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Abstract
This proof of concept (PoC) assesses the ability of machine learning (ML) classifiers to predict the presence of a stenosis
in a three vessel arterial system consisting of the abdominal aorta bifurcating into the two common iliacs. A virtual patient
database (VPD) is created using one-dimensional pulse wave propagation model of haemodynamics. Four different machine
learning (ML) methods are used to train and test a series of classifiers—both binary and multiclass—to distinguish between
healthy and unhealthy virtual patients (VPs) using different combinations of pressure and flow-rate measurements. It is found
that the ML classifiers achieve specificities larger than 80% and sensitivities ranging from 50 to 75%. The most balanced
classifier also achieves an area under the receiver operative characteristic curve of 0.75, outperforming approximately 20
methods used in clinical practice, and thus placing the method as moderately accurate. Other important observations from
this study are that (i) few measurements can provide similar classification accuracies compared to the case when more/all the
measurements are used; (ii) some measurements are more informative than others for classification; and (iii) a modification
of standard methods can result in detection of not only the presence of stenosis, but also the stenosed vessel.

Keywords Arterial disease diagnosis · Machine learning · Virtual patient database · Pulse wave haemodynamics

1 Introduction

While there are many forms of arterial disease, one of the
most common is stenosis, which refers to the narrowing of
an arterial vessel. This is normally caused by a build up
of fatty deposits, known as atherosclerosis. Stenosis can be
be categorised into several sub-diseases depending on its
location. Three of the most common forms of stenosis are
peripheral artery disease (PAD), carotid artery stenosis, and
subclavian artery stenosis (SS). The prevalence of PAD and
SS have been recorded to vary between 1.9 and 18.83%
within different demographics [14, 45], while carotid artery
stenosis has been recorded to affect 3.8% of men and 2.7%
of women [28].

Current methods for the detection of arterial disease are
primarily based on imaging techniques [25, 27, 37, 49], and
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so are often impractical for large-scale screening, expensive,
or both. If a new inexpensive and non-invasive method for
the detection of stenosis is found, the cost effectiveness
of large-scale screening could be improved making both
continuous monitoring and screening feasible. One such
alternative is to use easily acquirable pressure and flow-rate
measurements at accessible peripheral locations within the
circulatory system and use them for diagnosis. It is known
from the principles of fluid mechanics that if the cross-
sectional area of a vessel is changed, the pressure and flow-
rate profiles of fluid passing through that vessel will also
change [11, 31, 44, 50]. Applying this to arterial disease, the
inclusion of a stenosis within a patients arterial network may
create detectable biomarkers within the pressure and flow-
rate profiles of blood. This precise hypothesis is explored in
this study.

A previous study [44] has explored the use of physics-
based models of pulsewave propagation to predict the
presence of an aneurysm, another common form of
arterial disease, using flow-rate measurements. Its use for
disease detection is, however, limited by the the need for
patient specific parameters. If a consistent and significant
biomarker of arterial disease is found within pressure
and flow-rate profiles, irrespective of a patients individual
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arterial network, it would be possible to predict the presence
of a stenosis using only these measurements. This would
allow for inexpensive and non-invasive screening of patients
for arterial disease. As opposed to a mechanistic approach
to such an inverse problem, this study explores a pure
data-driven machine learning approach for finding such
biomarkers.

It is likely that the indicative biomarkers of arterial
disease held within pressure and flow-rate profiles consist
of micro inter- and intra-measurement details. Discovery
of these biomarkers through a traditional hypothesis driven
scientific method [53] and a classical inverse problems
approach is difficult. If a large database of pressure and
flow-rate measurements taken from patients of known
arterial health is available, it maybe possible for a machine
learning (ML) classifier to be trained to not only discover
but also exploit any biomarkers within the pressure and
flow-rate profiles. In the past, ML has been used for
a variety of diagnostic medical applications [24] with
applications such as detection of irregularities in heart
valves [10], arrhythmia [47], and sleep apnea [22] from
recorded time domain data. Other applications include
estimation of pulse wave velocity from radial pressure wave
measurements [20]; automatic detection, segmentation,
and classification of abdominal aneurysms in computer
tomography (CT) images [17]; and prediction of aneurysm
severity growth from CT images [18]. The wide application
and success of ML methods in medical applications
motivates exploration of their use for stenosis detection.

The aim of this proof of concept (PoC) study is to
carry out an initial investigation into the potential of using
ML classification algorithms to predict the presence of
stenosis, using haemodynamics measurements. While two
previous studies [9, 54] have investigated the potential
of aneurysm classification, no comparable work has been
completed for stenosis to the authors’ knowledge. In [9], a
seven-parameter synthetic dataset is constructed and deep-
learning methods are tested on it for binary detection of
abdominal aortic aneurysm (AAA), yielding accuracies of
≈ 99.9% from three pressure measurements. A sensitivity
of 86.8 % and a specificity of 86.3% for early detection of
AAA from photoplethysmogram pulse waves is reported in
[54], which used a synthetic dataset created by varying six
cardiovascular variables. Extending these ideas to exploring
detection of stenosis, this study will investigate (i) the
potential for stenosis (which are expected to have a more
localised affect than aneurysm) classification, and (ii) the
ability to classify when using a database created with
significantly more variability (25 parameters varied in this
study, compared to seven and six parameters in [9] and [54],
respectively).

To train and test such ML classifiers, a large database of
measurements taken from patients of known arterial health

is required. As opposed to using measurements from a real
population, which are unavailable, a synthetic virtual patient
database (VPD), similar to that presented in [56], is created
through the use of a physics-based model of pulse wave
propagation. To create the VPD, a priori distributions are
first constructed for the parameters describing the arterial
networks of virtual patients (VPs) across the resulting
VPD. Random realisations are then sampled from these
distributions, and the physics-based model is solved to
obtain the corresponding pressure and flow-rate profiles.
Finally, “Hard” filters, i.e. the direct imposition of bounds
on the ranges of pressure profiles, are applied to the VPD to
reduce the occurrence of physiologically unrealistic VPs.

This virtual population is then used to train and test
a series of ML classifiers to detect arterial disease, and
test their performance. Focus is on assessing feasibility
and uncovering behaviours and patterns in the performance
of classification methods, rather than optimisation and
creation of increasingly complex ML models for maximum
accuracy. Understanding the behaviour of classifiers will
allow subsequent, more complex, studies to leverage on
these observations.

