Predictive and diagnosis models of stroke from hemodynamic signal monitoring
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Abstract

This work presents a novel and promising approach to the clinical management of acute stroke. Using machine learning techniques,
our research has succeeded in developing accurate diagnosis and prediction real-time models from hemodynamic data. These

Spec.).

models are able to diagnose stroke subtype with 30 minutes of monitoring, to predict the exitus during the first 3 hours of monitoring,
and to predict the stroke recurrence in just 15 minutes of monitoring. Patients with difficult access to a CT scan, and all patients
that arrive at the stroke unit of a specialized hospital will benefit from these positive results. The results obtained from the real-
time developed models are the following: stroke diagnosis around 98% precision (97.8% Sensitivity, 99.5% Specificity), exitus
prediction with 99.8% precision (99.8% Sens., 99.9% Spec.) and 98% precision predicting stroke recurrence (98% Sens., 99%
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1. Introduction

Stroke is a cerebrovascular disease that has great health and
social impact due to its high incidence and prevalence. It is
one of the main death causes in the world and produces serious
long-term disabilities. It is a great burden, not only from the
health point of view but also personal, family and health/social
cost, because of its impact on peoples life’s, patients and care-
givers [1].

There are different stroke subtypes, what implies different
clinical management and therapeutic approaches. Intracerebral
hemorrhage needs early admission in the stroke unit for blood
pressure monitoring. All stroke patients need early evaluation
by a neurologist to have access to prompt reperfusion therapy.
Large vessel occlusion stroke needs prompt neurointerventional
evaluation.

Acute stroke management implies a complex healthcare or-
ganization. In the acute phase, pre-hospital emergency units are
aware and trained to detect a stroke. Depending on the clinical
features, patients will be sent to the closest stroke unit hospital
or stroke center (if large vessel occlusion is suspected). Once
patients arrive at the closest and correct hospital, a neurologist
is waiting in the emergency box. A neurological, cardiological
and respiratory examination is performed, and fast transfer to
the CT scan is done.

A stroke unit is an organized in-hospital facility that is fully
devoted to care for patients with stroke. The semi-intensive
monitoring system during acute stroke phase, and a well trained
team, allows to detect and sometimes control all possible neu-
rological complications, which depending on subtype stroke di-
agnosis are: i) rebleeding in cerebral hemorrhage; ii) recurrence
and/or hemorrhagic transformation in ischemic stroke cases.

During the stay of the patients in the stroke units, patients
are monitored for a long time, generating a large amount of
heterogeneous data that, currently, are not exploited to help on
the diagnosis, evolution, or treatment of the patients.

Applying machine learning methods and algorithms over
biomedical records is nowadays providing remarkable results.
Machine learning ensures unbiased decisions that are only
made according to the state of the patient, profiled by the gath-
ered data. Machine learning is more than a suitable option for
performing predictions as patients are monitored continuously
since the hospital admission, and data are stored ordered and
structured in a database.

There are more cases where machine learning has been used
to aid or improve the diagnosis or detection of diseases, like
Parkinson’s disease [2], or to predict the results of coronary
angiography [3l].

In this research, we develop and apply machine learning al-
gorithms and methods to perform predictions over data from pa-
tients who have suffered a stroke. Stroke monitoring data have a
great temporal component, what is a difficult factor to deal with
in machine learning and deep learning analysis. There is a chal-
lenge as well with the balance of classes, as every predictive
target is totally off-balance. This may incur in an over-fitting
and bad sensitivity/specificity. Therefore, it must be considered
and managed from the problem conception.

Being able to predict stroke subtype in a hospital setting, es-
pecially when brain CT-scan is possible, may not seem very
useful. However, this result is extremely interesting to be ap-
plied in other settings like rural areas that are far away from
local hospitals, which not always have access to CT image.
In these cases, a prompt screening of the patients is manda-
tory. Additionally, the prediction of acute neurological compli-
cations, such as rebleeding, recurrence or hemorrhagic trans-
formation, could allow health professionals to react in time in
order to avoid them or at least minimize adverse effects. Once
in the hospital, being able to predict death not only gives op-
portunities to doctors to change the therapeutic approach but,
in cases that this is not possible, giving an accurate prognosis
risk to patients and/or families is relevant.

The goals of our research are:

o efficient preprocessing of real-time data to increase the
quality of the acquired data and allow knowledge extrac-
tion;

e development of machine-learning approaches for model-
ing of stroke subtype, exitus caused by stroke, and recur-
rence of the episode;

e selection of best model strategy, and validation of results
from a computational and clinical perspective.

In the following section the state of the art is related, where
the current techniques, methods, researches and approaches are
presented and explained. Next, the methodology section will
present the methods, techniques and procedures followed in this
research. Finally, results and clinical conclusion will end this
article showing the results obtained and the clinical and com-
putational discussion.

2. Approach

Recent research in the field of artificial intelligence has been
incorporated into the clinical field, targeting neurological dis-
eases like stroke.

Some works have aimed to predict strokes by modeling over
demographic and public datasets. [4] used the Cardiovascular
Health Study (CHS) dataset to predict eventual stroke by mod-
eling Support Vector Machine (SVM).[5] developed a genera-
tive model called Bayesian List Machine capable of predicting
stroke in atrial fibrillation patients.

