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Abstract
Ultrasound imaging (USI) biofeedback is a useful therapeutic tool; however, it relies on qualitative assessment by a trained 
therapist, while existing automatic analysis techniques are computationally demanding. This study aims to present a compu-
tationally inexpensive algorithm based on the difference in pixel intensity between USI frames. During an offline experiment, 
where data was analyzed after the study, participants performed isometric contractions of the gastrocnemius medialis (GM) 
muscle, as executed (30% of maximum contraction) or attempted (low force contraction up to a point when the participant is 
aware of exerting force or contracting the muscle) movements, while USI, EMG, and force data were recorded. The algorithm 
achieved 99% agreement with EMG and force measurements for executed movements and 93% for attempted movements, 
with USI detecting 1.9% more contractions than the other methods. In the online study, participants performed GM muscle 
contractions at 10% and 30% of maximum contraction, while the algorithm provided visual feedback proportional to the 
muscle activity (based on USI recordings during the maximum contraction) in less than 3 s following each contraction. We 
show that the participants reached the target consistently, learning to perform precise contractions. The algorithm is reliable 
and computationally very efficient, allowing real-time applications on standard computing hardware. It is a suitable method 
for automated detection, quantification of muscle contraction, and to provide biofeedback which can be used for training of 
targeted muscles, making it suitable for rehabilitation.
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1  Introduction

Ultrasound imaging (USI) is a widely used technology in 
medicine and research. It is a powerful tool, since it is non-
invasive, cost effective, and portable, and it has the potential 
to objectively assess the functionality of muscles and assist 
in rehabilitation of patients recovering from a range of neu-
romuscular disorders [1, 2].

In recent years there has been great interest in studying 
USI to characterize muscle activity since it enables visu-
alization of the muscoskeletal system and evaluation of 
dimensional properties of the muscles at rest and during 
contraction [3–7].

Many previous investigations involved manual assess-
ment of US videos, including measurements of fascicle 

length and pennation angle, in a sequence of US images 
for analysis of muscle movement [8, 9]. However, manual 
assessment is time-consuming, subjective, and in general 
has poor accuracy and repeatability [10, 11]. As a result, 
work has been undertaken to make the process more auto-
mated through the development of mathematical algorithms 
for feature extraction and tracking. Methods based on fea-
ture tracking between ultrasound images with optical flow 
or cross-correlation [12–14] and feature detection in a sin-
gle US image [10, 15, 16] have been validated for several 
applications. These include detection of contracting muscle 
regions [15] and the study of various muscle architecture 
changes, such as cross-sectional area, muscle fascicle ori-
entation [16], length [12, 16, 17], intra-fascicular strain, and 
shearing of aponeuroses [18].

These automated methods are more objective than man-
ual analysis, removing subjective bias; however, process-
ing requires very long computational time, ranging from 
minutes [14] to hours [13], to analyze video recordings 
of only 10-s duration. Zhou et al. also reported that the 
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average computation time needed for the identification of 
parameters in a 300 × 300 pixel frame was about 18 s for 
the first frame, and 9 s for each subsequent frame that used 
information obtained previously [19], meaning that analy-
sis would take about an hour for a 10-s recording at 40 fps 
(frames per second). Farris et al. claimed that when using 
their UltraTrack software to analyze a 9.2-s long video con-
sisting of 801 frames, it took 17.1 s to load the MAT file 
with pixel intensity data and 110.3 s to process it with the 
affine flow algorithm (as run on MacBook Pro with a 2.5-
GHz Intel core i5 processor, 8 GB of RAM, and Mac OS 
X 10.9.5 (Mavericks)), whereas loading an AVI file of 441 
frames directly took 96.3 s (Intel core i5 processor, 8 GB 
RAM) [20]. Because of their relatively high computational 
complexity, these algorithms can currently only be used for 
offline applications or require a specialized hardware.

In this paper, we present a fast, computationally inex-
pensive technique for the precise detection of the onset of 
contraction and quantification of muscle contractions in 
terms of the movement of muscle fibers in relation to the 
maximum contraction. It is based on the comparison of pixel 
intensities between frames of B-mode ultrasound record-
ings. We experimentally evaluated this algorithm in experi-
ments involving isometric contractions of the gastrocnemius 
medialis (GM) muscle. First, the algorithm’s accuracy and 
repeatability were verified offline by comparing the detec-
tions of muscle contractions with recordings of torque and 
electromyography (EMG). We then analyzed its online per-
formance in an experiment where semi-real-time feedback 
of the contractions was given.

