
https://doi.org/10.1007/s11517-021-02371-5

ORIGINAL ARTICLE

A real-time camera-based adaptive breathing monitoring system

Yu-Ching Lee1 · Abdan Syakura1 ·Muhammad Adil Khalil2 · Ching-HoWu3 · Yi-Fang Ding4 · Ching-Wei Wang1,2

Received: 16 September 2020 / Accepted: 27 April 2021
© International Federation for Medical and Biological Engineering 2021

Abstract
Breathing is one of the vital signs used to assess the physical health of a subject. Non-contact-based measurements of
both breathing rate and changes in breathing rate help monitor health condition of subjects more flexibly. In this paper, we
present an improved real-time camera-based adaptive breathing monitoring system, which includes real time (1) adaptive
breathing motion detection, (2) adaptive region of interest detection to eliminate environmental noise, (3) breathing and body
movement classification, (4) respiration rate estimation, (5) monitor change in respiration rate to examine overall health of an
individual, and (6) online adaptation to lighting. The proposed system does not pose any positional and postural constraint.
For evaluation, 30 videos of 15 animals are tested with drugs to simulate various medical conditions and breathing patterns,
and the results from the proposed system are compared with the outputs of an existing FDA-approved invasive medical
system for patient monitoring. The results show that the proposed method performs significantly correlated RR results to
the reference medical device with the correlation coefficient equal to 0.92 and p-value less than 0.001, and more importantly
the proposed video-based method is demonstrated to produce alarms 10 to 20 s earlier than the benchmark medical device.

Keywords Respiration rate measurement · Non-contact-based breathing monitoring · Vision-based respiratory rate

1 Introduction

Monitoring respiration rate (RR) and associated changes is
important to examine the health condition of individuals [1].
Keeping track of these parameters is even more important
for vulnerable individuals, including the critically ill,
neonates, infants, and the elderly [2]. Anomalous RR
is an important evidence for serious health issues and
can also be used to predict potentially serious clinical
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events such as cardiopulmonary arrest, chronic heart
failure, pneumonia, pulmonary embolism, weaning failure,
overdose or admission to an intensive care unit [3–14].
Some studies have presented that RR is more efficient
than other vital signs in differentiating between healthy and
unhealthy individuals [15]. Moreover, monitoring changes
of RR helps diagnose a high-risk patient up to 24 hours
earlier than the actual event [15].

In the past decade, various non-contact-based methods
for RR measurement have been explored. Respiratory
movement is subtle and cyclic with different breathing
patterns for individuals but is not easy to detect through
vision. Tan et al. [2] detect breathing motion using
difference of frames (DOF). Tan et al. [2] use image and
signal processing techniques to derive information about
chest and abdominal movements from a series of video
images captured with a single camera. Tan et al.’s [2]
method is largely dependent on distinctive pattern clothing
and could be greatly affected when clothing is removed
or by non-respiratory movements. Zhao et al. [16] used
near-infrared illuminated camera to detect the heart rate
(HR) and RR. Zhao et al.’s [16] method deconstructs single
channel images using delay-coordinate transformation and
independent component analysis to reveal the temporal
dynamics of heart beat and breathing rate. Zhao et al.’s [16]
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method requires that subjects sit in front of the camera
and face towards the camera, which however poses strict
positional and postural constraints on the monitoring
subjects. Xia et al. [17] used the KINECT sensor and
a translation surface to measure the RR. Xia et al. [17]
use a motion magnification method to improve KINECT’s
inherent depth resolution from 1 cm to 1 mm. Xia et al. [17]
programmed the KINECT to capture depth images and
calculate the average depth over a thoracic area of interest,
viewed almost parallel to the subject’s surface, using
the KINECT software development kit. Xia et al.’s [17]
method requires that the translation surface is placed on the
subject’s abdomen, which also poses strict positional and
postural constraints and furthermore causes discomfort to
the subject. Wijenayake et al. [18] and Rehouma et al. [19,
20] used RGB-D cameras to measure RR, which also poses
positional constraints on the subjects. Wijenayake et al. [18]
use principal component analysis (PCA) to eliminate the
spatial and temporal noise from the input depth data and
construct a patient-specific respiratory motion model. Then,
with high precision, this model is used to calculate external
respiratory motion in real time. Rehouma et al.’s [19]
method uses depth information captured by two (Red Green
Blue-Depth) RGB-D cameras at various view angles. The
depth information is then used to recreate a 3D surface of
a patient’s torso with high temporal and spatial resolution
and broad spatial coverage using depth information. The
motion data is recorded for the top of the torso as well as its
two lateral sides. A recursive subdivision of the 3D space
into cubic unit elements is used to estimate the volume for
each reconstruction. Between successive reconstructions,
the volume shift is measured using a subtraction technique.
Wijenayake et al.’s [18] and Rehouma et al.’s [19, 20]
methods poses positional constraints on the subjects and
these positional and postural restrictions can make the
subject uneasy and affect the measurement results. Sanyal
et al. [21] used RGB camera to capture subject’s face video
to measure HR and RR by calculating variations in color of
reflected light, i.e., Hue from the video of a subject’s face.
This technique is highly affected by the lighting conditions
and by the individuals skin tone. Moreover, this method
fails to measure RR and HR if the subject is not facing
towards the camera. Massaroni et al. [22] also proposed a
RGB video-based RR measurement while sitting in front
of the camera. Massaroni et al.’s [22] technique consists
of a laptop’s built-in RGB camera and an algorithm for
post processing of acquired video data. The study of pixel
intensity shifts produces a waveform showing respiratory
pattern from the recording of a subject’s chest movements.
However, this method use manual annotation of breathing
region, which can again cause the postural restriction on the
individuals. Harte et al. [23] used structured-light (SL) to
detect chest wall motion to estimate the RR. In this method,