In what follows, first the design of the VPD—its
motivation, physics-based model, the arterial network, its
parameterisation, probability distributions, and filters—is
presented. This is followed by the ML setup, its relation
to the size of the VPD required, brief description of the
ML methods and metrics to quantify their performance.
Finally, the results and analysis of the ML methods
performance are presented, with a focus on uncovering
why some ML methods perform better than others and
which measurements (and their combinations) are more
informative.

2 Virtual patient database

2.1 Motivation

To train and test ML classifiers a large database of
haemodynamics measurements taken from a comprehensive
cohort of patients is required. The corresponding correct
arterial health of these patients is also required. As opposed
to using measurements taken from real patients, VPs
are created using a physics-based model of pulse wave
propagation. This VP approach has several advantages:

1. Expense: creating VPs is relatively inexpensive. The
primary cost associated with the creation of VPs is
computational, and thus negligible in comparison to
data acquisition in a real population.

2. Class imbalance: creating VPs allows for the control
of the distribution of different diseased states. For
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example, in a real population the rate of arterial disease
can vary between 1 and 20%. During the creation of
VPs, however, 50% diseased patients can be created to
ensure a balanced dataset.

3. Measurement availability: using VPs allows for
measurements of pressure and flow-rate to be taken
at any location within the arterial system. This allows
for an a priori assessment of ML classifiers using
all possible combinations of pressure and flow-rate
measurements.

While there are limitations to the measurements that
can be non-invasively and inexpensively obtained for a
clinical application, pressure and flow-rate measurements
throughout the arterial network are useful as they allow
the impact of measurement location on performance to be
investigated. This benefit is particularly important for this
PoC where feasibility of the ML approach is being assessed.
A primary purpose of this study is to gain an understanding
of the patterns between the measurements and classification
accuracy.

2.2 Physics-basedmodel of pulse wave propagation

To compute the pressure and flow-rate waveforms associ-
ated with VPs, a physics-based model of one-dimensional
pulse wave propagation is adopted [4]. By considering each
vessel within the network to be a deforming tube, a system
of two governing equations can be derived. These equations
represent conservation of mass and momentum balance with
the assumption that blood is incompressible and that the
tube walls are impermeable. The system of equations is (see
[2] for details):

∂A

∂t
+ ∂(UA)

∂x
= 0, (1)

∂U

∂t
+ U

∂U

∂x
+ 1

ρ

∂P

∂x
= f

ρA
, (2)

where P(x, t), U(x, t), and A(x, t) represent the pressure,
flow velocity, and arterial cross-sectional area, respectively,
at spatial coordinate x and time t ; ρ and μ represent the
density and the dynamic viscosity of blood, respectively;
and f represents the frictional force per unit length
described as follows

f (x, t) = −2(ζ + 2)μπU, (3)

where ζ is a constant that depends on the velocity profile
across the arterial cross-section. To close this system of
equations, a mechanical model of the displacement of the
vessel walls [4] is included:

P − Pext = Pd + β

√
A − √

Ad

Ad

, (4)

with

β = 4

3
Eh

√
π, (5)

where Pext represents the external pressure, Pd represents
the diastolic blood pressure, Ad represents the diastolic
area of the vessel, E represents the vessel wall’s Young’s
modulus, and h represents the vessel wall’s thickness.
This system of equations has been previously used and
tested extensively [2, 4, 13, 29, 34, 38]. Such one-
dimensional models have been shown to obtain good
accuracies in predicting global haemodynamics in the
presence of both stenoses and aneurysms when compared
against more complex and detailed 3D simulations [5,
19], against in vitro measurements [19], and against in-
vivo clinical measurements [8]. These studies support the
idea that the 1D models provide a good balance between
accuracy and computational costs, and are able to capture
global changes in haemodynamics, thus making them a
suitable choice for machine learning applications. While
local flow-features are not captured in the one-dimensional
formulation, which leads to a loss of 3D flow features
such as vortices and recirculation zones, the motivation of
this study is to detect changes in global haemodynamics
and biomarkers in space-averaged flow-features (pressure
and flow-rate waveforms), which are naturally included
in the 1D formulation and more likely to be available
as clinical measurements. Another limitation of the 1D
formulation is that vessel cross-sectional areas directly are
the variables. Thus, the effects of how the cross-section
areas change because of disease (radially symmetric or
asymmetric variations) are not considered in the 1D model.
For an initial exploratory study, the advantages of the
1D model in terms of computational costs are deemed to
outweigh these limitations.

2.3 Arterial network

In this study, the network of interest is the abdominal
aorta bifurcating into the two common iliacs. A pre-existing
model for this is taken as a reference network from [4].
This is shown in Fig. 1, where the three vessels (abdominal
aorta and the two iliacs) are represented in 1D while suitable
boundary conditions are imposed at the inlet and the outlets.

At the inlet a time varying volumetric flow-rate is
prescribed. The terminal outlets are coupled to three
element Windkessel models [55], which replicate the effect
of peripheral arteries. Each Windkessel model, as shown in
Fig. 2, consists of two resistors, R1 and R2, which represent
the viscous resistances of the large arteries and the micro-
vascular system, respectively, and a capacitor C, which
represents the compliance of large arteries.
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Fig. 1 The inlet and outlet
boundary conditions to the
model. The relation of the model
to the aortic bifurcation is also
shown through comparison to an
angiogram (reprinted from [7]
with permission from Elsevier)

2.4 Numerical scheme

With the specification of the network mechanical parame-
ters and the boundary conditions, the model of Section 2.2
is solved to compute the pressure and flow-rate waveforms
across the network. The system of equations is numerically
solved using a discontinuous Galerkin scheme, see [2] for
details. This scheme is implemented in an in-house code
written in Python/NumPy [15, 51], and has been success-
fully validated against benchmarks [4], and against a 3D
model of blood flow through stenosed arterial vessels [5].