2 � Methodology

The investigation described here consisted of two experi-
ments, one where analysis was done offline and the other 
involving online analysis. During the offline experiment, 
participants performed isometric contractions of the gas-
trocnemius medialis (GM) muscle, as executed (30% of 
maximum contraction) or attempted (low force contraction 
up to a point when the participant was aware of exerting 
force or contracting the muscle) movements. During these 
contractions, USI, EMG, and force data was recorded, which 
was analyzed after the study (offline). The purpose of this 
work was to develop an automated algorithm that would be 
able to detect an onset and quantify muscle contractions. 
Furthermore, the aim was to verify the sensitivity of USI in 
relation to EMG and torque data.

The developed method of USI video analysis was then 
adapted for real-time applications to provide biofeedback 
based on USI measurements of muscle activity. During the 
online experiment, participants performed GM muscle con-
tractions at 10% and 30% of maximum contraction, while 

the algorithm provided visual feedback proportional to the 
muscle activity during the maximum contraction as recorded 
with USI.

In this section, the methods for processing and analyz-
ing USI videos are described, followed by the processing 
methods used for EMG and force data. Details of the offline 
and online studies, including protocols and participants 
information, are then presented. The adaptation of the USI 
processing method for real-time feedback applications is 
clearly depicted.

The experimental procedures described here were 
approved by the University of Glasgow Ethical Committee 
and were performed in accordance with the Declaration of 
Helsinki. All participants gave written informed consent.

2.1 � Ultrasound video processing

The method of ultrasound video processing presented here 
is based on comparing the intensity of the pixels between 
video frames.

2.1.1 � Preprocessing

The individual frames of the ultrasound videos in AVI for-
mat were extracted and converted from RGB to grayscale 
values (255 levels, scaled to the range [0, 1]). The region of 
interest (ROI) was selected manually using a polygon (trap-
ezoid) containing only the muscle of interest (i.e. the gas-
trocnemius medialis muscle) and excluding the aponeuroses, 
as shown in Fig. 1. The ROI selected on the first frame of 
the initial recording was used for all subsequent recordings 
for this participant during the session.

1 cm

GM

Skin

SOL

Fig. 1   Region of interest selection using a polygon (dashed trapezoid) 
to include the biggest portion of the muscle without aponeuroses. US 
image shows scanning region including skin, gastrocnemius medialis 
(GM), and soleus (SOL) muscles
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2.1.2 � Ultrasound video analysis

The analysis algorithm can be summarized as follows: 
Given a matrix A(i) containing all the pixels in the i th 
USI frame and M × N  representing the dimensions of the 
ROI, the selected region containing the muscle image was 
represented by:

Values of each pixel within the ROI were then sub-
tracted between adjacent frames:

For each frame, the absolute value of differences 
ΔA(i)M×N for each pixel was summed over the entire ROI 
and normalized by the number of pixels, resulting in the 
normalized pixel difference, NPD(i) , of the i th frame,

The NPD can be interpreted as a measure of relative 
change of muscle state between frames. A summary of the 
USI video processing algorithm is shown in Fig. 2.

Since the intensity of the noise varied with the image 
intensity, several steps were implemented to deal with 
the speckle noise in the ultrasound images. The method 
described here for calculation of normalized pixel differ-
ence includes a calculation of the average pixel intensity 
across the entire image. Therefore, the intrinsic speckle 
noise of the ultrasound frames would effectively cancel 
out enabling a robust comparison between the consecutive 
USI frames.

2.2 � Automatic detection of activity

2.2.1 � Detection of muscle contraction based on USI

The threshold of muscle activation was determined based on 
a recording of the muscle at rest during a baseline period. It 
was observed that there was always some temporal fluctua-
tion in the signal due to physiological artifacts, such as peri-
odic activity of the capillaries and changes in the muscles 

(1)A(i)M×N = A(i) ∩ ROIM×N

(2)ΔA(i)M×N = A(i)M×N − A(i − 1)M×N

(3)NPD(i) =

∑M×N

n=1
�
�ΔA(i)n

�
�

M × N

even when at rest, which can be seen in Fig. 3(a). In order 
to account for these, the threshold for muscle activation was 
determined as the mean + 3 standard deviations (SD) across 
the baseline period. Since the signal obtained from USI pro-
cessing had stochastic characteristics and known dynamics, 
it was possible to apply a similar method for threshold speci-
fication to that commonly used in EMG processing [3, 21]. 
The selection of this threshold value was further supported 
by the verification that no more than 1.5% of data points dur-
ing rest exceeded the threshold (average of 1.29 ± 0.23%). 
This threshold was automatically applied to all recordings.