the cameras were placed around the patient, and the patient
is required in a fixed standing position. More precisely,
the patient must be in a precise marked position due to
the system restrictions. Janssen et al. [24] measure RR
with a video camera and also detect the region of interest.
Janssen et al.’s [24] method exploit the intrinsic properties
of respiration to find the respiratory region of interest and
extract the respiratory signal via motion factorization based
on the observation that respiration induced chest/abdomen
motion is independent motion in a video. However, Janssen
et al.’s [24] method was unable to produce accurate results
and tends to fail in different lighting conditions. Al-
Naji et al. [25] and Brieva et al. [26] use the motion
magnification technique to measure RR from the video.
Al-Naji et al.’s [24] method uses motion magnification
method based on elliptic filter and wavelet decomposition
to magnify breathing action that is difficult to see through
naked eye. RR and its time parameters are calculated by
identifying the fastest moving areas in magnified video
frame sequences. However, the magnification techniques
are also likely to amplify the environmental noise, which
may cause inaccurate RR measurements. For this reason,
Brieva et al. [26] used a convolutional neural network
(CNN) with manual annotation of breathing region to
address this problem. This technique however may fail in
general because sleeping posture and breathing pattern vary
in individuals. Wang et al. [27] built a persistent luminous
impression model (PLIM) to detect subtle breathing motion
signals from a camera without positional constraints for
identification of obstructive sleep apnoea behavior, but
Wang et al.’s method does not produce RR results and is
sensitive to environmental noises. Lee et al. [28] used radar
sensor for contactless measurement of RR and achieved
high precision, but Lee et al.’s method fails to measure
RR when subjects moved substantially. Phokela et al. [29]
proposed a method to estimate different breathing rates with
the help of nasal breath sound strength. Phokela et al.’s
method uses a headset microphone placed beneath the nose
and attached with a smartphone, which will cause positional
constraints for subject as the subject will have to keep the
microphone close to their nose. Reyes et al. [30] proposed
a computer vision-based estimation of RR and respiratory
movement. In this method, the system uses the combination
of Kanade-Lucas-Tomasi, Viola-Jones and Harris Stephens
feature algorithms to automatically detect and tracks a
region of interest on the chest of a person facing a camera.
Then the respiration movement and RR is estimated by
using displacement in the vertical direction of the ROI. This
method also poses a postural constraint. Schoun et al. [31]
used thin medium thermal imaging to calculate RR, tidal
volume, and mouth distribution. In this method, a subject
breathes on a thin medium placed perpendicular to the
exhaled airflow of the patient, while the heat signature is
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recorded on the opposite side of the medium by a thermal
camera, which also poses positional constraints on the
subject. Nosrati et al. [32] use an electromagnetic-based
doppler radar to calculate RR. However, the radar was
placed in front of the patient, and the patient is required
in a fixed standing position. More precisely, the patient
must be in a precise marked position due to the system
restrictions. Nam et al. [33] use a introduces a new method
of monitoring for the simultaneous measurement of heart
and respiratory rates using dual smartphone cameras. The
suggested method estimates heart rates using a rear-facing
camera, while breathing rates are measured using a front-
facing non-contact camera at the same time. However, one
drawback of this method is that during data recording, hand
movement is reduced, which might not always be feasible.

In this paper, we present an improved adaptive real-
time camera-based RR measurement system based on [34],
and the proposed method is demonstrated to be able to
automatically adapt to different lighting conditions, deal
with environmental noise, detect the active breathing region,
and does not pose any positional constraint. This paper
is organized as follows. We introduce our adaptive real-
time camera-based RR monitoring system algorithm in
Section 2. In Section 3, we present the experimental setup
for data acquisition and the results. Finally, Section 4 states
concluding remarks.