Machine learning models and techniques applied to time-
series variable data is an area of research in continuous de-
velopment. [6] trained a SVM model by using the ECG data
from the MIT-BIH database that analyzes ECG and classifies
the different sorts of heartbeats, including Ppremature ventricu-
lar contraction (PVC). Another research that used the MIT-BIH
Arrhythmia Database was [7l], who developed an FSVM (Fuzzy
SVM) model to detect Arrhythmia. [8] sought to use natural
language processing techniques of electronic health records to
determine ischemic stroke sub-type treatment.

Brain image analysis is currently the state-of-art in stroke
sub-type diagnosis according to [9]. Al in the brain image area



has been deeply developed in the last years, obtaining relevant
results ([LQ]). There have been researches that apply machine
learning algorithms on imaging data to predict or diagnose out-
comes related to strokes. [11] used SVM models to predict
SICH outcomes by using CT images of patients who suffered
an acute ischemic stroke. [[12] sought to predict the stroke itself
by applying PCA plus Deep Neural Networks by using medi-
cal service data and health behavior data from more than 15000
patients.

[13] used machine learning algorithms to predict the out-
comes of patients after being treated with intra-arterial therapy.
[[14]] applied regression-based algorithms to predict outcomes
of the patients three months after suffering the incident by using
data within the first 48 hours. [[15]] aims to predict outcome out
of a Rankin Scale after stroke by comparing the performance
of different machine learning methods like Regression models,
Random Forests and neural networks, obtaining accuracy near
to 90%.

Our work, on the other hand, applies machine learning mod-
els over hemodynamic, real-time data, for the first time in lit-
erature, to achieve several novel goals as stroke sub-type diag-
nosis, prediction of the eventual death of the patient caused by
the stroke, and prediction of stroke recurrence. Previous works
have never addressed these goals with such clinical relevance,
and have not dealt with the complexity of processing the real-
time hemodynamic data. Our results not only represent signif-
icant advances in the field of applied machine learning tech-
niques in the biomedical field, but also open new therapeutic
perspectives in the management of stroke.

3. Methods

3.1. Dataset

The dataset used in this study was acquired with a Philips
PIIC iX monitoring center installed in the stroke care unit of the
Hospital Universitario La Princesa. Hemo-dynamic data collec-
tion was performed from Spring 2017 until October 2019, and
798 patients were successfully monitored.

Patients were monitored from the moment they were ad-
mitted to the Stroke Care Unit until they were transferred to
the observation floor. All patients admitted in the stroke unit
were monitored. Inclusion criteria for stroke unit monitoring
included all types of stroke in the acute phase (mostly within
24-48 hours after the stroke onset), but longer monitoring is
possible if close neurological and semi-intensive monitoring is
needed. No age limit is used as exclusion criteria. The only
exclusion criteria for monitoring is immediate death or previ-
ous severe dependence (modified ranking scale mRS 4-5, GDS
- Global Deterioration Scale - 6-7). Some patients with mRS 4
due to musculoskeletal disease but good cognitive state are also
admitted. Before stroke care unit admission, patients are eval-
uated by a neurologist on call in the emergency room (mostly
in emergency box). A CT scan is performed. After ruling out
hemorrhage, in the cases that an ischemic stroke is suspected,
a perfusion CT and an angio-CT (cerebral and supraortic ves-
sels) is performed. In the cases of intracerebral hemorrhage, a

post-contrast CT is done, in order to evaluate spot sign and eval-
uate active bleeding and rebleeding risk. In cases that a stroke
mimic is suspected, the patient will be transferred to the emer-
gency care unit and more tests (EEG, lumbar puncture,...) will
be done to achieve a final diagnosis. The information recorded
from the patients is based on non-invasive measures of hemo-
dynamic variables, as described in Table[T] Timestamps for the
acquired data are also considered in the analysis, as well as de-
mographic information like age and gender.

The clinical variables that were registered are the type of
stroke (ischemic vs hemorrhage), type of hemorrhage (intra-
parenchymal vs non), death and time to death since admis-
sion, time to any acute neurological complication that includes
early recurrence stroke, hemorrhagic transformation in acute is-
chemic stroke, and rebleeding in acute intraparenchymal hem-
orrhage. Exclusion criteria after monitoring analysis were pa-
tients with non-stroke final diagnosis (i.e. seizures, CNS infec-
tion, migraine, ...) or scheduled hospital admission to perform
carotid angioplasty or aneurysm embolization.

The monitoring center stores all the information in a rela-
tional database, where each variable measured compounds a
row in the relational database. Each row is structured as fol-
lows: variable ID, variable value, variable unit, timestamp, and
patient ID. Therefore, several rows must be preprocessed to-
gether to obtain a complete observation of the patient. Obser-
vations do not include demographic variables yet because, as
previously mentioned, training instances are compounded by
several observations. This observation is acquired and stored in
the database every 30 seconds.