Plotting the NPD signal over time (Fig. 3(a)), two peaks 
could be distinguished for each contraction. The first peak 
corresponded to muscle contraction, whereas the second 
peak was associated with muscle relaxation. The peaks 
originated from a large change of pixel intensity within the 
ROI between subsequent US video frames, indicating mus-
cle movement: The aponeuroses sheared against each other 
and the pennation angle of muscle fascicles changed, leading 
to large changes between frames. When the muscle was in a 
contracted state, there was little activity in the image due to 
only small movements of the fibers, related to maintaining 
tension.

In order to automatically detect a muscle contraction, two 
consecutive peaks exceeding the threshold had to be regis-
tered following an action execution cue (Fig. 3(a)). For the 
first peak, when the contraction was expected, the algorithm 
found the instances when the signal exceeded the threshold 
and monitored a subsequent period of 0.25 s. It was the mini-
mum duration of the peak when the muscle was contracted. 
If within that interval, 70% of the samples stayed above the 
threshold; then the first detected point was treated as the 
onset of the contraction. This approach was taken to ensure 
that the signal exceeding the threshold was not due to ran-
dom variability of the signal that was seen during baseline 
recordings. The value of 70% was heuristically determined 
when analyzing weak contractions as within 0.25 s from 
the first detection, some samples could still fall below the 
threshold. Using a higher value would omit detections of 
actual muscle activity (7.3% of trials) as verified by compar-
ing with USI video frames during a feasibility study.

When looking for the second peak, corresponding to the 
relaxation, the continuous interval when the signal stayed 
below the threshold was identified (when muscle was tensed), 
and then the same condition for peak detection was applied.

The detection algorithm can be summarized as follows:

(4)

if NPD(i) > T ∧ 70%(NPD(i) ∶ NPD(i + 10)) > T

i = ionset
if NPD

(
i
2

)
> T ∧ 70%

(
NPD

(
i
2

)
∶ NPD

(
i
2
+ 10

))
> T

i = ioffset

Read video file
Extract individual 

frames 

Convert pixel intensity 
to gray scale

Select ROI in the
1st frame

Run processing for N frames:
- convert pixel intensity 

matrix to vector
- calculate NPD

Fig. 2   Flow chart of USI video processing method to calculate nor-
malized pixel difference (NPD)
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Here, T is the threshold value and i is the sample number 
of the USI frame. Onset and offset subscripts stand for the 
beginning of the contraction and the relaxation phase respec-
tively. The sampling rate of the recordings was 40 fps; thus, 
10 samples represent 0.25 s.

2.2.2 � Detection of EMG and torque activity

The detections of EMG and torque activity followed the 
same methods as the detection of muscle contraction 
described above.

For the detection of muscle activations, EMG during a 
task was compared with the baseline signal recorded at the 
start of the session. The EMG onset of muscle activation 
was defined as the time when the enveloped EMG signal 
exceeded a threshold of mean + 2SD of the EMG signal at 
baseline (rest). Similarly, the torque onset was detected when 
the smoothed torque signal exceeded a threshold defined 
as the mean + 2SD of the torque at baseline [3, 21]. If the 
signal remained above the threshold for 1 s, the time stamp 
of the first data point crossing the threshold was considered 
the moment of muscle contraction. The period of 1 s was 
selected to ensure that a lasting contraction occurred and 
that any noise from the signal was not falsely interpreted as 
muscle activation.

2.3 � Offline experimental study

2.3.1 � Experimental setup and protocol

Eighteen able-bodied participants (age 27.3 ± 6.8 years, 11 
male) in self-reported good health with no known sensory or 
motor deficits took part in the offline experiment.

Participants were facing a 19″ computer screen positioned 
at eye level approximately 1 m away where the cues to initi-
ate the tasks were displayed. The visual angle of stimuli was 
9 degrees. The participant was comfortably seated on a chair, 
with the dominant leg bent at the knee at approximately 90 
degrees and the foot resting on a force plate (FP). The heel 
was supported and the foot was restrained with Velcro straps 
to restrict ankle movement. Torque output, EMG, and ultra-
sound videos were recorded simultaneously.

