfilt functions with a
Gaussian kernel (with =10 and o« =2) in MATLAB
2020b. We used CoLab’s CycleGAN tutorial page to develop
and validate the CycleGAN model. All these codes are avail-
able on the Tensorflow webpage (https://www.tensorflow.
org/tutorials/generative/cyclegan). We modified the data
input pipeline of the CycleGAN and Inception-v3 codes to
import our dataset.

3 Results

3.1 CycleGAN-based augmentation for rare retinal
disease

We developed our DL model using CycleGAN-based aug-
mentation in the challenging context of few-shot OCT images
for rare diseases. First, the CycleGAN models generated OCT
images with rare diseases, including central serous
chorioretinopathy, macular telangiectasia, macular hole,
Stargardt disease, and retinitis pigmentosa, using the initial
training dataset. The final CycleGAN model for each rare
disease was trained for 100 epochs, which required approxi-
mately 20 h in the CoLab Pro environment. After training,
randomly sampled normal OCT images were translated into
pathological images for augmentation while maintaining the
structures of the choroid and peripheral retina.

In the initial exploratory experiment, the number of
CycleGAN-based augmented data was increased, and it
yielded the highest performance at 5000 OCT images per rare
disease class (2000 original images with basic augmentation
and 3000 CycleGAN-based augmented images) as shown in
Fig. 5. Additionally, Fig. 6 shows the acceptance rate for the
synthetic OCT images used to train the deep learning model
after review by the ophthalmologist. Stargardt disease and
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retinitis pigmentosa showed higher rejection rates than the  generating new samples to increase the intra-class variation
other rare diseases. The main reasons for the rejection of the  of the rare disease classes.
synthetic images were the overlapped feature, low quality, and
mode collapse. The results of the t-SNE algorithm shows that 3.2 Performance of CNN diagnostic model
the initial data without augmentation fails to visualize the mi-
nor groups with rare diseases (Fig. 7(a)). After the The overall classification performance of the deep learning
CycleGAN-based augmentation for rare diseases, the minor ~ models for the first validation scheme of the five-fold cross
groups were easily clustered with improved generalizability ~ validation using the whole dataset is shown in Table 2, and the
(Fig. 7(b)). best performance was observed in the transfer learning with
The use of CycleGAN-based synthetic images helped in ~ GAN-based data augmentation (proposed DL model). The
the accurate extraction of the characteristic features of each multiclass metrics of overall accuracy, Cohen’s x, RCI, and
rare disease, such as the sub-retinal fluid of central serous = Matthews correlation coefficient pertaining to the best model
chorioretinopathy and cavitation of the inner retina in macular ~ were 93.9%, 0.910, 0.969, and 0.911, respectively.
telangiectasia. During the image generation process, each case In the second validation scheme, the Inception-v3 model
requires approximately 0.2 s for execution. Figure 8 shows  was trained using the final training dataset and validated using
examples of the pathological OCT images with rare diseases  the test dataset. The training process required approximately
generated using the CycleGAN model. This feature genera- 150 h for 250 epochs with fine-tuning for the proposed model.
tion based on normal OCT images can be effective for  Inour CycleGAN-based DL model, the accuracy of diagnosis,
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Fig. 7 The feature space visualized using the 3D t-SNE technique. a t-SNE visualization of transfer learning without data augmentation. b t-SNE
visualization demonstrating the effect of the CycleGAN-based augmentation

Cohen’s x, RCI, and Matthews correlation coefficient were
92.1%, 0.896, 0.983, and 0.897 for the test dataset, respective-
ly (Table 3). Our proposed model demonstrated superior per-
formance in comparison with the other FSL techniques.
Regarding accuracy, the Siamese network and prototypical
network showed lower classification performance than the
transfer learning methods. A similar tendency was observed

Central serous

Macular hole

chorioretinopathy

Typical
source image

for Cohen’s x, RCI, and Matthews correlation coefficient
values, demonstrating that our proposed model outperforms
the other models in terms of multi-class classification. The
accuracy of diagnosis, Cohen’s x, RCI, and Matthews corre-
lation coefficient of the ophthalmologist without prior knowl-
edge were 97.5%, 0.967, 0.956, and 0.968, respectively, and
the diagnostic performance of the human expert was better