One observation may provide a significant amount of infor-
mation from the patient as it represents the state of the patient
for 30 seconds; but in a time series prediction or diagnosis
where the patient is monitored for hours, it is not enough for
machine learning algorithms to provide reliable predictions or
diagnosis. Henceforth, we have put together several consec-
utive observations shaping a training or testing instance. The
number of observations per instance was a relevant part of the
study, where the minimum number of observations compound-
ing an instance were five observations (what represents 2.5 min-
utes of monitoring time) and the maximum number was one
hundred and twenty observations (what represents 1 hour of
monitoring time). In this study, the number of observations for
all the results is five, as it was the time interval that performed
best. Training instances do include as well demographic vari-
ables (age, gender) and the timestamp of the first observation
measured.

From the original dataset that includes 798 patients, sev-
eral datasets have been created as required by the experimen-
tal work. This happens because diagnostics were not available
for all of the patients by the time these experiments were per-
formed. In the case of stroke subtype diagnosis, the dataset
includes 468 ischemic patients and 80 hemorrhagic patients.
Regarding exitus statistics, 43 out of 504 passed away due to
stroke during their hospitalization, and 34 out of 500 suffered a
stroke recurrence episode during their hospitalization.



Table 1: Definition of variables used in this study

Variable Abbreviation Type Role Description
Type of Stroke TS Categorical Ischemic/Hemorrhagic Target
Risk Prediction RP Categorical Exitus/Non Exitus Target
Rhythm Estimation RE Numerical Input A Rhythm Indicator
VE VE Numerical Input Ventricular extra systole
CF CF Numerical Input Cardiac Frequency
Breathing Frequency BF Numerical Input Respiratory Rate
Perf - Numerical Input Pulmonar Perfusion
Sp0O2 - Numerical Input Oxygen Saturation
ST-II - Numerical Input Syst. Time Interval Index
i | Patient variable| value Date
441131 | 112233 VE 0 [2021021019264
441132 | 112233 RE [Bradi SV[2021021019264
441133 | 112233 BF 20 021021019264 CF BF RE | VE |SpO2| Perf | ST-Il CF BF RE | VE [SpO2| Perf | ST-Il CF BF RE | VE [SpO2| Perf | ST-Il CF BF RE | VE [SpO2| Perf | ST-Il
itz | 12253 | oF | 106 pototorsoes] | 196 | 20 |y | O | 100|035 | 10 106 | 20 | 2% |0 | 100|035 |10 106 [ 20 | 8 [0 [100]|035|-10 0.196{0.032 | -0.05 [-0.07|0.015| 1.0 |0.081]
aa1135 | 112233 | spoz | 100 loztotonszes| | 202 | 3 |qay, | 0 | o7 [0a4 |00 103 | 3 | F |0 o7 |04 00 1033 | 3 [0 o7 |034]-09 0.178| 0.61 |-0.316 [-0.070.012 | 0.94 [-0.081]
441136 | 112233 Perf 0.35 [2021021019264 241 [ 30 |NULL | 1 100 | 0.3 | -11 104 | 30 T:C\{W 1]100 (03 [-11 104 30 3 1100 | 03 |-11 0.1840.477 | -0.316 [0.005|0.015 | 0.685 [-0.082|
441137 | 112233 | ST-II -1.0 2021021019264 104 | 29 RhSyX\m 2 | 100 (034 | -1.0 104 | 29 Rh?/:{\m 2 | 100 | 0.34 | -1.0 104 | 29 1 2 | 100 | 0.34 | -1.0 0.18410.432 | -0.42 10.073|0.015| 0.94 [-0.081
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Figure 1: Data preprocessing: data cleaning and imputation phases
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3.2. Preprocessing of them were discarded due to their bad performance. The cri-

The first preprocessing phase consisted of removing outlier teria to discard algorithms was as follows: each algorithm was
values, being replaced by the last correct value or the mean of ~ compared against the best performing algorithm and, if the F-
the previous recordings, depending on the variable type. In the ~ Measure difference was more than 10%, the algorithm was dis-
case of numerical data (SPO2, EV, etc.) the value was replaced ~ carded. Discarded algorithms were Logistic Regression, SVM,
by the mean of the previous recordings of that patient when ~ Naive Bayes, Multi-Layer Perceptron Neural Network, Long-

the value was greater or equal to four times the standard de- ~ Short Term Memory Deep Neural Network, and Convolutional
viation. On the other hand, categorical values (Rhythm Esti- 1-D Deep Neural Network.
mation) were replaced by the last value when the value was Thus, the algorithms chosen and shown in this research are

not measured correctly. The same procedure was followed for  the following:
missing values.
This preprocessing phase is graphically depicted in Figure[I]
Finally, the last preprocessing phase consisted on standard-
izing data. As each feature has different ranges and different
measurement units, data must be standardized in order to pre-
vent unbalance in the algorithm’s internal weights. Therefore,

e Decision Tree: a non-parametric model that create a
model targeting the value of each variable by simple de-
cision rules inferred from data. The optimal parameters
found were 17 as maximum depth, gini as split function,
and a minimum of 2 samples to split a node.