During the experimental session, participants performed 
cued motor tasks by pressing on a stationary force platform 
with their foot (ankle plantar flexion) while contracting the 
gastrocnemius muscle (isometric contraction), performing 
either attempted movements (AM) or executed movements 
(EM). The AM task was a movement with minimum bodily 
awareness of performing a physical action during which the 
participant was instructed to initiate the overt action only 
up to a point when they became aware of exerting force or 

Fig. 3   (a) USI recordings 
taken during executed move-
ment trials for a representative 
participant. The threshold for 
automated contraction detection 
is marked. The rectangle marks 
the resting period between 
the contractions. (b) EMG 
recordings taken during 
executed movement trials for 
a representative participant. 
The threshold for automated 
contraction detection is marked. 
(c) Torque recordings taken dur-
ing executed movement trials 
for a representative participant. 
The threshold for automated 
contraction detection is marked
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contracting the GM muscle. During the EM task, the partici-
pant was asked to aim for a contraction force of 30% of their 
maximum voluntary contraction. This value was chosen to 
avoid fatigue and because of the relatively high sensitivity 
of ultrasound at weaker muscle contractions [3].

Initially, baseline measurements were recorded for 120 s 
when the participant was not performing any movements. 
Following this, their maximum voluntary contraction 
(MVC) was measured when the participant pressed on the 
force platform as strongly as possible 3 times for a period 
of 2.5 s. Participants rested for 7.5 s between each MVC 
attempt.

Before each task, participants had a familiarization period 
lasting for 1 min. During this time, they received visual feed-
back on their torque output.

Ninety cues lasting 2.5 s each were shown for both the 
AM and the EM tasks. Immediately after the cue appeared, 
the participant performed plantarflexion, sustaining the iso-
metric contraction for 2.5 s and relaxing when the cue dis-
appeared. A variable inter-trial (resting) time of 3.0–5.5 s 
was used to avoid preparation for movement due to habitua-
tion with fixed time intervals. The tasks were performed in 
120-s long sub-sessions (5 sessions of 18 trials for each task) 
which allowed the participants to remain alert and avoid 
fatigue.

2.3.2 � Offline data acquisition and preprocessing

During the experiments, an ultrasound probe (linear array 
LV7.5/60/96, central frequency of 6 MHz connected to Ech-
oblaster128, Telemed, Lithuania) was positioned over the 
belly of the GM muscle. It was aligned to the mediolateral 
midline of the muscle at the level of the mid-belly to mini-
mize errors due to probe orientation. The probe was placed 
in a custom-made holder and secured with a Velcro strap 
around the leg to minimize probe movement relative to the 
skin. All recordings were performed in B-mode at an aver-
age rate of 40 fps with the EchoWave II software (Telemed, 
Lithuania).

The ankle torque was recorded with a custom-made force 
platform at 1000 Hz (DAQcard-6024E, National Instru-
ments, USA). The data was acquired in Simulink (MATLAB 
R2014a, The MathWorks Inc., USA). Prior to analysis, the 
torque data was smoothed with a moving average filter over 
0.01 s, which was symmetric and centered so as not to distort 
the phase or timing of the signal.

EMG data was recorded at 1200  Hz (g.USBamp, 
g.Tech, GmbH, Austria) using bipolar Ag/AgCl elec-
trodes positioned over the GM muscle, while the reference 
electrode was positioned over the ankle. The EMG signal 
was band-pass filtered between 5 and 500 Hz with a 5th 
order Butterworth filter within the g.USBamp device, and 

acquired in Simulink. The raw EMG data was full-wave 
rectified to produce a linear envelope of the original signal. 
The data was smoothed with a moving average filter over 
0.01 s [22].

A digital output signal from the ultrasound system was 
used to synchronize data collection between the ultra-
sound, torque, and EMG measurements.

2.4 � Online experimental study

2.4.1 � Experimental protocol

Fifteen able-bodied volunteers (age 30.7 ± 10.8 years, 7 
male) participated in the online experiment. Each partici-
pant completed two sessions on different days. Prior to 
each session, the baseline and MVC were recorded, as in 
the offline experiment. The participant performed weak 
(10% of MVC) and medium (30% of MVC) contractions of 
the GM muscle. Each task consisted of 15 cue-based trials 
(5 trials with real-time dynamometer feedback, shown as a 
signal progressing in time to teach participants to produce 
a contraction with a desired intensity, and 10 trials with 
USI feedback provided after the contraction attempt), last-
ing 12 s each (2 s rest, 1 s preparation, 4 s execution, 5 s 
rest). After finishing each trial, the USI-based biofeedback 
was displayed on the screen in the form of a bar, the height 
of which was proportional to the value of the detected 
muscle contraction as shown in Fig. 4.

2.4.2 � Online data acquisition and preprocessing

The experimental setup was similar to that of the offline 
experiment, but no EMG data was recorded. The US data 
was recorded in the same way as in the offline experiment, 
while a dynamometer (System 3-PRO. Biodex Medical Sys-
tems Inc., USA) was used to record torque data.
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Fig. 4   An example of US visual biofeedback during weak (10% 
MVC) contraction task. The green color presents the “successful” 
limits of ± 10% of the target value and the yellow color presents the 
“acceptable” limit of ± 20%, while values outwit “acceptable” range 
are present in red color
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2.4.3 � Online ultrasound video processing

The relatively low computational complexity of the pro-
posed algorithm (see Sect. 2.1) enabled the USI videos to 
be processed in MATLAB in semi-real-time.