2Methods

In this research, we proposed a real-time camera-based
adaptive RR monitoring system. The proposed system uses
a regular smartphone RGB camera as a video input to
monitor the RR and change in RR of the individuals.
The proposed system is robust to lighting conditions,
environmental noise, different breathing patterns (i.e.,
shallow, middle, and deep), and it is sensitive to subtle
respiratory movement, which is difficult to detect otherwise.
Figure 1 illustrates an overview of the proposed algorithm.
To monitor RR, we observe the subtle respiratory movement
while breathing and propose an adaptive RR monitoring
system which consists of the following: (1) adaptive
breathing motion detection, (2) adaptive region of interest
detection to eliminate environmental noise, (3) breathing
and body movement classification, (4) respiration rate
estimation, (5) monitor change in respiration rate to examine
overall health of an individual, and (6) online adaptation to
lighting.

2.1 Adaptive breathingmotion detection

Adaptive breathing motion detection is introduced in the
proposed system to adapt to different lighting environments

and detect subtle breathing motion patterns accurately.
Existing vision-based RR monitoring methods have a
significant impact due to different lighting environments
that compromise their results. Therefore, the proposed
system assess the video input (If (x, y)) and adapt
according to the lighting condition.

In order to detect the subtle breathing motion without
any positional constraint, the proposed system is using a
persistent luminous impression model (PLIM)[26] to detect
the subtle breathing motion without positional constraints.
Given a (w × h) image, and a frame rate of F frames/s, the
PLIM is initialized using the initial frame (I0(x, y)) from
the video input as in Eq. 1. The PLIM incorporates slow
adaptation, allowing pose changes to be accommodated
while allowing cyclical movements to be detected. The
subtle breathing motion is detected in the region of interest
(ROI) boundaries by calculating the difference between
the current frame (If (bx, by)) and the background frame
(Pf −ν(bx, by)) at frame f using Eq. 2. The background
frame is updated with the frequency of ν to incorporate slow
adaptation and enhance subtle breathing movement using
Eq. 3. After breathing motion detection, PLIM’s breathing
activity map (Af (bx, by)) is computed with the help of
Eq. 4 by comparing the difference with the threshold (α).
We also define the raw motion activity level (ef ) as the
number of active pixels in the activity map (Af (bx, by)) at
frame f (see Fig. c). It is computed using Eq. 5 at frame f .

P0(x, y) = I0(x, y) (1)

At frame f , the PLIM in the ROI is updated using

Δf (bx, by) = If (bx, by) − Pf −ν(bx, by) (2)

Pf (bx, by) = Pf −ν(bx, by) +
⎧
⎨

⎩

1 if Δf (bx, by) > 0
0 if Δf (bx, by) = 0

−1 if Δf (bx, by) < 0

(3)

The PLIM activity map Af (bx, by) in the ROI is defined
as

Af (bx, by) =
{
1 if Δf (bx, by) > α

0 otherwise
(4)

ef =
∑

bx

∑

by

Af (bx, by) (5)

where bx ∈ xROI = [x1, x2], by ∈ yROI = [y1, y2],
x1 and x2 are the first and last x-axis points of the ROI, y1
and y2 are the first and last y-axis points of the ROI, which
are further elaborated in the Section 2.2. If (bx, by) is the
image at the frame f , Δf (bx, by) is the image difference at
frame f , Af (bx, by) is the PLIM’s activity map, ef is the
number of active pixels in the activity map. α is the motion
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Fig. 1 The proposed framework for a real-time camera-based adap-
tive RR monitoring system. (i) Data acquisition, the animal data is
recorded from three different smartphones highlighted with the orange
boxes and two stopwatches highlighted with the yellow boxes. The
distance between smartphones and subject is illustrated with the blue
arrows. (ii) Filtered breathing motion detection. (ii, a) shows the real-
time breathing motion detection with ROI and activity map in yellow
rectangle; (ii, b) illustrates the saved normal breathing template, (ii, c)
shows the real-time raw breathing activity levels from the activity map
as an oscillogram; (ii, d) shows the filtered breathing activity levels
on the oscillogram with the help of saved normal breathing template.
(iii) Region of interest is selected avoiding the environmental noise.
(v) Matching of breathing template with normal template. (iv,a) shows
a normal breathing event where the green color indicates the motion
matched with the normal breathing template; (iv, b) presents a limb
movement event with high raw activity level (ef ) whereas the filtered
breathing activity level (e′

f ) remains stable; the red color indicates the
non-breathing motion, which is not matched with the template; (iv,

c) shows a non-breathing status where the subject is at rest without
any movement, and the blue color indicates the latest saved normal
breathing template. (v) Movement classification. (v, a) shows the sig-
nal of the normal breathing activity; (v, b) shows the signal of body
or limb movement activity; (v, c) shows the respiratory arrest activ-
ity. (vi) Estimation of respiration rate, RR is estimated using filtered
breathing activity (e′

f ) signals over f video frames. af is the initial
frame number, and bf is the final frame number required to calcu-
late the frame difference between two breaths. The calculated frame
difference is illustrated as τ , which is used to estimate the RR per
minute. Activity peak (ϒf ), upper-threshold (ζu), and lower-threshold
(ζl) are used to detect the breathing activity. Inclining slope shaded
in green shows inhalation, and declining peak shaded in blue shows
exhalation. Upper and lower thresholds are marked to identify correct
inhalation and exhalation patterns. (vii) Monitor change in respiration,
minor alert is generated if the change is RR is less than 25%, moderate
alert is generated if the change in RR is more than 25% and less than
50%, and critical alert is generated if change in RR is more than 50%

detection threshold, and ν is the PLIM background update
frequency, which are further elaborated in Section 2.6.