Z-Score standardization was performed for every feature, where e Random Forests: a ensemble algorithm typically used
each value is subtracted the mean value (x) and then that result for classification and regression. It fits several classifiers
is divided by the standard deviation (o"): (usually decision trees), also known as estimator, and the
X—p output of the algorithm is obtained by taking the most re-

Z= — 1) peated output of the classifiers. It performs especially well

because it avoids over-fitting due to the way dataset is dis-
tributed between the indicators. Optimal parameters were
1000 estimators, maximum depth of 23 and gini as entropy
algorithm. Rest of parameters were set to their default val-

Signal preprocessing was not performed since that task was
efficiently done by the monitoring center.

3.3. Algorithms

One of the main goals of this study was to discover which Hes:
learning algorithms achieve the best performance in terms of o Gradient Boosting: a ensemble algorithm that builds the
prediction capability. Initially, we evaluated at least one algo- model in stages, also known as estimators. In each stage,
rithm for each sort of ML model but, after several tests, some it builds N regression trees and finally, it generalizes all of



them by allowing optimization of an arbitrary loss function
(e.g., Deviance Loss Function). The optimal parameters
were 100 estimators, maximum depth of 5, 1.0 as learn-
ing rate and Deviance Loss as loss metric. The rest of the
parameters were set as default.

e AdaBoost: a meta-estimator that builds the model by fit-
ting a classifier (typically a CART Decision Tree Clas-
sifier) and comparing to another fitted classifier, where
weights of incorrectly classified examples are adjusted
such that subsequent classifiers are focused on wing cases.
Optimal parameters were 400 estimators, 1.0 as learn-
ing rate, Decision Trees Classifier as base estimator and
SAMME'R as base algorithm.

e K-Nearest Neighbors: a non-parametric and distance-
based algorithm where input consists the base knowledge,
i.e, training examples. When K-NN is used for classify-
ing, each output is chosen by the closest K examples of the
base knowledge, calculating the distance with the chosen
distance metric algorithm. The optimal parameters were
K = 17, Ball Tree as compute algorithm and Minkowski
distance, P=2 as distance metric.

e Dynamic Time Warping: an algorithm that measures the
distance between two time series signals. This algorithm
used with a simple K-Nearest-Neighbors with K = 1 and
adapted to multivariate (i.e. applied to measure the dis-
tance to several features) it may be used on classification
problems. There are two types of multivariate DTW al-
gorithms: dependent and independent ([16]). Since de-
pendent DTW has provided slightly better results than the
independent algorithm it is the method shown in this re-
search.

3.4. Experimental evaluation

In our experimental work, we have performed three sets of
experiments related to stroke events. The first consists on di-
agnosing the type of stroke suffered by the patient (ischemic vs
hemorrhagic) within a short temporary window (less than 60
minutes). As the treatment of both types of stroke is totally op-
posite, an early guess of the event is desired for proper manage-
ment. It is known that stroke diagnosis gold standard procedure
is a brain image scan (CT or MRI). But in country areas, having
access to a CT is difficult, even more to MRI studies. Most ru-
ral medical centers will not have advanced imaging techniques,
and alternatives are desired to avoid delays in treatment options.

The second experiment is to predict a patient’s death after
stroke, according to incremental time windows from the event.
The initial results of these two goals were already published in
[17]. From that preliminary work, we have improved the data
pre-processing, added demographic variables, and extended the
refinement of machine learning algorithms. These improve-
ments, and a larger dataset, have allowed us to obtain better per-
formance in the algorithms. Death prediction allows clinicians
to adopt a different therapeutic approach in order to prevent,
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Figure 2: K-Fold cross validation method

and if not possible minimize, any possible future and immedi-
ate adverse event due to any clinical complication (neurologi-
cal, respiratory, cardiological, ...). Additionally, being able to
give this information to patients and family is also relevant in
clinical practice as relatives require information about risks and
prognosis.

Finally, the third experiment consists on predicting any neu-
rological complication of a stroke patient during acute set-
ting monitoring, which includes: early recurrence in ischemic
stroke, hemorrhagic transformation in ischemic stroke and re-
bleeding in intraparenchymal hemorrhage. This is a critical sit-
uation for the patient since it drastically decreases the chances
of survival. So far, clinicians have not been able to understand
the mechanisms that drive a patient into recurrence or rebleed-
ing, and our work is a novel and promising advance in that di-
rection. The development of a model that can predict neurolog-
ical complications of patients allows the medical staff to take
preventive measures to avoid the event or to reduce its severity.

Our target application demands unbiased results and mod-
els objectively evaluated. As depicted in Figure [2] we have
performed a K-fold cross-validation methodology with K=5 to
avoid over-fitting and obtain results independent from the train-
ing and test datasets. The code and libraries used in this study
are open source and widely-used: Python with Sci-kit Learn,
and Keras. Some of the algorithms used were not available
in public libraries repositories, therefore, they were coded for
these experiments. The evaluation of the models was measured
by the following metrics: accuracy, sensitivity, specificity, F-
Measure (F1-Score) and both the areas under the Receiver Op-
erating Characteristic (ROC) curve and the Precision Recall
Curve (PRC). These metrics are calculated as follows:

TP + TN
A = 2
Y = TP+ TN+ FP + FN @
TP

itivity = Recall = ————

Sensitivity = Reca N TP 3)
TN

Specificity = ——— 4

FP + TN



2 - Precision - Recall
F — Measure = — (5)
Precision + Recall

where Precision = TP/(TP + FP), TP is the number of true pos-
itives, TN is the number of true negatives, FP is the number of
false positives, and FN is the number of false negatives

4. Results

As aforementioned, we have performed three different ex-
periments: Stroke type diagnosis, Exitus prediction, and Stroke
recurrence prediction. These three experiments were trained,
validated and tested with the same initial dataset, being slightly
smaller or greater regarding the number of patients as explained
before. The dataset features are the same except in the case of
Exitus and recurrence predictions where the dataset includes as
well the stroke type diagnosed.