For the online processing, the offline processing method 
was modified to allow access to a raw USI video file (TVD 
format) that was automatically converted to a binary (BIN) 
file. A custom C +  + program was used to extract informa-
tion on the pixel intensity of each frame. Following that, 
computations similar to the offline algorithm were per-
formed, allowing detection of movement in semi-real-time. 
Prior to the session, a ROI was selected manually and kept 
constant throughout the entire session.

A breakdown of the approximate times for file transfer 
and processing of a video with 400 frames (10 s recorded 
at the rate of 40 fps) is shown in Fig. 5. The values were 
obtained using MATLAB Profiler.

During the feedback training, 5  s long USI videos 
(containing 1 s of preparation and 4 s of execution) were 
recorded. Automated processing of the video occurred dur-
ing the following relaxation period when the participant was 
finishing the task and relaxing the muscle. This enabled the 
feedback to be displayed immediately after the entire trial 
finished.

2.4.4 � Ultrasound biofeedback training

For the USI biofeedback training, the threshold of muscle 
activation was selected as described in Sect. 2.2.1. In order 

to provide feedback on the contraction intensity, the peak 
value of the NPD signal during the trial was used, since this 
allowed distinction between weak and medium contraction 
intensities and provided information on muscle activity.

The peak NPD value of the muscle contraction recorded 
during training trials using force platform feedback served 
as a target for trials when USI feedback was provided. The 
NPD value was normalized to the result obtained during 
the MVC test, which indicated the maximum displacement 
of the muscle fibers during contraction. If the NPD value 
recorded during the feedback session was within 10% of 
the target, the trial was considered successful. If it differed 
by up to 20%, it was deemed acceptable. The outcome was 
presented to the participants in the form of bars, with colors 
indicating whether the trial was successful (green), accept-
able (yellow), or unsuccessful (red) (Fig. 4).

2.5 � Offline and online outcome measures

To determine the robustness of the offline automated USI 
analysis method, the ability to detect the muscle contractions 
was compared between USI, EMG, and the force plate (FP). 
For each participant, the total number of detections made con-
sistently by each measurement method was determined and 
compared between methods. This approach also enabled com-
parison of the sensitivity of the different detection methods.

For the online experiment, we analyzed the time required 
to present the feedback to the participants and the distribu-
tion of the trials, i.e., the difference from the target of each 
attempt across two training sessions. For this calculation, the 
NPD peak value of each trial was normalized to the NPD 
peak value recorded during the MVC test prior to the feed-
back training.US recording 

MATLAB computation

-multiplication by ROI matrix, 

-subtraction of adjacent cells,

-absolute difference,

- summation of frame 
0.04 s

File transfer

-saving TVD file, 

-converting TVD file to BIN - 2 s

-loading and trasnforming to vector - 0.6 s  

Fig. 5   Computational complexity of the processing algorithm and 
time required for calculations during the online processing. Total pro-
cessing time is less than 3 s
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Fig. 6   (a) Number of detections made with USI, EMG, and force 
plate (FP) made for each participant during executed movement tri-
als. The total number of trials was 90. (b) Number of detections made 
with USI, EMG, and force plate (FP) made for each participant dur-
ing attempted movement trials. The total number of trials was 90
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2.6 � Statistical analysis

The statistical analysis was performed with the IBM SPSS 
Statistics v. 24.0.0.0 software using the number of detections 
made with USI, EMG, and FP for individual participants. 
Since the data was not normally distributed, as determined 
by the Shapiro–Wilk test, a non-parametric Friedman test 
(paired sign rank sum with a significance level of p = 0.05) 
was used to determine whether there were any statistical 
differences between the detection methods.

3 � Results

3.1 � Offline detection of muscle activity with USI

During the EM task, the performance of each participant 
was rated consistently with all three methods, with only two 
out of 18 participants failing to react to some of the experi-
mental cues (Fig. 6(a)). During the AM task (Fig. 6(b)), 
bigger discrepancies were observed, with three participants 
performing real contractions for less than 70% of the cues 
and only eight reacting with a detectable contraction dur-
ing all 90 trials. For some participants, all detected contrac-
tions were seen with all three methods (USI, EMG, and FP), 
whereas for others, the contractions were so subtle that EMG 
and the force plate could not detect these muscle activations.