2.5 Parameterisation of the arterial network

This section presents the parameterisation of the arterial
network for the creation of VPs. Once parameterised, the
network parameters can be randomly sampled to create VPs.
The inlet volumetric flow-rate profile, Qinlet(t), is described
using a Fourier series (FS) representation:

Qinlet(t) =
N∑

n=0

an sin(nωt) + bn cos(nωt), (6)

where an and bn represent the nth sine and cosine FS
coefficients, respectively; N represents the truncation order;

Fig. 2 The configuration of a three element Windkessel model: Q1D
and P1D represent the volumetric flow-rate and pressure, respectively,
at the terminal boundary of the 1D system

and ω = 2π/T , with T as the time period of the cardiac
cycle. It is found that the time domain inlet flow-rate profile
of [4] can be described to a high level of precision using a
FS truncated at the 5th order. Thus, the time domain inlet
flow-rate profile is described by:

Qinlet = {a0 = 0, b0, a1, b1, ..., a5, b5} , (7)

requiring specification of 11 coefficients.
Since the three vessel segments in the network are short,

It is assumed that the properties of all the three vessels
are constant along their lengths. To impose geometric
and mechanical symmetry on the lower extremities,
the two common iliac arteries are assumed to share
identical properties. This symmetry, however, is not
extended to the terminal Windkessel model parameters. The
parameterisation of the network thus requires specification
of the following 25 parameters:

• Six geometric properties: the two common iliac
arteries require specification of a single length, a
reference area, and a wall thickness. These three
properties are also required for the aorta.

• Two mechanical properties: Young’s modulus of the
aorta and the common iliacs need to be specified.

• Six terminal boundary parameters: each of the
Windkessel models requires two resistances and a
compliance.

• 11 FS coefficients: the time domain inlet flow-rate
profile is described using a FS truncated at the 5th order.

For an ML classifier to be trained to distinguish
between healthy and unhealthy patients, examples of
both classifications are required within the VPD. A
parameterisation must, therefore, be chosen to describe
stenosed arterial vessels. For simplicity, all VPs are limited
to having a maximum of one diseased vessel. To create
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Fig. 3 An example of a 60% stenosis with a start location of b = 0.2
and an end location of e = 0.8

a change in the reference area of a diseased vessel
a normalised map of each vessel’s area is produced.
Both the length and cross-sectional area of the vessel
is normalised between 0 and 1. This map, for a 60%
stenosis, is shown in Fig. 3, where the x-axis represents
the reference position along the length of the vessel
and the y-axis represents the reference cross-sectional
area. For healthy vessels the normalised reference cross-
sectional area is constant and equal to 1. For unhealthy
vessels, a cosine curve is used to create a change in
area. This cosine curve is scaled using three parameters
to create variation in location and severity of disease
between patients. These parameters are the severity S, the
start location b, and the end location e of the disease.
The normalised cross-sectional area An of a diseased

vessel at a normalised spatial location xn is described
as:

An =
{ (

1 − S
2

)
+ S

2 cos
(

2(xn−b)π
e−b

)
for b ≤ xn ≤ e

1 otherwise.
(8)

Thus, in addition to the 25 parameters for the description
of a healthy subject, three more parameters are required
for specification of disease. Random realisations of these
parameters are sampled and the physics-based model of
pulse wave propagation is solved to produce each VP.
Examples of pressure and flow-rate profiles taken from
one healthy subject and corresponding subjects with 80%
stenoses in the aorta and the first iliac are shown in Fig. 4.
The probability distributions of the VP parameters are
described next.

2.6 Probability distributions

Ideally the distribution of both arterial network parameters
and the resulting pressure and flow-rate profiles should be
representative of those measured in a real population. Since
one-dimensional arterial network parameters are generally
either expensive and invasive to obtain or non-physical (so
cannot be directly measured), their exact distributions are
not known. Thus, a priori distributions are assumed for both
healthy and diseased virtual subjects, as described next.

2.6.1 Healthy subjects

A priori distributions are assumed for the arterial network
parameters, based on values reported in literature [4]. It
is assumed that across a large population, all parameters

Fig. 4 Example pressure and
flow-rate profiles at the inlet of
the aorta and outlet of the first
iliac for (i) healthy subject
(solid), (ii) corresponding
subject with 80% stenosis in the
aorta (dashed), and (iii)
corresponding subject with 80%
stenosis in the first iliac (dotted)
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Table 1 Mean and standard deviations of the arterial network parameters

Parameter Mean Standard deviation

Aorta Iliac Aorta Iliac

Length 8.6 cm 8.5 cm 1.72 cm 1.7 cm

Wall thickness 1.03 mm 0.72 mm 0.21 mm 0.14 mm

Reference diameter 1.72 cm 1.2 cm 0.344 cm 0.24 cm

Young’s modulus 500 kPa 700 kPa 100 kPa 140 kPa

R1 − 6.81×107 Pa s m−3 − 1.36×106 Pa s m−3

R2 − 3.10×109 Pa s m−3 − 6.20×108 Pa s m−3

C − 3.67×10−10 m3 Pa−1 − 7.33×10−11 m3 Pa−1

required to describe VPs arterial networks, excluding
the disease parameters, are independent and normally
distributed. The mean value for each of these parameters is
taken from [4] and the standard deviation is set to be 20%
of the mean, as summarised in Table 1. VPs are assigned
disease so that the VPD consists of an expected 50% healthy
patients, and there is an expected equal number of aortic,
first iliac, and second iliac stenosis VPs.

2.6.2 Diseased patients

In addition to the parameters described for healthy
patients above, a diseased patient is characterised by three
more parameters—disease severity, start location, and end
location—which are assigned uniform distributions based
on physical constraints. A fourth parameter, the reference
location of the disease (represented by r), is introduced.
This parameter is included to impose a minimum stenosis
length of 10% of the vessel length. The four parameters are
sequentially sampled from uniform distributions within the
following bounds:

Constraints :

⎧
⎪⎪⎨

⎪⎪⎩

0.2 ≤ r ≤ 0.8
0.1 ≤ b ≤ r − 0.05
r + 0.05 ≤ e ≤ 0.9
0.5 ≤ S ≤ 0.9.

(9)

The assumption that all arterial network parameters are
independent and normally distributed is likely physiologi-
cally incorrect. To correct for this assumption, post simula-
tion filters are applied to discard non-physiological patients.
This is described next.