Several models were trained for a large distribution of time
windows. Before the analysis of the obtained results, we will
present how the models (and the time windows) were selected.

4.1. Model selection

In order to compare and rank the set of algorithms used, we
use the hypervolume indicator [}, in the metrics space. This in-
dicator calculates the volume (in the metrics space) covered by
members of a non-dominated set of solutions W ([[L8]). Note
that a solution in our case is defined as the set of metrics as-
sociated with each time window. For instance, in the case of
the stroke sub-type classification, each algorithm has 94 solu-
tions, i.e., 94 time windows with their four metrics. With this in
mind, let v; be the volume enclosed by solution w; € W . Then,
a union of all hypercubes is found and its hypervolume (Iy) is
calculated.

W
In(W) = v ©)

1
The hypervolume of a set is measured relative to a reference
point, usually the anti-optimal point or “worst possible” point
in space. We do not address here the problem of choosing a
reference point; if the anti-optimal point is not known or does
not exist, one suggestion is to take in each objective the worst
value from any of the fronts being compared. If a set W; has
a greater hypervolume than a set W;, then W; is taken to be a
better set of solutions than W;. In this work, we consider the

hypervolume difference to a reference set R, defined as

Iy(W) = In(R) — In(W) (N

where smaller values correspond to higher quality. If the ref-
erence set is not given, we take Iy (R) = 0.

Table 2|illustrates the set of hypervolumes I, (W) calculated
for the stroke sub-type prediction system (with Iy (R) = 0). As
Table [Z] shows, the best indicator is reached by the Gradient
Boosting algorithm, with 7;(W) = -1.46 followed by Ran-
dom Forest (/,(W) = —1.38) and the K-Nearest Neighbour

Table 2: Hypervolumes computed in the case of the stroke sub-type classifica-
tion system.

Algorithm HyperVolume
Logistic Regression -0.24
Support Vector Machines(SVC) -0.17
K-Nearest Neighbour -1.23
MLP -0.98
Decision Tree -1.22
AdaBoost -1.12
LSTM -0.89
Random Forests -1.38
Naive Bayes -0.25
Gradient Boosting -1.46
Dependent Dynamic Time Warping 1-NN -1.14

(I (W) = —1.23). Clearly, according to this indicator the Gradi-
ent Boosting algorithm is the best algorithm for stroke sub-type
classification.

As stated above, all the hypervolumes are computed over
the non-dominated set of solutions, or in other words, the non-
dominated set of time windows. A solution w; € W is said to
dominate another solution w; € W (denoted as w; < w;) if the
following two conditions are satisfied.

Vie(1,2,....m}, f;(w) 2 fi (w))
Fie(1,2,...,m), £ w)) > fi (w)) ®)

A solution w is non-dominated if another w’ such that w’ < w
does not exist. Hence, the set of non-dominated solutions of
each algorithm will give us the best time windows to be used
in the prediction or the classification system. This is usually
known as the Pareto front or more precisely, an approximation
to the Pareto front.

Table 3: Non-dominated solution set of Gradient Boosting and their respective
metric values.

Time Window FI1-Score

Specificity  Sensitivity ~ Accuracy

5-(0,30) 0.96 0.98 0.96 0.97
5-(0,65) 0.99 1.0 0.98 0.99
5-(0,110) 0.99 1.0 0.99 0.99
5-(0,115) 0.99 1.0 1.0 1.0
5-(0,120) 0.99 1.0 0.98 0.99

Table [3] illustrates the non-dominated solution set for stroke
sub-type classification with the Gradient Boosting algorithm.
As can be seen, the best time window candidate to be used
for the classification system remains within the one or two first
hours after the patient was admitted in the Stroke Care Unit
with only 5 observations per instance. However, a very good
result is also obtained for the observations during the first 30
minutes, achieving a much more useful clinical result.

Table @] illustrates the set of hypervolumes calculated for the
exitus prediction system, where Random Forest and Gradient
Boosting again achieve similar results (1,(W) = —1.46).



Table 4: Hypervolumes computed in the case of the exitus prediction system.

Algorithm HyperVolume
Logistic Regression -0.68
Support Vector Machines(SVC) -1.35
K-Nearest Neighbour -1.37
MLP -1.44
Decision Tree -1.45
AdaBoost -1.42
LSTM -1.16
Random Forests -1.46
Naive Bayes -0.67
Gradient Boosting -1.46
Dependent Dynamic Time Warping 1-NN -1.16

Tables [3] and 6] illustrate the non-dominated solution set for
exitus prediction with the Random Forest and Gradient Boost-
ing algorithms, respectively. As can be seen, the results for the
exitus prediction are highly positive from a clinical perspective
during the first 3 hours and 5 observations per sample (in the
case of the Random Forest), although they increase slightly in
the next hours. In the case of the Gradient Boost, results are
pretty similar and the same window could be used.