In this paper, an improved method to produce stable
breathing signals by

filtering out signals from environmental noises and other
body movements is developed. First of all, the normal
breathing template (Bf ) of an individual is saved initially
from the activity map (Af (bx, by)), which is used as the
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breathing motion reference. Then, the real-time raw motion
is compared and matched with the reference template to
identify breathing signals using Eq. 6. The filtered breathing
activity level (e′

f ) is defined in Eq. 7, which is the number
of active pixels in the breathing activity map (Mf (bx, by)).
The raw activity level ef is produced based on the raw
motion data as in [26], the proposed filtered breathing
activity model is able to distinguish breathing signals from
signals caused by other movements and produce reliable
breathing activity measurement e′

f . Importantly, the online
normal breathing template is designed to be adaptive and
is automatically updated if the proposed system detects a
notable raw activity level (ef ) while detects none or very
less filtered breathing activity level (e′

f ) for ten continuous
seconds.

Mf (bx, by) =
{
1 if Af (bx, by) = Bf (bx, by)

0 otherwise
(6)

e′
f =

∑

bx

∑

by

Mf (bx, by) (7)

where Bf is the saved breathing template for individuals.
The Mf (bx, by) is filtered breathing activity map from
the raw activity map Af (bx, by) and the e′

f is the filtered
breathing activity level at frame f .

2.2 Adaptive region of interest detection

In order to develop a robust and reliable vision-based
breathing monitoring system, it is important to deal with
foreground and background noises, distinguish breathing
movements from other motion signals and produce accurate
measurement of breathing activities. As a result, we build a
LABB model for localization of active breathing behavior
regions, which helps produce pure breathing signals
and quantitative measurement results. In our preliminary
simulated tests, Fig. 2 shows that the proposed LABBmodel
is able to deal with Fig. 2a background noises such as a
moving ball and Fig. 2b foreground noises such as a person
walking by and works well with various camera view angles
as shown in Fig. 2c.

Obtaining individual normal breathing template Bf ,
which is defined in Eq. 18, the system identifies the area
with personalized breathing patterns as the active region of
interest R′ for analysis. The proposed system automatically
reset the ROI if a large motion event is detected. For
initialization, the breathing region (R) is detected from the
full-frame is refined by applying erosion to remove noises.
After that, a bounding box from the refined region (R′) is
determined. In some cases, the breathing motion may have a
weak signal which results in ROI to be small. The proposed

system resolves this situation using Eqs. 10, 11, 12, and 13.

H =
⎛

⎝
0 1 0
1 1 1
0 1 0

⎞

⎠ (8)

R′
f = Bf � H (9)

x1 =
{

(1 − Ω)x′
1 if x′

2 − x′
1 < w/λ

x′
1 otherwise

(10)

x2 =
{

(1 + Ω)x′
2 if x′

2 − x′
1 < w/λ

x′
2 otherwise

(11)

y1 =
{

(1 − Ω)y′
1 if y′

2 − y′
1 < h/λ

y′
1 otherwise

(12)

y2 =
{

(1 + Ω)y′
2 if y′

2 − y′
1 < h/λ

y′
2 otherwise

(13)

where R′ is the breathing region after noise removal with
bounding box R′ = {x′

1, y
′
1, x

′
2, y

′
2}, w is the width of the

image, h is the height of the image, Ω is the resize factor,
and λ is the video frame dividing factor (in this study Ω

= 0.15, and λ = 5); ROI with bounding box is defined as
b = {x1, y1, x2, y2} with dimensions xROI × yROI .

2.3 Breathing and bodymovement classification

Breathing and activity classification is pivotal to the
accuracy of the proposed system. Unconscious body
and limb movements are natural phenomena, which is
unavoidable. The proposed system, with the help of raw
activity level (ef ) and filtered activity level (e′

f ), is able
to distinguish between respiratory and non-respiratory
movements. Figure 1v illustrates the oscillogram about
different activity patterns based on the activity level and
peak duration.

Accurate activity classification would ensure the results
produced by the proposed system are accurate and robust.
After the body or limb movement detection, the proposed
system reset the ROI and normal breathing template to
automatically adapt according to the new resting position of
the subject. Moreover, it excludes that particular movement
from the RR calculation. As a result, the proposed system
can easily adapt to the new position and keep producing
accurate RR measurements.