Retinitis
pigmentosa

Macular
telangiectasia

Stargardt
disease

Input image

| —

J

Fig. 8 Examples of pathological OCT images with rare diseases generated by the CycleGAN. The rare disease classes include central serous
chorioretinopathy (CSC), macular telangiectasia (MacTel), macular hole, Stargardt disease, and retinitis pigmentosa
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Table 2 Multiclass performance results pertaining to the nine-class classification of retinal diseases in the five-fold cross-validation using the whole
data set
Accuracy (%) Unweighted Cohen’s RCI Matthews correlation
(mean=+standard (mean=standard (mean=+standard (mean=standard
deviation) deviation) deviation) deviation)
DL without augmentation 883 +48 0.833 + 0.084 0.960 + 0.039 0.835 + 0.081
DL with basic augmentation 91.5+44 0.876 + 0.070 0.965 + 0.028 0.878 + 0.068
Proposed DL model using GAN 93.9+45 0.910 = 0.065 0.969 £ 0.028 0911 + 0.062
Convolutional Siamese neural network 83.4+4.7 0.768 + 0.127 0.943 = 0.038 0.773 £ 0.122
Prototypical network 804 +£5.1 0.748 + 0.098 0.931 £ 0.040 0.750 + 0.094
KNN with feature extraction (K=3) 90.9 £4.3 0.881 + 0.071 0.966 + 0.029 0.882 + 0.062

DL, deep learning; KNN, K-nearest neighbor; RCI, relative classifier information

than that of the FSL models. However, Table 4 shows that the
human expert conducted frequent misclassification of rare
diseases, considering the true positive rates per class. The
ophthalmologist’s true positive rates per class for diagnosing
central serous chorioretinopathy, macular hole, macular telan-
giectasia, retinitis pigmentosa, and Stargardt disease were
1.00, 1.00, 0.50, 0.25, and 0.50, respectively, whereas those
of our proposed model were 1.00, 1.00, 1.00, 0.75, and 0.75,
respectively.

The detection performance of each disease was evaluated
using the receiver operating characteristic curves (Fig. 9). The
AUCs of the DL models without augmentation, with only
basic augmentation, and with the proposed GAN-based aug-
mentation are not distinguishable in the major classes. In the
detection of rare diseases, the individual performance of the
DL models showed a significant improvement with our pro-
posed GAN-based augmentation. We also generated a salien-
cy map using the Grad-CAM technique by successfully visu-
alizing the characteristic pathological features for the predict-
ed evidence (Fig. 10).

Additionally, we performed experiments to evaluate the
dataset imbalance using the test dataset. After GAN-based
data augmentation, under-sampling was performed by random
selection to control the data distribution. Figure 11 shows that

controlling the distribution of the dataset did not have a sig-
nificant impact on the classification results after data augmen-
tation. The MobileNet-v2 and ResNet models demonstrated
similar classification performance to that of the Inception-v3
model, which is used in this study (Supplementary Materials).

3.3 Additional experiments using other types of GAN
models

Because our method requires a limited amount of data to train
the CycleGAN model, it is expected to be highly applicable in
the segmentation of OCT images of rare diseases. To deter-
mine the feasibility of our approach in a segmentation task, we
also trained the CycleGAN model using 72 manually seg-
mented OCT images and 1000 normal images (Fig. 12(a)).
By considering the mean Dice score, data augmentation using
50 ground truth segmentation images could generate en-
hanced OCT images highlighting the pathological features
with the mean Dice score of 0.784 (Fig. 12(b)). Although
the training dataset includes few-shot ground-truth segmenta-
tion images of rare diseases, the results indicate that the path-
ological features, such as sub-retinal fluid, intra-retinal cyst,
and pigmented epithelial detachment, were segmented

Table 3 Multiclass performance
results pertaining to the nine-class
classification of retinal diseases in

the independent test dataset
validation

Accuracy (%) Unweighted RCI Matthews correlation
Cohen’s
DL without augmentation 88.4 0.847 0.916 0.848
DL with basic augmentation 91.3 0.886 0.953 0.887
Proposed DL model using GAN 92.1 0.896 0.983 0.897
Convolutional Siamese neural network 80.9 0.755 0.915 0.756
Prototypical network 80.8 0.753 0.933 0.755
KNN with feature extraction (K=3) 91.2 0.885 0.972 0.886
Human expert* 97.5 0.967 0.956 0.968