Table 5: Non-dominated solution set of Random Forests and their respective

metric values.
Time Window F1-Score

Specificity ~ Sensitivity =~ Accuracy

5-(0,180) 0.99 1.0 0.98 0.99
5-(0,360) 0.99 1.0 0.99 1.0
5-(0,540) 1.0 1.0 0.99 1.0
5-(0,2880) 1.0 1.0 1.0 1.0
5-(0,3600) 1.0 1.0 1.0 1.0

Table 6: Non-dominated solution set of Gradient Boost and their respective
metric values.
Time Window F1-Score

Specificity  Sensitivity =~ Accuracy

5-(0,180) 0.99 0.99 0.99 0.99
5-(0,360) 0.99 1.0 1.0 1.0
5-(0,3600) 1.0 1.0 1.0 1.0
5-(0,4320) 1.0 1.0 1.0 1.0

Similar approach has been followed for the stroke recurrence
in Tables [7] and [§] where DTW 1-NN algorithm has been se-
lected with a time window of 30 minutes and 5 observations
per instance.

4.2. Performance Results for Stroke Diagnosis Models

In this set of experiments, the aim is not to classify for mak-
ing a prediction but to achieve a diagnosis or detection of the
stroke type. As aforementioned, the stroke can be either is-
chemic or hemorrhagic and detecting the type of stroke is cru-
cial for the proper treatment.

The results presented in this section were obtained after train-
ing and testing with data from 548 patients, where 468 patients
were ischemic and the remaining 80 patients were hemorrhagic.
The tests were performed through several temporal windows

Table 7: Stroke recurrence

Algorithm HyperVolume
Logistic Regression -0.61
Support Vector Machines(SVC) -0.01
K-Nearest Neighbour -1.38
MLP -1.24
Decision Tree -1.36
AdaBoost -1.4
LSTM -1.23
Random Forests -1.44
Naive Bayes -0.46
Gradient Boosting -1.44
Dependent Dynamic Time Warping 1-NN -1.46

Table 8: Non-dominated solution set of Dependent Dynamic Time Warping 1-
NN and their respective metric values.

Time Window F1-Score Specificity Sensitivity  Accuracy

5-(0,10) 0.92 0.963 0.8846 0.9245
5-(0,30) 0.9505 0.9896 0.923 0.9662
5-(0,50) 0.9090 0.939 0.946 0.941

and the results shown here correspond to data within the first
30 minutes of monitoring, which is the minimum time required
to obtain these results. Extending the monitoring time does not
improve results, and reducing the monitoring time decreases
scores markedly. The first tests showed that the unbalance of
classes was causing an under-fit of the smallest class hence we
decided to balance classes to a proportion where the smallest
class formed the 35% of the dataset.

Table [9] shows the detailed results of the performance met-
rics. The last row of the table shows the average of the rest
of the metrics. The F-Measure results were 0.9855 for Gra-
dient Boosting, 0.9689 for Random Forests, 0.9077 for Deci-
sion Tree, 0.8930 for Dynamic Time Warping and 0.9301 for
Nearest Neighbors. As can be seen, Gradient Boosting algo-
rithm obtained the best results on each metric. The F-Measure
score 0.9855 is notably higher than results achieved in previ-
ous work [[17] where Random Forests performed better. On the
other hand, the algorithm that provided the lowest results was
Dynamic Time Warping. The reason for this behavior can be
probably explained by the observation time (5 observations per
instance), that is too short for the proper performance of DTW.

These results can be seen graphically in Fig. [5]

Being able to detect hemorrhage vs cerebral infarct within
only 30 minutes monitoring allows to apply the correct treat-
ment and/or transfer to the right medical center (stroke unit vs
stroke center) which implies the possibility to receive early and
accurate treatment depending on each medical case. Therefore,
most patients from rural areas, in extra-hospital emergency care
or medical centers without CT scan availability, could benefit
from this kind of analysis.

4.3. Performance Results for Exitus Models

The exitus prediction aims to forecast the eventual death of
the patient. As previously mentioned, being able to predict the