2.7 Post simulation filter

Through random sampling, there is a chance that VPs are
assigned combinations of arterial network parameters that
result in physiologically unrealistic pressures and flow-rate
profiles. Thus, to remove these VPs from the VPD, a post
simulation filter is applied. “Hard filters” are applied to

VPs, i.e. ranges within which pressure profiles must fall are
directly imposed. Based on literature reported ranges [46],
a more conservative version is adopted to allow for the full
range of possible pressure waveforms to be expressed in the
VPD. The three conditions of the the post simulation filter
are:

Filters:

⎧
⎨

⎩

max(P inlet) < 225mmHg
min(P inlet) > 25mmHg
max(P inlet) − min(P inlet) < 120mmHg

where P inlet represents the vector describing the time
domain pressure profile at the inlet of the system. Using the
VPD created through the methodology described above, the
ability of ML classifiers to distinguish between healthy and
unhealthy VPs is assessed, as outlined next.

2.8 Representation of measurements

The output of the pulse wave propagation model is the
pressure and flow-rate at all temporal and spatial locations.
While, these vectors of pressure or flow-rate at any spatial
location (for example p = [p(t0), p(t0 + �t), p(t0 +
2�t), · · · , p(t0 + k�t)]) can be used directly as a
measurement input to the ML algorithms, its dimensionality
is quite large. Furthermore, as severity of stenosis increases,
resulting in additional nonlinearities in the model, the time
step �t for a stable solution can become very small. As
pressure and flow-rate profiles are periodic, it seems natural
to represent the time domain haemodynamic profiles using
a FS representation. Using this representation allows the
pressure and flow-rate profiles to be described to a high
level of completeness in significantly fewer dimensions.
Since the input FS coefficients differ by several orders
of magnitude between measurements and VPs, they are
individually transformed to have zero-mean and unit-
variance through the widely used Z-score standardisation
[32]. The transformed inputs are subsequently used as
inputs to the ML algorithms.
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With the above stated method of network parameterisa-
tion, its sampling, and measurement representation, the ML
setup is described next.

3Machine learning setup

3.1 Test/train split

The VPD is split into two parts: testing set and training set.
The training set is used for learning in the ML algorithms
and is set to two-thirds of the size of the VPD. The
remaining one-third of the VPs comprise the testing set,
which is used to assess the accuracy of the ML algorithms
on previously unseen data, i.e. the data not used while
training. The ML algorithms are briefly described next.

3.2 Machine learning algorithms

A model mapping a vector of input measurements, x, to a
discrete output classification, y, can be described as:

y = m(x) y ∈ C, (10)

with,

C =
{
C(1), C(2), .., C(j)

}
, (11)

where C represents the set describing all possible classifi-
cations, and C(j) represents the j th possible classification.
In the context of this study, the measured inputs x and
output classification y represent the haemodynamics mea-
surements taken from VPs and the corresponding health of
those VPs, respectively. The following four ML methods are
used in this study.

3.2.1 Logistic regression (LR)

The LR classifier [16, 48] is a probabilistic binary
classification method. Given that patients belong to one of
the two classifications, i.e. C = {C(1), C(2)}, the true binary
responses τi are assigned to all subjects in the training set:

τi =
{

1 if yi = C(1)

0 if yi = C(2) . (12)

To predict the binary health of a patient an activation
function is used. A general equation for an activation
function h(xi , θ) can be written as:

p
(
τ̂i = 1 | xi , θ

) = h(xi , θ), (13)

where p
(
τ̂i = 1 | xi , θ

)
represents the predicted probability

that the ith VP belongs to C(1), given that the patient specific
input measurements xi have been observed, and that the
vector of measurement specific weightings are described by

θ . Typical choices for h(xi , θ) are the the sigmoid and tanh
functions. The sigmoid function is shown below:

h(xi , θ) = 1

1 + exp (−θT xi )
. (14)

To obtain optimal measurement specific weightings θ ,
the logistic regression algorithm is trained by minimising
the mean error between the predicted probability of VPs
producing a positive binary response and the known correct
classification across the training set, i.e.:

θ̂ = arg min
θ

{
L

(
θ , Xtrain, τ train

)}
(15)

with

L
(
θ , Xtrain, τ train

)
= − 1

m

m∑

i=1

(τi log (h(xi , θ))

+(1 − τi) log (1 − h(xi , θ))) , (16)

where L(θ , Xtrain, τ train) represents the average cost, in this
case computed as a log loss, across the training set; Xtrain

and τ train represent the matrix of input measurements and
the vector of the known correct binary classifications for
all the m VPs in the training set, respectively; xi and τi

represents the vector of input measurements and the known
correct binary classification corresponding to the ith VP,
respectively; and θ represents the measurement specific
weightings.

The numerical minimisation can be carried out using
many algorithms such as gradient descent, gradient descent
with momentum [36], Nesterov accelerated gradient (NAG)
[33], Adadelta [57], and Adam method [23]. Post training,
the obtained weightings can be used to predict the health
classification of new unseen VPs, i.e. VPs within the
test set, by Eq. 14 through application of a threshold B,
often referred to as the decision boundary, to the predicted
probabilities as follows:

ŷi =
{
C(1) if p

(
τ̂i = 1 | xi , θ

) ≥ B
C(2) otherwise,

(17)

where ŷi represents the predicted health classification of
the new unseen test VP, p

(
τ̂i = 1 | xi , θ

)
represents the

predicted probability returned by the activation function
through Eq. 14, and B represents a chosen decision
boundary.

The remaining three methods are not described in great
detail here. Their descriptions can be found in the references
below. LR is described in more detail above as it is later
modified for the application in this study.

3.2.2 Naive Bayes (NB)

An NB classifier [40, 41] is a probabilistic multiclass
method. An NB classifier creates a conditional probability
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model, through the use of Bayes theorem, that predicts the
probability of a VP belonging to each classification, given
the measured pressure and flow-rate profiles.

3.2.3 Support vector machine (SVM)

An SVM classifier is a non-probabilistic binary classifi-
cation method [21]. An SVM method finds an optimum
partition between positive and negative binary outcomes
through a high-order feature space by maximising the dis-
tance between the partition and the nearest instances of both
binary outcomes. It is common for SVM classifiers to map
the input measurements to a higher order feature space,
typically through the use of an input kernel.

3.2.4 Random forest (RF) classification method

An RF classification method is a non-probabilistic multi-
class classification method [6, 26]. An RF method is an
ensemble method, combining the predictions returned by a
series of weak decision tree classifiers through the use of a
bootstrap aggregation method. Each decision tree within the
ensemble is created by repeatedly splitting the training data
into subsets, based on an evaluation criteria, to maximise the
homogeneity of the subsets.