Furthermore, for the instances when the detections dif-
fered between the methods, USI detections were reviewed 
to verify the presence of muscle activity and confirm that 
real contractions were detected. An example for partici-
pant 7 in Fig. 7 show the event during AM when the NPD 
method registered the contraction (Fig. 7(a)), whereas the 
EMG signal failed to exceed the threshold (Fig. 7(b)). The 
similarity in signal morphology between detections made 
during EM and AM tasks (Figs. 3 and 7) indicated that 
real muscle activity was detected, which was not seen in 
EMG recording.

For EM, there was 99.0% agreement between the three 
methods, whereas for AM, the agreement rate fell to 
93.1%. The USI detected 1.35% movements which could 
not be detected by the other methods, whereas only 0.19% 
of movements were detected by EMG and force platform 
but not by USI.

Since data on the detection of muscle contractions and 
twitches violated the normality assumption, as determined 
by the Shapiro–Wilk test, a non-parametric Friedman test 
was used to assess differences in the number of detections 
made with different methods. Comparing between USI, 
EMG, and FP, the detections of movements were not sig-
nificantly different for neither EM nor AM (p = 0.662 and 
p = 0.368, respectively).

3.2 � Semi‑real‑time US biofeedback

The application of the fast USI processing algorithm made it 
possible to provide semi-real-time visual feedback on mus-
cle activation proportional to the intensity of the contraction. 
Figure 8 shows an example of a contraction attempt at 30% 
MVC. The interval displayed shows the preparation (1 s) and 
execution (4 s) periods. The peak at around t = 2 s indicates 
the moment when the contraction starts, whereas the relaxa-
tion (which would also result in a peak) is not presented 
in the figure. The height of the peak relative to the MVC 
indicates the contraction intensity and enables distinction 
between weak and medium intensities.

The distribution of attempts for both tasks across an entire 
group is shown in Fig. 9, demonstrating that on average, 
the participants managed to reach the target consistently, 
especially for stronger contractions. This indicates the use-
fulness of USI-based feedback for learning to perform spe-
cific movements. Overall, for both sessions, considering the 
absolute difference from the target relative to the NPD, for 
weak contractions, the 25% quartile was 0.05, the median 
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(AM) task for a representative participant. The contraction is only 
visible with USI
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was 0.09, and the 75% quartile was 0.17. For medium con-
traction, these values were 0.04, 0.09, and 0.14, respectively.

Upon completion of each trial, the feedback about the 
contraction intensity could be shown in less than 3 s (Fig. 7), 
allowing the participant to adjust the intensity of contrac-
tion before the next attempt. On average, the contraction 
was registered at t = 1.13 ± 0.78 s from the beginning of the 
execution phase (which starts at t = 1 s). The execution phase 
(lasting 4 s) was followed by the relaxation phase (lasting 
5 s); therefore, effectively, the feedback was seen about 8 s 
after the beginning of the contraction, but within 3 s after 
the trial finished.

To further strengthen the reliability of this method, the 
following analysis was implemented offline. Two different 
regions of interest (ROI) were selected (smaller and larger 
from the original), and the automated analysis was run again 
to compare the results and classification of trials with origi-
nally obtained data. For 13 out of 15 subjects, the results 
of the feedback sessions remained consistent indicating no 
influence of ROI, while for the remaining 2 participants, 2 
trials or 4 trials (5% and 10% respectively) were classified 
differently. This further demonstrates the robustness of this 
method and lack of dependence on the operator or ROI.

4 � Discussion

In this study, we presented and validated an algorithm for 
analysis of US videos to detect muscle activity and verified 
its performance for semi-real-time detections. In the offline 
experiment, the ultrasound videos recorded from the gastroc-
nemius muscle during executed and attempted movement 
were automatically analyzed. These two modalities were 
selected as they reflect different levels of muscle contrac-
tion. They were investigated with a newly developed, com-
putationally inexpensive method based on comparing the 

intensity of pixels between consecutive frames of the video, 
to verify its merits for automated contraction detection.