Table 9: Stroke diagnosis model: performance metrics

Perf. metric  DTW  Nearest Neighbour Gradient Boost Random Forests Decision Tree
Sensitivity ~ 0.8736 0.9134 0.9783 0.9567 0.8881
Specificity  0.9509 0.9701 0.9957 0.9893 0.9594
F-Measure  0.8930 0.9301 0.9855 0.9689 0.9077
Accuracy  0.9221 0.9490 0.9893 0.9772 0.9329
ROC Area  0.9123 0.9417 0.9870 0.9730 0.9237
PRC Area  0.9169 0.9794 0.9994 0.9975 0.9290
Avg 0.9115 0.9473 0.9892 0.9771 0.9235
Table 10: Exitus prediction: performance metrics
Perf. metric DTW  Nearest Neighbour GradientBoost AdaBoost Random Forests
sensitivity ~ 0.8757 0.9416 0.9981 0.9718 0.9812
Specificity  0.9407 0.9844 0.9990 0.9825 1.0000
F-Measure  0.8798 0.9551 0.9981 0.9690 0.9905
Accuracy  0.9185 0.9699 0.9987 0.9788 0.9936
ROC Area  0.9082 0.9630 0.9986 0.9771 0.9906
PRC Area  0.9010 0.9836 1.0000 0.9940 0.9999
Avg 0.9040 0.9663 0.9988 0.9789 0.9926
eventual death of the patient gives the medical team the possi-
bility of applying in advance a special treatment and, in some
cases, avoid the death of the patient or to increase his survival
probability. The methodology in this experiment is similar to
the previous experiment in terms of preprocessing and most of
the features used, but in this case, the aim is prediction instead
of diagnosis. The dataset employed is composed of monitored
data from 504 patients where 43 passed away by stroke causes.
1.00 Like the previous section, there is a notable unbalance between
the classes hence a balance was performed by discarding train-
0.98 ing and testing instances from the greater class until a balance
of 35%-65% was achieved.
0.96 1 As exposed in the model selection subsection, the results pre-
— F-Meacure sented in this study were achieved with a temporal window of
0.94 1 mem Accuracy the first three hours of monitoring and size of five observations
< W Sensivity per training instance.
3 0.921 = i‘;i“f'“y Being able to predict a patient’s death in 3 hours offers an
== PRC opportunity for health professionals to act. Applying differ-
0901 ent therapeutic tools to save the patient’s life or avoiding acute
stroke complications that could lead to death. In cases that it
0881 is impossible to avoid death, being able to give certain and ac-
0.86 - curate prognosis information is very important for patients and
families and allows to plan the therapeutic effort.

K-NN R.Forests G.Boosting DTW D.Tree

Figure 3: Diagnosis detection: all the performance metrics of each model to-
gether.

Table[I0] presents the results of the performance metrics. The
algorithm that performed best was Gradient Boost with 0.9988
score average, whereas Random Forests achieved 0.9926, Ad-
aBoost 0.9789, Nearest Neighbors 0.9663 and Dynamic Time
Warping 0.904. Gradient Boost and Random Forests predict
exitus almost perfect, with very high results in both sensitivity
and specificity.

This experiment was performed beforehand as published in
our previous work [17] with fewer patients and fewer features
compounding the model. The results shown in this study are
notably better than former results.

Fig. @ shows graphically all these results together.



Figure 4: Exitus prediction: all the performance metrics of each model together.
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4.4. Performance Results for Stroke recurrence Models

From a dataset composed of 500 patients from which 34 suf-
fered a recurrence during their hospitalization. The remaining
466 patients did not have any kind of recurrence of affection. It
can be easily spotted that the weights of classes are not ideal,
where only 6.8% had a recurrence. During our tests, perfor-
mance decreased substantially when classes were extremely un-
balanced. The best way of achieving a model able to predict
both classes with high hit rates was to balance classes. Due to
this, classes were balanced to a proportion where 35 percent of
the observations were from recurrence patients and the remain-
ing 65 percent were from patients who did not have a recur-
rence during hospitalization. In order to do this task properly,
observations of patients belonging to the majority class were
discarded.

Table [I1] shows the detailed metric scores for each algo-
rithm tested, where Random Forests is the algorithm that ob-
tains the best results with a 0.98 percent, followed with 0.9504
by DTW, 0.9357 for AdaBoost, 0.9307 for K-Nearest Neigh-
bors and 0.923 for Gradient Boosting. Random Forests was the
algorithm with best average results and, on the opposite side,
DTW obtained the worst results.

The results shown correspond to observations from the first
15 minutes of monitoring of the patients, which is enough to
obtain these results. Creating the model with a longer time
window provides similar results, hence this is the minimum
time window necessary for predicting recurrences on patients.
Predicting any kind of acute stroke neurological complications
(i.e.: rebleeding in cerebral hemorrhage, stroke recurrence or
hemorrhagic transformation in ischemic stroke) in such a short
period of time gives multiple therapeutic opportunities to avoid
or at least minimize adverse events.

Figure [3] depicts the results achieved in this experiment to-
gether.

5. Discussion

This study demonstrated that the use of machine learning
models can accurately predict the outcomes in acute stroke pa-
tients and serve to identify the stroke subtype. Many factors in-
fluence stroke outcomes, and these variables may have, even a
slight, impact on prediction. Indeed, based on the data acquired
from 798 patients in the Stroke Unit of a large national hos-
pital, this study has demonstrated that machine learning-based
models can be derived to help on the right management of this
serious neurological disease.

Our research work has created models for stroke subtype
diagnosis, recurrence prediction, and exitus prediction, from
hemodynamic data acquired in real time by a traditional mon-
itor. These models can be incorporated into the existing moni-
tors in the Stroke unit to help on neurologist’s decisions, or can
be used by the emergency services to advance the treatment of
the patients.