3.2.5 Motivation for the chosen ML classifiers

Two characteristics that can be used to distinguish
between different ML methods are if they are capable of
producing linear or non-linear partitions between different
classifications, and if they return a probabilistic or non-
probabilistic output prediction. These four ML methods
are chosen as they encompass all four combinations of
classifier characteristic behaviours, as shown in Table 2.
Another attractive feature of these methods is that they
all require very little problem specific optimisation. Before
ML classifiers are trained and tested using these four
different methods, preliminary tests are carried out using
the LR method. LR is used for these initial tests as it is
computationally inexpensive. Once an initial understanding
of the VPD has been gained, further classifiers are trained
using the other three ML classification methods. The
methodologies and considerations required to use the VPD
to train and test ML classifiers are explained next.

3.3 Required size of the VPD

An important consideration in the creation of VPD is its
size—how many virtual patients are sufficient for the ML
algorithms to be applied? Here, a priori evaluation of the
required size of the VPD is presented, while a posteriori
analysis is found in Section 4.1. A common rule of thumb in
ML is that to train a classifier at least 10 examples of each
possible classification are required per input dimension,
known as events per variable or EPV [52]. While pressure
and flow-rate measurements can be obtained at any location
within the arterial network, measurements are limited to the
inlet and two outlets of the system, shown in Fig. 1 by
P1, Q1, P2, Q2, P3, and Q3 respectively. This results in
the maximum number of input dimensions to be 66 (each
measurement is described by 11 FS coefficients and all six
measurements taken). A minimum EPV of any one health
classification is chosen to be 12 in this study, in order to
be on the conservative side of the rule of 10. Two-thirds of
VPs within the VPD are used for training the classifiers, and
the remaining one third are used for testing. From this, it is
calculated that the VPD requires 1188 (3/2 × 12 × 66) VPs
with disease in each of the three vessels. Since a balanced
dataset is desired, the number of healthy patients required
are 3564 (1118×3). This results in the EPV of 36 for healthy
subjects.

3.4 Classifier configurations

The objectives and configurations of classifiers can be split
into two general categories. These two categories are binary
classifiers and multiclass classifiers. Binary ML classifiers
are trained to predict the outcome of Eq. 10 when the output
classification may belong to one of two possible outcomes,
i.e. C = {C(1), C(2)}. In contrast, when more than two
classes are present, multiclass classifiers are necessary.

3.4.1 Binary classifiers

Binary classifiers are created using one of two different
configurations.

3.4.1.1 Individual vessel binary configuration The first
configuration of binary classifiers are individual vessel
binary classifiers (IVBCs). The purpose of IVBCs is to

Table 2 The four major
classifier behaviour
characteristics, and how each
classification method aligns
with these characteristics

Capable of linear partitions Capable of non-linear partitions

Probabilistic Logistic regression (LR) Naive Bayes (NB)

Non-probabilistic SVM with linear kernel SVM with radial basis function kernel

Random forest (RF)
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predict if there is a stenosis present within a particular vessel
of a VP’s arterial network. When creating IVBCs, an arterial
vessel of interest must be isolated, and VPs with disease
present within this vessel are assigned to the first discrete
output classification, C(1). All other VPs are assigned to the
second discrete output classification, C(2). The assignment
of true state classifications to VPs when creating IVBCs is
described by:

yi =
{
C(1) if disease is present within vessel a

C(2) otherwise,
(18)

where yi represents the true state classification of the ith
VP, and a represents the arterial vessel for which the binary
health is being predicted.

3.4.1.2 Entire network binary configuration The second
configuration of binary classifiers are entire network binary
classifiers (ENBCs). The purpose of ENBCs is to predict
the health of a VP’s entire arterial network, i.e. irrespective
of the vessel in which the disease is located. When
creating ENBCs, VPs with no disease present within
their arterial network are assigned to the first class, C(1),
while all other VPs are assigned to the second discrete
output classification, C(2). The assignment of true state
classifications to VPs when creating ENBCs is described
by:

yi =
{
C(1) if no disease is present,
C(2) otherwise.

(19)

Multiclass ML classifiers are discussed next.

3.4.2 Multiclass classifiers

Multiclass classifiers predict the outcome of Eq. 10
when the output may belong to more than two different
classifications. The purpose of multiclass classifiers is to
predict if there is a stenosis present within a VP’s arterial
network, and if so which vessel does that disease occur
within. Thus four different classifications exist:

C =
{
C(1), C(2), C(3), C(4)

}
, (20)

where C(1), C(2), C(3), and C(4) represent no disease present;
and disease present within the aorta, the first iliac, and
the second iliac respectively. It is found through analysis
of binary classification behaviours (Section 4.3) that LR
and SVM classifiers consistently achieve higher accuracy
classification than NB and RF classifiers. Thus, multiclass
classifiers are only created using these two methods.
However, LR and SVM methods are both inherently
binary—only naturally capable of distinguishing between
two classes. In order to be used as multiclass classifiers, they

can be adopted through strategies such as one-versus-all
[39] and one-versus-one [42]. These are described next.

3.4.2.1 One-versus-all (OVA) An OVA strategy [39] trains
multiple instances of binary classifiers, each designed to
predict the probability of a separate classification problem.
These probabilities are then combined to make a multiclass
prediction.

In our problem, the OVA strategy trains four instances
of a binary classifiers. Each binary classifier prescribes
a correct binary health classification of 1 to all VPs
belonging to the corresponding possible classification. All
other patients, irrespective of which of the other three
classifications they belong too, are assigned a correct binary
health classification of 0:

τ
(j)
i =

{
1 if yi = C(j)

0 otherwise
, j ∈ {1, 2, 3, 4}, (21)

where τ
(j)
i represents the correct binary health classification

of the ith VP for the j th instance of a binary classifier.
To assign a predicted multiclass classification to a new
subject, the predicted probability of producing a positive
binary response (yi = C(j)) is found for all the four binary
classifiers. The classification that corresponds to the highest
predicted probability is then selected as the multiclass
prediction.

3.4.2.2 One-versus-one (OVO) An OVO strategy [42] cre-
ates binary classifiers for all the pairs of the classes.
Thus, if n total classes exist, then n(n − 1)/2 binary
classifiers are created. The most frequent class predicted
among these binary classifiers is then used as the multiclass
prediction.