The motivation for using ultrasound imaging to detect the 
onset and quantify muscle activity originated from its sen-
sitivity and ability to distinguish between the movement of 
different muscle structures. With the aid of USI, the activity 
of a specific muscle can be analyzed. Traditionally, EMG or 
force platform/sensors are used to evaluate muscle activ-
ity; however, they do have significant drawbacks that can 
be overcome by the use of USI. EMG records an electrical 
signal during muscle contraction showing the electrophysi-
ological features of skeletal muscles and enabling analysis of 
muscle physiological behavior [23]. Surface EMG (sEMG) 
provides a relatively simple, noninvasive, and fairly specific 
way to assess the activation of superficial muscles; hence, it 
has been widely used in ergonomics, biomechanics, sports 
science, and kinesiology [24]. Nevertheless, the sEMG sig-
nal reflects mostly the activity of the superficial muscles and 
cannot characterize their morphological properties [25]. It 
is also susceptible to motion artifacts and crosstalk from 
distant muscles making it difficult to detect activity from 
individual muscles [3, 23]. It is possible to record deep mus-
cle activity very precisely with insertion of a needle, but 
this technique is very local (specific muscle is targeted) and 
invasive.

Furthermore, the use of a force sensor can also be chal-
lenging. Measurements with force plates and dynamometers 
in general are very useful for determining the torque output 
that specific muscle can produce during a contraction. How-
ever, even with state-of-the-art technology, it is impossible 
to separate the individual torque output of the relevant mus-
cles and other muscles that can be simultaneously activated, 
even throughout the rest of the body. An example of this was 
observed in this study when a participant was able to exert 
force on the foot plate with the weight of their leg by pushing 
from the hip, rather than contracting the GM muscle that was 
being examined. This has also been seen during examination 
of the force exerted from the shoulder muscles, demonstrat-
ing the difficulty in isolating the movement and engaging a 
single muscle [26].

We showed that by analyzing the normalized pixel dif-
ference (NPD) between frames, it was possible to reliably 
detect muscle contractions. Compared to alternative meas-
urement techniques (EMG and torque), almost no difference 
(99% agreement) was observed in detection of muscle con-
tractions during the executed movements. Still, the differ-
ences seen during the attempted movement task indicate the 
relevance of using USI for this application. We showed that 
very subtle muscle activity does not always lead to contrac-
tions detected by EMG or the force plate but can be observed 
with USI. In this study, we did not record statistically signifi-
cant differences at a group level when detecting the muscle 
movements with USI, EMG, or force plate, perhaps since the 
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Fig. 9   Distribution of attempts for the whole group expressed as dif-
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to peak NPD during the maximum contraction test for medium inten-
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gastrocnemius medialis is also a relatively large, superficial 
muscle. Still, it should be taken into account that the differ-
ences were relevant for individual cases, if not for an entire 
group. This method could be adapted in the future for use 
on other muscles which are smaller and deeper, such as the 
neck or back muscles for which it would be difficult to take 
measurements with EMG or a force plate. USI has high reli-
ability demonstrated through comparison with EMG data, 
and high sensitivity allowing very subtle muscle movements 
to be registered which would be particularly relevant. Thus, 
it has the potential to be used as an automated method for 
contraction detection.

It is important to note that through the analysis of the US 
videos, it is impossible to determine whether the registered 
muscle movement was active or passive [17]. The movement 
of the aponeuroses against each other, displacement of the 
muscle fibers, and shearing against other tissues visible in 
the image look similar regardless of the type of contraction 
[27]. In this study, however, no passive movements were 
performed.

The application of our fast processing algorithm was 
demonstrated to successfully provide semi-real-time feed-
back on muscle contraction. The novelty of this lies in the 
fact that other US analysis methods typically require long 
computational time not only due to transfer of video files but 
also due to the computational complexity [13, 14, 19, 20]. 
The possibility to perform online muscle image segmenta-
tion and analysis online has been proposed by Cunningham 
et al. to study deep cervical muscles [28]. However, such 
applications require advanced hardware and cannot be per-
formed on standard computers, unlike the computationally 
efficient algorithm proposed here. It was demonstrated that 
it can be used on a standard laptop (Intel core i5 proces-
sor, 8 GB RAM) and provide the feedback shortly after the 
contraction attempt. When describing the methods, we sepa-
rated data transfer time and the processing time showing that 
with the proposed algorithm, US frames can be processed 
very efficiently. To minimize overhead, we accessed the raw 
US data from the device without converting it to AVI for-
mat and extracted the pixel intensities directly. In this way, 
data could then be processed by the algorithm in nearly real 
time, allowing quantitative feedback on muscle activity to 
the user. The overall processing time is related to the record-
ing duration and to the frame rate; therefore, modification of 
the settings or using other ultrasound hardware could affect 
the processing efficiency. Still, the most significant delay in 
our algorithm originates from the time taken to transfer the 
recording from the scanner. Thus, a more efficient hardware 
setup could lead to significant improvements.