2.4 Respiratory rate estimation

The respiratory activity causes the cyclic movement of
individuals with varying frequency and depth. The video
inputs are a series of f frames at a frame rate (F ) per
second, and a complete breathing activity is identified using
inspiration and expiration events from the filtered breathing
activity level (e′

f ). Initially, the maximum peak value of the
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Fig. 2 The results of preliminary tests on the localization of active
breathing regions in the presence of foreground and background
noises, and on different view angles.The results shows a the proposed
method is able to effectively and robustly identify the active breathing
regions despite the background noise caused by throwing a ball. b The

proposed method can effectively locate the active breathing regions
despite the foreground noise caused by a human walking by. c The
proposed framework can identify the region of active breathing on dif-
ferent view angles. The red color indicates the motion signal, and the
yellow color represents the detected active breathing region

filtered activity level (ϒf ) is detected from the maximum
filtered activity level (e′

f ) using Eq. 14. Upper (ζu) and
lower (ζl) thresholds are calculated using Eqs. 15 and 16,
respectively (see Fig. 1vi). These upper and lower
thresholds are used to detect a complete inhalation and
exhalation activity without interference of unnecessary
movement using Eq. 17. The breathing pattern of an
individual could change over time. For this reason, the
proposed system is designed to adapt different breathing
patterns. The peak value (ϒf ) is decremented by every
second (see Eq. 14). According to the results, this adaptive
approach is proved to be effective in detecting the inhalation
and exhalation activity efficiently, even if the breathing

activity level (e′
f ) decreases or increases over time.

Furthermore, the time interval between two breathing peaks
could also help us to identify and classify the movement
as a respiratory or non-respiratory movement. If the system
detects a non-respiratory movement or a long breathing
interval, then the activity peak (ϒf ) is reset.

ϒf =
{

e′
f if e′

f > ϒf −1)

ϒf −F − 1 otherwise
(14)

ζu = ϒf × σ1 (15)

ζl = ϒf × (1 − σ1) (16)
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ρf =
⎧
⎨

⎩

1 if e′
f > ζu ∧ ρf −1 = 0

0 if e′
f < ζl ∧ ρf −1 = 1

ρf −1 otherwise

(17)

where ϒf is the maximum level of breathing activity at
frame f , and F is the video frame rate per second; σ1
= 0.75 is empirically determined for further calculation of
the upper-threshold (ζu) and lower-threshold (ζl); ρf is the
breathing peak value at frame f , and e′

f is the filtered
breathing activity level at frame f .

The RR (rf ) is estimated by using the time interval
between two breathing activities (τ ) (see Fig. 1, vi). The
number of breathing activities (ßf ) are counted according to
the detected breathing activities using Eq. 18. Further, the
initial frame number (af ) and final frame number (bf ) are
detected from the series of frames (f ) using Eqs. 19 and
20, respectively. The time interval between two breathing
activities (τ ) could be calculated from the difference of the
final frame (bf ) and initial frame (af ) as in Eq. 21. This
time interval is further used to estimate RR per minute (rf )
at frame f using Eq. 22.

ßf =
⎧
⎨

⎩

ßf −1 + 1 if ρf −1 − ρf = 1
0 if ßf −1 = L

ßf −1 otherwise

(18)

af =
{

f if ßf −1 − ßf = L

af −1 otherwise
(19)

bf =
{

f if ßf −1 + ßf = L + 1
bf −1 otherwise

(20)

τ = |bf −af |
F

(21)

rf = χ

τ
× L (22)

where ßf is the breath counter at frame f , bf is the final
frame number at frame f , af is the initial frame number at
frame f , F is the video frame rate per second, rf is the RR
at frame f , χ is the number of seconds in 1 min (χ = 60),
and τ is the elapsed time for L number of breaths (in this
study L = 2, which is empirically determined parameter).

2.5 Monitor change in respiration rate

The proposed system is also able to monitor the change
in RR. Monitoring change in RR is important to identify
critical events and critical events must be notified to the
medical experts. For this reason, the proposed system also
introduce intelligent alarming system, which the existing
monitoring system lacks. Although RR is estimated every
two breaths in the proposed, but change in the RR is
calculated every 10 s. The proposed system has three types
of alarming system: (1) the adjustable upper and lower
threshold; (2) calculation of the change in respiration rate

over a certain time period; and (3) the respiratory arrest
or no breathing alarm. The adjustable upper and lower
threshold works similar with the existing system (GE Dash
5000 [27]). The alarm will be triggered if the RR exceeds
the upper limit, and go below the lower limit. Equation 23
shows alarm triggering conditions.

Alf =
⎧
⎨

⎩

NU if rf > εu

NL if rf < εl

NG otherwise

(23)

where Alf is the fixed threshold alarm trigger, εu is the
upper threshold, εl is the lower threshold, and rf is the RR
at frame f . NU and NL is the alarm for upper and lower
limit, respectively, whereas NG is the condition when the
alarm is not triggered.

For the rate of change in RR, the proposed system
calculates the change (Δrf ), and percentage change (δrf )
every 10 s (see Eq. 24), which the existing ETCO2 monitors
are unable to calculate. The proposed system classifies the
alarming situation according to the calculated percentage.
The alarming situations include the critical alarm, the
moderate alarm or the minor alarm (shown in Eq. 24). This
intelligent classification can alert and inform a medical staff
about the patient’s condition.