This study has derived and evaluated several machine
learning-based approaches and, in order to compare and rank
the set of algorithms used, we have proposed the hypervolume
indicator in the metrics space.

Gradient Boosting algorithm was able to detect hemorrhage
vs cerebral infarct within only 30 minutes monitoring, and it
achieved an F-Measure of 0.9855. Also, Gradient Boosting al-
gorithm was able to predict a patient’s death in 3 hours with an
F-Measure of 0.9988. Finally, Random Forests algorithm ob-
tained an F-Measure of 0.98 to predict a stroke recurrence from
15 minutes of monitoring.

Table[I2]compares our study with respect to other similar ap-
proaches from the state-of-the-art. The table shows qualitative
and quantitative data, and allows to evaluate the achieved accu-
racy of the models, if the monitoring approach requires invasive
data acquisition, and if the prediction model is able to predict
the rebleeding effect in stroke disease.

As can be seen in the table, our approach not only achieves
better accuracy for the developed prediction models, but it is
also able to work with non-invasive data and predict the re-
bleeding events in stroke disease.For the first time in literature,
our real-time models from hemodynamic data have opened a
new trend in the clinical management of stroke, providing an
accurate and efficient approach from the perspective of data
processing.

Our results are a straightforward complement to other ap-
proaches in this field that apply ML techniques to predict the
stroke event from more complex tests like MRI [24]. Our ap-
proach, affordable and reliable, could in the future reduce the
need of costly neuroimage tools and achieve faster diagnosis.

The present study has several limitations. First, the patient
population was not calculated before conduction of the study.
However, it should be noted that the current patient number has
been enough the validate the generalization capabilities of our
approach. Second, all the patients had come from one stroke
unit. Although these patients may represent the actual charac-
teristics of acute stroke patients, parameters for ML algorithms
may have been optimized and determined for the current pop-
ulation only, suggesting that the results of this study should be



Table 11: Stroke recurrence prediction: performance metrics

Perf. metric DTW  Nearest Neighbour GradientBoost AdaBoost Random Forests
Sensitivity ~ 0.9231 0.9038 0.9231 0.9808 0.9808
Specificity  0.9896 0.9792 0.9583 0.9375 0.9896
F-Measure  0.9505 0.9307 0.9231 0.9358 0.9808
Accuracy  0.9662 0.9527 0.9459 0.9527 0.9865
ROC Area  0.9563 0.9415 0.9407 0.9591 0.9852
PRC Area  0.9648 0.9841 0.9892 0.9919 0.9993

Avg 0.9584 0.9487 0.9467 0.9596 0.9870
1.00
0.98
0.96
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Figure 5: Stroke recurrence prediction: all the performance metrics of each model together.

Table 12: Comparative between other invasive and non-invasive hemodynamic monitoring studies

Reference N.° Patients
Hatib et al.[19) 1.538
Kendale et al.[20] 13.323
Convertino et al.[21]] 190
Shoemaker et al.[22]] 661
Prasad et al.[23]] 101
Our work 548

Non-Invasive
Yes
Yes
Yes
Yes
No
Yes

Rebleeding Diagnosis required Real-Time

No
Yes
No
Yes
Yes
No

Yes
N/A
Yes
Yes
No
Yes

Mean Precision
0.88
0.76
0.965
0.89
0.82
0.98
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interpreted with caution. In a multicenter setting, with differ-
ent patient populations, further validation is warranted. Finally,
patients who arrived at the stroke unit have different evolution
time, some of them could have started the stroke episode a few
hours ago. This approach should be tested in the initial stages
of the event.

6. Conclusions

A correct and early stroke type diagnosis is very important in
order not to lose the therapeutic window and to correctly send
patients to the appropriate medical center.

The prediction of short-term outcomes in ischemic stroke pa-
tients may be useful in treatment decisions. In situations where
imminent neurological complications could happen, it will al-
low us to react and change treatment in order to try to avoid it
or minimize adverse effects. When death is predicted we can
evaluate if there is any therapeutic chance to change it, or if not
viable, decide to the adequate therapeutic effort.

In this study, we have also been able to predict the type of
stroke with simple semi-intensive routine monitoring analysis
using machine learning techniques. No brain image test was
evaluated, but it was compared to the doctors’ final diagnosis,
with very high confidence. It has been also evaluated neurologi-
cal complications and death risks, with also a very high success
rate.

In real clinical practice, it is uncommon to manage acute
stroke treatment without a brain image test (CT-scan or MRI).
But it is still quite common in some rural areas that early CT-
scan access is not possible. This kind of analysis could allow
treating before CT-scan performance in case of a high risk of
losing the treatment opportunity.

Although in urban areas most patients have easy and fast ac-
cess to medical attention, depending on the local health orga-
nization system, stroke patients not always arrive on time for
treatment. Sometimes patients decide to seek direct medical
assistance instead of calling 112 (Europe emergency call num-
ber), therefore the first medical exam is not performed by a
neurologist and a transfer to a stroke unit or stroke center is
not possible. So, pre-hospital stroke subtype diagnosis during
transfer with routine vital signs monitoring would allow direct
transfer to the appropriate medical center in order to receive the
necessary treatment.
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