In our problem, the OVO strategy creates six instances
of a binary classifier. Each binary classifier is designed to
distinguish between two different classes. Thus, the binary
classifier created to distinguish between classifications C(j)

and C(k) uses:

τ
(j,k)
i =

{
1 if yi = C(j)

0 if yi = C(k) , j, k ∈ {1, 2, 3, 4}, j �= k.

(22)

When predicting the classification of an unseen test
VP, a voting scheme is applied. The input measurements
taken from the test VPs are passed through each of the
six instances of a binary classifier, and the predicted
classifications recorded. The classification that occurs most
frequently is selected as the multiclass prediction.

It is found that while both LR classifiers employing
an OVA method and SVM classifiers employing an OVO
method achieve high aortic, first iliac, and second iliac
classification accuracy, they produce very low healthy VP
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classification accuracy (see Section 4.5). To rectify the low
healthy VP classification accuracies a custom probabilistic
configuration is developed, as described next.

3.4.2.3 Custom probabilistic configuration (CPC) The CPC
method assigns all VPs a health classification corresponding
to ‘no disease’ before running any binary classifiers. This
strategy treats ‘no disease present’ as the opposite to the
three other possible classifications a VP may belong to. The
binary classifiers employed in CPC are identical to OVA,
except that the classifier for ‘no disease’ is omitted. Thus, as
opposed to four binary classifiers in the OVA strategy, this
strategy uses only three binary classifiers—each pertaining
to diseased aorta, first iliac, and second iliac, respectively.

The assignment of true state binary outcomes to VPs for the
three binary classifiers are:

τ
(j)
i =

{
1 if yi = C(j)

0 otherwise.
, j ∈ {2, 3, 4}. (23)

Note that j = 1 for ‘no disease’ classification is not
included. To predict a multiclass classification for test VPs,
the vessel that produces the highest probability of being
diseased among the three binary classifiers is first found.
The default multiclass classification is ‘no disease’ unless
the highest probability of disease occurring is greater than
a prescribed threshold (decision boundary), in which case
the test VP is predicted to have disease in the arterial vessel
with this highest probability, i.e.

ŷi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C(1) if max
(

p
(
τ̂

(j)
i = 1 | xi , θ

(j)
))

< B for j ∈ {2, 3, 4},

C(2) if p
(
τ̂

(2)
i = 1 | xi , θ

(2)
)

= max
(

p
(
τ̂

(j)
i = 1 | xi , θ

(j)
))

for j ∈ {2, 3, 4} and p
(
τ̂

(2)
i = 1 | xi , θ

(2)
)

≥ B,

...

C(4) if p
(
τ̂

(4)
i = 1 | xi , θ

(4)
)

= max
(

p
(
τ̂

(j)
i = 1 | xi , θ

(j)
))

for j ∈ {2, 3, 4} and p
(
τ̂

(4)
i = 1 | xi , θ

(4)
)

≥ B,

(24)

where p
(
τ̂

(j)
i = 1 | xi , θ

(j)
)

represents the probability of

the ith VP being predicted to produce a positive binary
response for the j th instance of a classifier within the
ensemble; xi represent the vector of measurements for
the test patient, θ (j) represent the measurement specific
weightings for the j th classifier; and B represents the
threshold (decision boundary).

As opposed to the classical OVA, where the classification
with highest predicted probability, irrespective of the
magnitude of this probability, is chosen, CPC requires
a minimum certainty of disease being present to be
met before the default hypothesis ‘no disease’ can be
overridden. It is not possible to create multiclass classifiers
in this manner using non-probabilistic methods, such as
SVM.

3.5 Quantification of results

Two different methods are used to quantify and compare
the results of different classifiers. The first, also the
most intuitive, of these is to compute the sensitivity
and specificity of classification across the test set.
Determination of whether a VP is classified correctly or
incorrectly can be achieved by comparison against the true
states, see Table 3. The proportion of VPs belonging to a
classification that are correctly classified, i.e. the sensitivity
(Se), is computed using the equation Se =TP/(TP+FN),
while the proportion of VPs not belonging to a classification
that are correctly classified, i.e. the specificity (Sp),
is compute using the equation Sp=TN/(TN+FP). The

relationships between the TP, FN, FP, TN, Se, and Sp with
respect to the class C(j) are shown in Fig. 5.

In the case of multiclass classifiers, assessment of the
accuracy of classification requires provision of the sensitiv-
ity and specificity corresponding to each classification. In
our case, there are four classes, thus requiring specification
of eight different numbers (four sensitivities and four speci-
ficities). While quantifying the accuracy of ML classifiers
through the sensitivity and specificity of each classification
is simple and easily understood, the description of results
through two different numbers per classification can make
comparison of different classifiers difficult.

A more complex, however easier to compare, method
for quantifying the accuracy of ML classifiers is the F

score [43]. The F score produces a single quantitative score
allowing for easy comparison. Higher values of F score
imply a better classification. To calculate the F score, the

Table 3 Definitions of true/false positives and true/false negatives for
a particular class C(j)

VP belongs to VP does not belongs to

classification C(j) classification C(j)

VP predicted to
belong to classi-
fication C(j)

C(j) True positive
(TP)

C(j) False positive
(FP)

VP predicted to
not belong to clas-
sification C(j)

C(j) False nega-
tive (FN)

C(j) True negative
(TN)
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Fig. 5 Computation of sensitivity, specificity, recall, and precision are
shown above. TP: true positive; FN: false negative; FP: false positive;
and TN: true negative

precision (P) and recall (R) of each discrete classification
are calculated. A visual explanation of the F score,
precision, and recall is shown in Fig. 5. Precision is the
proportion of patients predicted to belong to a classification,
who do in fact belong to that classification. The recall is
the portion of patients belonging to a classification who are
correctly classified, thus identical to sensitivity. The F score
combines the precision and recall as follows:

F = (δ2 + 1)PR
δ2P + R , (25)

where P represents the precision, R represents the recall,
and δ represents a hyper parameter. Values of δ above 1 give
preference to recall, while values under 1 give preference
to precision. Although there is a preference to recall in the
proposed application of the classifiers, δ = 1 is used to get
a general sense of classifier performance without any bias.
As δ = 1 is used, the F score is referred to as the F1 score
and is, thus, essentially the harmonic mean of precision and
recall.