Δrf = |rf − rf −k| (24)

δrf = Δrf

rf
× 100 (25)

Alc =

⎧
⎪⎪⎨

⎪⎪⎩

NA if �1 < δrf ≤ �2

NB if �2 < δrf ≤ �3

NC if δrf > �3

NG otherwise

(26)

where Δrf is the rate of change of RR every k number of
frames (in this study k = 10F ), δrf is the percentage change
in the RR, and Alc is the alarming condition classification
according to the δrf . NC shows critical change in the RR,
NB shows moderate change in the RR, NC shows minor
decrement and increment in the RR, and NG shows no
change in the RR. In this study �1 = 1%, �2 = 25%, and
�3 = 50% are empirically determined parameter.

The proposed system could efficiently generate the
alarms if there is no breathing activity for � continuous
seconds (see Eq. 27). Furthermore, the proposed system also
includes an adaptive respiratory arrest detection system,
which the ETCO2 monitor (GE Dash 5000 [27]) lacks. The
ETCO2 monitor (GE Dash 5000 [27]) is unable to adapt
according to the conditions, but it is able to check for no-
breathing over a fixed (default) time interval. However, the
proposed system is able to adapt according to the condition
with time. As a result, the adaptability and the accuracy of
the proposed system increase. Initially, the proposed system
generates its first respiratory arrest critical alarm after �
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seconds of inactivity and reset the RR result. Further, the
system will automatically add � seconds to the previous
waiting time (qf ) until it crosses the maximum RR reset
limit (Z). When the RR reset limit (qf ) cross the maximum
limit (Z), then the system will automatically reset the RR
reset limit to � seconds. Due to this adaptability, our system
is able to adapt for some special conditions and could
estimate as low RR as two (see Fig. 5b), whereas the
existing system (GE Dash 5000 [27]) waiting time is fixed,
and it is unable to adapt to the low respiration rate. Thus, the
existing system (GE Dash 5000 [27]) is unable to estimate
the RR, which lower than six breaths per minute.

Aln =
{
1 if

∑
�

f rf = 0
0 otherwise

(27)

qf =
⎧
⎨

⎩

qf −1 + � if Aln = 1 ∧ qf −1 < Z

� if qf −1 > Z

qf −1 otherwise

(28)

where Aln is no breathing alarm, � is the threshold for
breathing inactivity, rf is the RR at frame f , qf is the
threshold for RR to reset at frame f , and Z is the maximum
frame limit for breathing inactivity. In this study � = 10F ,
and Z = 30F .

2.6 Online adaptation to lighting

For online adaptation to lighting, the proposed system
initially assesses the first frame (I0(x, y)) of the video
input and computes the illumination level (ϕf ). Each frame
is an image composed of three channels, i.e. red, green,
and blue channels. RGB image (If (x, y)) is converted
into a grayscale image (Vf (x, y)) by averaging the pixel
intensities of the three channels, and from the grayscale
image, the illumination is calculated using Eq. 29.

ϕf =
∑w

x

∑h
yVf (x, y)

w × h
(29)

where Vf (x, y) is the grayscale image at frame f with
dimensions w × h, ϕf is the illumination with resulting
values in the range [0, 255] at frame f .

Motion detection threshold (α) and background update
frequency (ν) are determined using Eqs. 30 and 31. α and
ν are the key parameters, which control the sensitivity of
subtle breathing motion detection. α is directly proportional
to the sensitivity of the proposed system; ν also increases the
motion sensitivity of the breathing movement, which means
that the system will update the persistent impression frame
after every ν frame.

α =
⎧
⎨

⎩

ω1 if ϕf < β1

ω2 if β1 ≤ ϕf ≤ β2

ω3 if ϕf > β2

(30)

ν =
{

γ1 if α = ω1

γ2 otherwise
(31)

where α is motion detection threshold, and ν is
background update frequency;ω1 = 8,ω2 = 12,ω3 = 24, γ1 =
4, γ2 = 2, β1 = 83, and β2 = 100 are empirically determined.

3 Data and results

3.1 Experimental setup and data acquisition

The video data were acquired from The National Taiwan
University Veterinary Hospital. The animal use protocol has
been reviewed and approved (Approval Number NTU106-
EL-00116) by the Institutional Animal Care and Use
Committee (IACUC), National Taiwan University, Taiwan.
All experiments were carried out in accordance with the
approved guidelines. Our experimental setup is shown
in Fig. 1i. Using three smartphones and two digital
stopwatches, the videos were recorded at 1080p resolution
with 30 frames per second. Two smartphones were used
to record the animal video from two different angles,
and the distance from the camera to the target is shown
in Fig. 1i. The third smartphone was used to record the
measurement outputs of the referenced device, i.e. a FDA-
approved medical device (GEDash 5000 [27]). Stopwatches
were used to synchronize the video of the target and the
video of the referenced device.