DL, deep learning; KNN, K-nearest neighbor; RCI, relative classifier information

* Categorization was performed by an expert ophthalmologist without previous knowledge of the probable disease
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Table 4  True positive rate per class pertaining to the nine-class classification of retinal diseases in the independent test dataset validation

Normal CNV DME Drusen CSC Macular hole MacTel Retinitis pigmentosa Stargardt disease
DL without augmentation 0.876  0.924 0920 0.880 0.200 0.200 0.000  0.000 0.250
DL with basic augmentation 0932  0.940 0.888 0.924 0.800 0.800 0.250  0.250 0.500
Proposed DL model using GAN 0912 0948 0932 0.888 1.000 1.000 1.000  0.750 0.750
Convolutional Siamese neural network 0.784  0.860 0.807 0.784  1.000 1.000 1.000  0.500 0.750
Prototypical network 0872 0916 0.832 0.820 1.000 1.000 1.000  0.750 0.750
KNN with feature extraction (K=3) 0944 0936 0916 0.904 0.600 0.800 0.000  0.000 0.000
Human expert* 1.000 0988 0.980 0.956 1.000 1.000 0.500  0.250 0.500

CNV, choroidal neovascularization; CSC, central serous chorioretinopathy; DL, deep learning; DME, diabetic macular edema; KNN, K-nearest neighbor;
MacTel, macular telangiectasia; OCT, optical coherence tomography; RCI, relative classifier information

*Categorization was performed by an expert ophthalmologist without previous knowledge of the probable disease
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Fig. 10 Example of pathological OCT images with saliency map using the Grad-CAM technique

successfully in central serous chorioretinopathy and macular
telangiectasia (Fig. 12(c)).

4 Discussion

In this study, we investigated the feasibility of DL with a GAN
technique for accurately detecting rare retinal diseases using
OCT images. We found that CycleGAN-based augmentation
could improve the diagnostic accuracy of rare diseases using a
conventional DL model with an interpretable explanation via
Grad-CAM. In addition, this GAN technique can be extended
to segmentation tasks using small datasets. To the best of our
knowledge, this is the first experimental study to construct a
few-shot DL model for OCT images considering rare disease
diagnosis using GAN-based augmentation.

A recent study emphasized the large amount of OCT data
required to train a DL model but did not investigate the feasi-
bility of FSL in OCT imaging [40]. To address the limitations
of traditional DL models, we first performed an experiment to
explore the feasibility of FSL in the OCT imaging domain.

a

Datasets for experiments b

Validation results for the test dataset

We found that FSL could be a valuable tool for detecting rare
retinal diseases. Our FSL model using GAN-based data aug-
mentation performed better than an expert without prior
knowledge in diagnosing rare diseases considering the true
positive rate per class. This result strongly illustrated the fea-
sibility of applying FSL to improve the diagnostic accuracy of
rare diseases. Because there are less noisy features compared
to other image domains such as skin [15] and fundus photo-
graphs [18], OCT appears to be more suitable for image syn-
thesis and few-shot learning. However, it is important to note
that all the many synthetic images generated by the GAN
models were not acceptable for use. Therefore, considerable
effort and time to select acceptable images are needed to build
an accurate DL model. Moreover, it will be a huge challenge
to improve the diagnostic accuracy of both major and rare
diseases to a very accurate level for real clinical application.
This study aimed to increase the accuracy of DL in diag-
nosing rare retinal diseases while maintaining the diagnostic
performance for major diseases. Several previous studies have
focused on building DL models for the diagnosis of rare ret-
inal diseases, including macular hole [41], retinitis pigmentosa

11000 Validation results for the test dataset
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[42,43], and Stargardt disease [4]. However, these DL models
were designed for binary classification using normal and path-
ological image data. Therefore, a multiclass classification DL
model is necessary to detect not only rare diseases but also
major diseases such as diabetic retinopathy and age-related
macular degeneration [10, 44]. One study demonstrated that
CNN could classify five classes of OCT images using a large
dataset without augmentation [45]. A recent study using both
segmentation and multiclass classification networks improved
the performance using affine and elastic transformations [35].
Another study using fundus photographs demonstrated the
applicability of the FSL model based on principal component
analysis and k-nearest neighbor [12]; however, this approach
was limited by the lack of sufficient interpretability. This
study established that the accuracy of DL models and the
quality of the images generated using the few-shot setting
decreases significantly with a decrease in the amount of avail-
able data. We succeeded in improving the accuracy of OCT
diagnosis of rare diseases by using the GAN technique.