While the F1 score balances the affect of precision
and recall, it does not balance the affect of the sensitivity
and specificity. Given a situation in which there is an
equal number of healthy and unhealthy VPs, an ENBC
which correctly predicts the health of 80% of healthy VPs
(R = Se = 0.8) and 20% of unhealthy VPs (Sp =
0.2) will achieve an F1 score of 0.61. An ENBC that

correctly predicts the health of 20% of healthy VPs (R =
Se = 0.2) and 80% of unhealthy VPs (Sp = 0.8),
however, will achieve an F1 score of 0.28, despite the
fact that the total number of VPs who have been correctly
classified is unchanged. This highlights the importance of
using both the F1 score and the sensitivities/specificities in
combination.

4 Results and discussion

4.1 Empirical evaluation VPD size

While an estimation to the adequacy of the VPD size has
been made by calculating the EPV, this can be checked more
thoroughly by training and testing a series of classifiers with
successively increasing number of VPs. This assessment is
made for the case with the largest input dimensionality, i.e.
when all the six measurements—three pressure and three
flow-rate profiles—at all the three measurement locations
are used (see Fig. 1).

To minimise the lowest number of VPs belonging to a
single classification, classifiers must be trained to predict
the health of each vessel individual. As the VPD has
been created so that there is an equal number of healthy
and unhealthy VPs, for any given number of available
VPs an ENBC will have half of the number of available
VPs belonging to C(1) and half belonging to C(2). On the
contrary, three series of IVBCs are created (as described in
Section 3.4.1.1), each predicting the health of a different
vessel. This results in each instance of an IVBC having
5/6 of the available VPs belonging to a negative binary
classification, however only 1/6 of the number of available
VPs belonging to a positive binary classification. By
empirically showing there is an adequate number of VPs
to train and test classifiers in this extreme situation, it is
reasonable to assume there is an adequate number of VPs to
train and test ENBCs.

Due to the class imbalance present, i.e. there are
significantly more VPs belonging to C(2) than C(1), a
weighting w is applied to the cost of VPs belonging to C(1)

when training IVBCs. Without this weighting, the IVBCs
are biased towards VPs belonging to C(2). The weighting
applied to the cost of the prediction of VPs belonging to
C(1) for each classifier is calculated by assigning a ratio r

to the effective number of VPs belonging to classifications
C(1) and C(2):

r = w ∗ m(1)

m(2)
, (26)

where m(1) and m(2) represent the number of VPs belonging
to classes C(1) and C(2), respectively. The corresponding cost
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(loss) function is modified from Eq. 16 to include the weight
w as

L
(
θ , Xtrain, τ train

)
= − 1

m

m∑

i=1

(w τi log (h(xi , θ))

+(1 − τi) log (1 − h(xi , θ))) , (27)

When r = 1 is used, VPs belonging to C(1) and C(2)

have the potential to contribute equally to the total cost of
prediction across the training set. If r > 1 is used, bias
is given towards VPs belonging to C(1), and r < 1 gives
bias towards VPs belonging to C(2). Unless stated otherwise,
r = 1 is used.

For successively increasing number of VPs, five
instances of each of the three IVBCs corresponding to dis-
ease in the three vessels are trained and tested. Each of these
instances uses a different random subset of VPs for training
and testing the classifier. The average performance of these
five instances is then computed, thus minimising the effect
of test-train split. This is referred to as five-fold validation.
The average F1 scores achieved across the training and test
sets, over the five-folds, with increasing numbers of VPs are
shown in Fig. 6.

Figure 6 shows that both training and test accuracies are
low when a small proportion of the VPD is made available
to ML classifiers. This suggests that the classifiers being
trained are underfitting the training data, i.e. low variance
but high bias. The classifiers trained can neither fit the
training data nor generalise to the test data. As the number
of available VPs increases, the behaviour of classifiers
differs between the aorta and two common iliacs. In the
case of the aorta, the training accuracy remains relatively
constant, while the test accuracy increases. In the case of
the two common iliac classifiers, both the training and test
accuracy increase. These behaviours suggest the classifiers
are fitting the training data better, and as a consequence are
better able to classify test patients. Initially, between 1000
and 5000 available VPs, the changes made to the partition
between VPs belonging to C(1) and C(2) through the input
measurement space are significant, and so there are large
jumps in change to the training and test accuracies. As
the number of available VPs continuous to increase, the
partition between healthy and unhealthy patients through
the input measurement space begins to converge to an
optimum solution. This causes the changes to the training
and test accuracies to reduce, and eventually flatten off.
Figure 6 suggests that beyond 7000 VPs the VPD contains
enough VPs to train and test ML classifiers. This is shown
by the fact that the training and test accuracies of each vessel
are consistent for the final several numbers of available VPs,
and so the partitions between healthy and unhealthy patients
are no longer changing.
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Fig. 6 Analysis of the adequacy of VPD size when using pressure and
flow-rate measurements at all the three locations: training and test F1
scores with successively increasing VPD size

4.2 VPD characteristics

The stenosis characteristics in the VPD are visualised by
considering the distributions of the severity S and the
location of the stenosis (b + e)/2. These distributions
are shown in Fig. 7a and b, respectively. The severity is
uniformly distributed within the range considered, and the
location (b+e)/2 shows a Gaussian-like distribution centred
at the middle of each vessel.

4.3 ENBC results

The architecture of LR, NB, and SVM classifiers can all
be considered to be problem independent. While these three
algorithms are able to undergo varying levels of problem
specific optimisation, the underlying structure of the
classifier cannot be changed. In the case of SVM classifiers,
the classifier is optimisation for a specific problem by
choosing a kernel to map the input measurements to a
higher order feature space. Unless otherwise stated, all SVM
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Fig. 7 Distributions
(histograms) of primary disease
attributes in the VPD

classifiers use a radial basis function kernel. In the case of
NB classifiers, the classifier is optimisation to a specific
problem by choosing the distribution of input measurements
across the dataset. Here, for NB, it is assumed that all input
measurements are normally distributed across the dataset.