In total, 15 young healthy animals (Landrace × York-
shire × Duroc (LYD) pigs) were used as subjects to record
the video data twice with 7-day interval between two data
acquisition. Therefore, 30 recorded video data were col-
lected. In order to evaluate the proposed system more
comprehensively, the data from each subject was recorded
and classified into seven different stages to simulate var-
ious medical conditions and breathing patterns. When the
subject was being prepared for the experiment, premedi-
cation was administered with intramuscular injection of a
mixture of 2 mg/kg xylazine (Rompun, Bayer Korea Ltd.,
Seoul, Korea) and 4 mg/kg Zoletil (a mixture of tiletamine
hydrochloride and zolazepam hydrochloride, Virbac Lab-
oratory, Carros, France). A 22 intravenous catheter was
placed in the marginal auricular vein through which the
fluids and the drugs were subsequently injected. The anaes-
thesia was inducted with intravenous propofol 1mg/kg.
Once anaesthetized and tracheal intubated, general anaes-
thesia was maintained with isoflurane (2–3%) throughout
the procedure. Heart rate, ECG, BT, mean arterial pres-
sure, pulse oximetry, ETCO2, and RR were monitored
continuously. Respiratory condition and rate in the general
anaesthesia were controlled by mechanical ventilator (Anes-
thesia Delivery System (ADS) 1000, Engler, Florida, USA)
and intravenous administration of muscle relaxants, 10%
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atracurium. Pressure control mode was used on ADS 1000
to control the RR of the subject.

Figure 3 illustrates the seven stages with ADS ventilation
rate in the experimental design to simulate various medical
conditions and breathing patterns. In the beginning of the
anaesthesia (Stage 1), atracurium was given a loading dose
of 0.5 mg/kg followed by 0.5 mg/kg/h constant rate infusion
for 15 mins and the manual ventilator rate of ADS was
set at one breath per minute (the lowest frequency). In
this stage (Stage 2), the subject will be breathing with the
help of mechanical ventilator only. The effect of atracurium
would be onset about 2 min after injection. Spontaneous
respiratory would be gradually recovered about 10 min after
withdrawal of atracurium. This means that the subject will
gradually recover in stage 3. In the beginning of stage
4, the ventilator rate of ADS was set at 30 breaths per
minute then decreased to 10 breaths per minute to enter
stage 5. In the stage 6, we turned off the ventilator. The
concentration of isoflurane was elevated to 5% in stage 7
to deepen the anaesthesia and to observe the change of the
respiratory condition. In the first data collection procedure,
all pigs gradually recovered from general anaesthesia since
the end of stage 6 by turning off the isoflurane. In the
second experiment, propofol and potassium chloride (KCl)
were introduced intravenously to euthanize the pigs at the
end-point of this experiment.

The breathing pattern in the animal data is categorized
into three types, including spontaneous breathing, machine
aided breathing, and spontaneous plus machine aided
breathing. Spontaneous breathing occurs in stage 1, and
from stage 6 till the end. Machine aided breathing occurs in

Table 1 Illustrates the average accuracy of the RR results from
different viewing angles

View Avg. distance to subjects Avg. relative accuracy

(cm) (%)

Lateral 40.2 91.36

Anterior 62 94.91

stage 2 only, and spontaneous plus machine aided breathing
occurs from stage 3 to stage 5. For detailed comparison, RR
values from the monitor and the proposed system needed to
be quantized and recorded every fixed time interval. In this
study, we computed RR every two breaths and calculated
the difference every 10 s.

3.2 Results and discussion

The RR measurements from the proposed system were
compared with the results from the FDA-approved ETCO2
monitor (GE Dash 5000 [27]) to evaluate the accuracy
of proposed system. In the preliminary test, five trials
were performed initially with two different viewing angles
(anterior and lateral) of the animals in supine position. RR
results were compared with the reference standard from
both viewing angles, and the anterior view is proved to be
more accurate than the lateral view (see Table 1). Based on
the preliminary test results, an anterior view is selected for
further detailed experiment. Full evaluation was performed
using an anterior view of 30 animal videos, each having

Fig. 3 This figure illustrates the experimental setup with different
stages to simulate various medical conditions and breathing patterns.
An anesthesia delivery system (ADS) is used as positive pressure ven-
tilator (Pressure Control Mode) to control the respiratory rate (RR)
during machine aided and spontaneous plus machine aided breathing
stages. In Stage 1, atracurium was given a loading dose of 0.5 mg/kg
followed by 0.5 mg/kg/h constant rate infusion for 15 mins and the
manual ventilator rate of ADS was set at one breath per minute (the
lowest frequency). In Stage 2, the subject will be breathing with the