A limitation of our evaluation is that the algorithm has 
been validated only for one frame rate and for fixed illu-
mination. Adjustments, most likely in threshold specifica-
tion, might be required if used with other settings. For much 

higher frame rates, the difference between successive frames 
might be too small to achieve good signal to noise ratio and 
might require downsampling. Thus, in the future, the analy-
sis of the baseline period should be performed on videos 
recorded with a different contrast or using different US scan-
ners. Another limitation of the study was that the activity of 
other muscles involved in the movement, such as the soleus 
muscle, was not measured. There is a possibility that the 
soleus muscle could potentially be activated and initiate the 
movement of the GM; however, it is quite unlikely to be 
achieved voluntarily. In addition, due to the relatively large 
size of the gastrocnemius muscle, crosstalk from surround-
ing muscles should not be significant.

One application of feedback training of the muscoskel-
etal system is in neuromuscular rehabilitation, to allow the 
central nervous system to re-establish appropriate sensory-
motor loops under volitional control and regain motor con-
trol following injury, disease, or surgery [29, 30]. In this 
study, feedback was provided at the end of a 5-s trial which 
consisted of both contraction and relaxation. Feedback time 
could be considerably reduced to about 2 s if it would detect 
the maximum of contraction during the recording (e.g., 
detecting the declining slope in Fig. 8), rather than waiting 
until the end of a whole trial. Even though the feedback 
was delayed, it was demonstrated that participants were 
able to use it to obtain qualitative and quantitative informa-
tion on muscle contraction intensity. The setup is consistent 
with MRI and h-reflex studies during which feedback with 
a temporal delay, i.e., after the trial, was provided leading 
to improvement in participant performance [31, 32]. If the 
method described here is to be used in rehabilitation, it is 
important to highlight that the current algorithm cannot dis-
tinguish between the muscle contraction and muscle relaxa-
tion. In both cases, the NPD peak has similar characteristics 
and could therefore introduce some false positives in the 
studies. In order to account for that, the rehabilitation proto-
cols need to be very precise and clearly indicate when con-
traction and relaxation should be attempted. Knowing when 
specific movement is expected and considering the fact that, 
if starting from rest, contraction would always precede the 
relaxation, these two actions can be successfully classified.

Image processing methods and automated analysis of USI 
recordings are affected by the imperfections associated with 
USI such as speckle noise, signal attenuation or dropout, and 
trans-planar motion of important parts of the image [14, 28, 
29], making the automated processing challenging. In the 
current study, these problems were addressed through selec-
tion of an appropriate threshold of muscle activity.

USI-based feedback is commonly used in rehabilitation 
and muscle training, with US videos being shown to the 
participants in real time. Currently, the main applications 
include learning to activate and control deeper abdominal 
muscles [33, 34], trunk muscles [35, 36], and pelvic floor 
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muscles [37], with the objective to overcome lower back 
pain and to stabilize the lumbar region. The exercises lead to 
improvements in controlling the muscles; however, cues and 
commentary from a highly trained clinician with extensive 
USI experience are always necessary to identify the impor-
tant features. For all these applications, using our automated 
quantitative biofeedback method of detecting muscle activity 
would be advantageous.

Currently, USI biofeedback is implemented by trained 
personnel who base their judgement on visual observation of 
the video and experience. To use the method proposed here, 
an operator needs to only be able to position the ultrasound 
probe over the muscle of interest and identify the relevant 
region in the first USI frame. No further experience with use 
of ultrasound or human anatomy is required. Advancement 
and miniaturization of sensor technology might in the future 
lead to development of low-cost USI technology that could 
be used for rehabilitation applications outside the hospital 
setting. Such applications would require objective quantita-
tive analysis in the absence of a human expert.

In this study, feedback was based only on the maximum 
value of the normalized pixel difference during a contrac-
tion. Depending on the application, other USI-derived fea-
tures, such as the area under the NPD signal during an entire 
contraction, might give a better indication of the total con-
traction intensity.

It would also be possible to apply the algorithm to study 
and train other deeper muscles, for example, in the neck 
or shoulder. In this case, since it would not be possible to 
provide initial training with torque feedback, an initial input 
from a trained person would be necessary. Alternatively, the 
method could be used, for example, solely to detect small 
muscle activity, which would be advantageous in rehabilitat-
ing the patients recovering control over the muscles.

5 � Conclusions

The proposed USI algorithm based on differences in pixel 
intensity between successive frames was shown to be com-
putationally efficient and provides a detection rate of muscle 
contraction comparable to electromyography or force meas-
urements. It can be used to provide semi-real-time feedback 
to train people to achieve a desired level of contraction. 
Future applications are in rehabilitation of deep muscles 
where it can reduce therapist time and provide quantitative 
feedback to improve patient performance.
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