The main limitation of DL models in diagnosing rare reti-
nal diseases is the inability to generalize decision boundaries
from a very small number of datasets. DL using the FSL
technique enables the model to learn a new task with limited
information from a few instances by incorporating prior
knowledge [14]. FSL relieves the burden of collecting a large
amount of labeled data on rare diseases. In the medical field,
FSL can learn even from extremely imbalanced disease data
distribution using prior knowledge [12]. To solve this prob-
lem, several methods such as meta-learning, metric learning,
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and data augmentation have been proposed [31]. As most FSL
methods are based on pre-trained DL networks, they generally
lack interpretability regarding their operation [46]. Previous
studies have demonstrated that GAN can improve FSL
models by generating training situations to learn better deci-
sion boundaries between categories [14]. Recent studies using
CT and MRI datasets have shown that the GAN-based data
augmentation technique significantly improves the perfor-
mance of machine learning models [47, 48]. GAN has also
been successfully applied to cancer cell classification with
insufficient training data [49]. CycleGAN has been used to
improve the breast mass classification accuracy using a small
dataset [50]. Consistent with previous studies using GAN-
based augmentation, the accuracy of diagnosing rare retinal
diseases was significantly improved using the CycleGAN
model in the OCT domain.

Unlike the studies aiming at developing new GAN-based
CNN models to accommodate the limited number of datasets
[49], we used a standard CNN model that utilizes CycleGAN-
based augmentation. This method is advantageous because
researchers can easily check the output images of
CycleGAN to assess the accuracy of the DL model.
Synthetic OCT images can generalize rare disease classes
based on a variety of normal OCT images and can guide the
CNN model to avoid over-fitting to specific images [51]. In
addition, the trained standard CNN model can be easily com-
bined with Grad-CAM to improve interpretability. Previous
studies have shown that CycleGAN is effective in generating
synthetic images with morphologic feature transformation and
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in performing the segmentation task using a small number of
datasets [51, 52]. However, we established that synthetic im-
ages contain several artifacts; therefore, future studies should
be directed at increasing the quality of synthetic images gen-
erated by GAN with few-shot setting. Further clinical valida-
tion of the resulting synthetic images using real-world data
from clinics is also necessary.

This study has several limitations. First, the OCT images
generated by the CycleGAN model have a low resolution of
256 x 256 pixels. This is because CycleGAN incurs a high
computational cost for training networks for high-
resolution applications. The low resolution may affect the
classification results of the DL model [53]. Second, this
study does not include a volumetric analysis for OCT. A
recent study demonstrated that there is a lack of standardi-
zation in the OCT acquisition and analysis protocol [40].
Future studies should consider the variations in OCT
images and devices. Third, the dataset includes a limited
number of rare disease classes. Although we attempted to
collect rare disease data from web-based sources, we could
not include all the retinal diseases that have been reported in
the existing literature. A recent study demonstrated that the
conventional DL model can classify over 100 disease
classes if the data is prepared for training [54]. We believe
that our CycleGAN-based augmentation for rare diseases
can be adopted to address similar classification problems
with a large number of classes.

5 Conclusions

In summary, our DL model using GAN was useful in improv-
ing the accuracy of OCT diagnosis of rare retinal diseases
while maintaining the diagnostic performance for major dis-
eases. In particular, the CycleGAN-based augmentation was
effective for the generalization of few-shot OCT images of
rare diseases to avoid over-fitting. Thus, by increasing the
accuracy of diagnosing rare retinal diseases via FSL, clini-
cians can avoid neglecting rare diseases with DL assistance,
thereby reducing diagnosis delay and social burden of
patients.
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