help of mechanical ventilator only. The effect of atracurium would be
onset about 2 min after injection. Spontaneous respiratory would be
gradually recovered about 10 min after withdrawal of atracurium. This
means that the subject will gradually recover in stage 3. In the begin-
ning of stage 4, the ventilator rate of ADS was set at 30 breaths per
minute then decreased to 10 breaths per minute to enter stage 5. In
stage 6, we turned off the ventilator. The concentration of isoflurane
was elevated to 5% in stage 7 to deepen the anaesthesia and to observe
the change of the respiratory condition
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Fig. 4 The box plots of the RR
measurements by the reference
medical device and the proposed
system in two different breathing
stages where the outliers
> 1.5× interquartile range are
marked with a dot and outliers
> 3× interquartile are marked
with an asterisk, including a the
spontaneous breathing stage and
b the spontaneous plus machine
aided breathing stage. The
results show that the proposed
method produces correlated
results with the medical
monitoring device and generates
comparably less outliers

seven stages for simulating medical conditions (see Fig. 3).
The RR values were recorded every 10 s for evaluation.

Using Spearman’s rho test, the proposed system produces
significantly correlated results to the referenced medical
device with a correlation coefficient equal to 0.92 and p-
value less than 0.001. Figure 4 shows RR results of (a)
spontaneous breathing and (b) spontaneous plus machine
aided breathing box plots from the proposed method and
the referenced medical device, showing that the proposed
system produces highly correlated and stable results.

3.3 Discussion

In our experiments, it is found that the proposed system
is more sensible and stable in comparison to the refer-
ence medical device. Figure 5 illustrates examples from
our experiments. Figure 5a shows that in stage 1 the spon-
taneous breathing results from the proposed system are
highly consistent with the reference device with the corre-
lation coefficient equal to 0.92, and the p-value < 0.001
using Spearman’s rho test. At the end of stage 1, there
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Fig. 5 a In stage 1 the
spontaneous breathing results
from the proposed system are
highly consistent with the
reference medical device. b the
reference medical device fails to
produce results because of low
RR while the proposed system
adapts to that condition and
successfully produces results. c
Results from the proposed
system and the reference device
are also significantly correlated.
d For the critical stages from
spontaneous breathing to
respiratory arrest, the results
from the proposed system and
the reference device are highly
consistent, but more importantly
the proposed vision-based
monitoring system is
demonstrated to be able to
notify the critical situation 10 to
20 s earlier than the reference
medical device
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is a unreasonable sudden drastic increase in the RR value
from the reference medical device while the proposed sys-
tem remains stable. In addition, the proposed vision-based
system is able to notify the medical doctors about the crit-
ical situation 10 to 20 s earlier than the reference medical
device. However, human intervention in the foreground may
cause minor noises for the proposed vision-based system
as observed at 100 s at stage 1 the results are unusual. For
the machine aided breathing, the reference medical device
fails to produce results because of occurrence of extreme
low RR while the proposed system adapts to that condi-
tion and successfully produces results as shown in Fig. 5b.
In the stage of spontaneous plus machine aided breathing
as shown in Fig. 5c, results from the proposed system and
the reference device are also significantly correlated with
the correlation coefficient equal to 0.63, and the p-value
equal to < 0.001 using Spearman’s rho test. For the critical
stages from spontaneous breathing to respiratory arrest (see
Fig. 5d), the results from the proposed system and the refer-
ence device are highly consistent, but more importantly the
proposed vision-based monitoring system is demonstrated
to be able to notify the critical situation 10 to 20 s earlier
than the reference medical device, which is also shown in
stage 1 Fig. 5a. The proposed framework does not require
expensive state-of-the-art equipment, but it can still produce
accurate results as compared to the FDA-approved ETCO2
monitor. The proposed framework only requires a smart-
phone and a personal computer. While for the stand-alone
system, only a smartphone is required.

4 Conclusion

In this paper, we present an improved camera-based video-
based respiration monitoring system, which includes real
time (1) adaptive breathing motion detection, (2) adap-
tive region of interest detection to eliminate environmental
noise, (3) breathing and body movement classification, (4)
Respiration rate estimation, (5) monitor change in respira-
tion rate to examine overall health of an individual, and
(6) online adaptation to lighting. The proposed method has
been thoroughly evaluated using 30 animal videos with
simulation of various breathing conditions such as sponta-
neous breathing, machine aided breathing, combination of
spontaneous and machine aided breathing and respiratory
arrest. The proposed method performs highly consistent RR
measurement results to the reference contact-based medi-
cal monitoring device, and more importantly the proposed
method is demonstrated to produce alarms 10 to 20 s earlier
than the conventional medical device. For the system limi-
tation, in our simulation tests, it is found that a continuous
and cyclic moving fan in the scene would influence the sys-
tem as shown in Fig. 6. In the future work, we would like to

Fig. 6 System limitation. A continuous and cyclic moving fan in the
scene would influence the system. In the future work, we would like to
improve the system by integrating the concept of reasonable moving
speed to distinguish breathing behavior from other cyclical movements

improve the system by integrating the concept of reasonable
moving speed to distinguish breathing behaviour from other
cyclical movements. Another improvement could be made
for the future work is to use deep learning-based image
processing to extract breathing features.
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