The architecture of RF classifiers, however, is dependent
on the specific problem. The number of trees within the
ensemble and the maximum depth of each tree can be
optimised for a specific problem. To fit the RF classifiers,
a basic grid search is carried out. The hyperparameters
describing the architecture that produces the highest F1

score are empirically found, and this combination of

hyperparameters is then used for all further classifiers
trained and tested.

There are 63 possible combinations of input measure-
ments that can be provided to the ML classifiers from
the three locations at which pressure and flow-rate are
measured. A combination search is performed—for every
combination of input measurements, an ENBC is trained
and then subsequently tested using each of the four differ-
ent classification methods. The average F1 score, sensitivity,
and specificity of healthy classification accuracy for each
input measurement combination and classification method
across five-folds are recorded. Combinations of interest are

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
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Fig. 8 The F1 scores achieved by the ENBCs employing the NB, LR, SVM, and RF methods for all the combinations of the input measurements.
The bottom legend shows the measurements used in black squares
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then further analysed. The full tables of results are shown
in Appendix A. The F1 score achieved by each ML method
and combination of input measurements are visually shown
in Fig. 8.

4.3.1 Like-for-like input measurement comparison

To gain a better understanding of how much difference in F1

score can be considered insignificant, classifiers that should
theoretically achieve identical accuracies are compared.
Exploiting the symmetrical structure of the arterial network
(see Fig. 1), classifiers that use symmetric measurements
can be identified. These are referred to as like-for-like
measurements; two examples of such measurements are
shown in Fig. 9. Any discrepancy between the F1 scores
achieved by classifiers trained using like-for-like input
measurement combinations is therefore introduced due to
training and statistical errors.

There are 24 possible cases of like-for-like input
measurement pairs. The discrepancy in the F1 score
achieved by the two classifiers within each of these
pairs is computed when using each of the four different
classification methods. It is found that NB classifiers show

Fig. 9 Two examples of like for like input measurements

significantly greater magnitudes in the discrepancies of F1

scores produced than any of the three other methods. The
maximum discrepancy in F1 scores produced when using an
NB method is equal to 0.18. This large discrepancy points
to something beyond statistical and training errors and is,
therefore, most likely related to the unsuitability of the NB
method to our problem. It is therefore decided to exclude
the results achieved by the NB method from all subsequent
analysis. The histograms of the discrepancies in the F1

score between like for like input measurement combinations
produced when using the remaining three ML methods are
shown in Fig. 10.

Figure 10 shows that the discrepancy in F1 scores
between like-for-like input measurement combinations
follow a very similar pattern for both the LR and RF
classification methods. For both of these methods it can
be seen that the majority of the 24 like-for-like input
measurement combinations produce a discrepancy in F1

score of less than 0.005. There is then a clear exponential
decay in the number of occurrences as the F1 score
discrepancy increases. Twenty of the 24 LR pairs, and
16 of the 24 RF pairs achieved a discrepancy of less
than 0.01. When looking at the F1 discrepancies of SVM
classifiers, there appears to be no real decay in the number
of occurrences as the F1 discrepancy increases, and instead
a relatively constant number of SVM pairs produce F1

discrepancies between 0 and 0.025.
The maximum discrepancy in F1 scores between like-

for-like input measurement combinations is equal to 0.0231.
This discrepancy in F1 score is measured between two pairs
of input measurements when using an SVM method. The
firsts of these two pairs is (Q3, P3) and (Q2, P2). When
training a SVM classifier using (Q3, P3) the sensitivity and
specificity is equal to 0.71 and 0.51 respectively. When
training an SVM classifier using (Q2, P2) the sensitivity
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Fig. 10 Histograms of the discrepancy between the F1 scores of ‘like
for like’ ENBCs
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Fig. 11 The average, maximum, and minimum F1 score achieved
by all the ENBCs against the numbers of input measurements. The
central markers represent the average score achieved, while the error
bars indicate the upper and lower limits. The combination of input
measurements that produces the highest F1 score is identified in text
for the SVM method

and specificity is equal to 0.74 and 0.47 respectively. The
second pair of input measurements producing a discrepancy
in F1 score of 0.0231 is (Q3, P1) and (Q2, P1). When
training SVM classifiers using (Q3, P1) and (Q2, P1),
the sensitivities and specificities are equal to 0.76 and
0.50; and 0.8 and 0.46 respectively. It can be seen that in
the case of both pairs of input measurements highlighted
above, while there are some differences in the sensitivities
and specificities produced, the differences in accuracies
are relatively low and the behaviours of each of the two
classifiers are relatively consistent.

From Fig. 10 and the aforementioned analysis, a
difference in F1 score of more than 0.01 between two

LR, SVM, or RF classifiers trained using different input
measurements can be considered to be significant and likely
due to the behaviour of the classifiers. It is important
to remember, however, that a difference in F1 score of
approximately 0.025 is required to fully rule out the
possibility that patterns are due to training or statistical
errors.

4.3.2 Effect of the number of input measurements

Appendix A and Fig. 8 show that there is a correlation
between the number of input measurements used in the
ML classifiers and the F1 score. To investigate this further
the average F1 score achieved by all the classifiers using
one to six input measurements is found for each of the
three different classification methods. The maximum and
minimum F1 scores are also recorded and shown in Fig. 11.
It can be seen that as the number of input measurements
increases, the average F1 score achieved by all classification
methods also increases. The increase in F1 score is most
noticeable for the SVM method. For the LR and RF
classification methods, the average F1 score achieved
when using 1 input measurement is approximately 0.5,
representing naive classification (Se +Sp = 1). The average
F1 score achieved by SVM classifiers trained using 1 input
measurement is marginally better than naive classification.
This finding that the average F1 score increases as the
number of input measurements increases is expected as the
discriminatory information increases, on average, as more
measurements are made available.

Observing the range of maximum to minimum F1

scores in Fig. 11 it can be seen that as the number
of input measurements increases, the range of F1 scores
decreases. An interesting pattern to note is that while the
average and minimum F1 score achieved increases when
increasing the number of input measurements between
four and six, the maximum remains relatively constant.
The maximum and minimum F1 scores are shown in
Table 4, along with the corresponding sensitivities and

Table 4 The combinations of input measurements that produce the maximum and minimum F1 scores when providing four, five, and six input
measurements

Number of input
measurements

Importance Combination F1 score Sensitivity Specificity

4 Maximum (Q3, Q1, P3, P1) 0.6429 0.7994 0.5688

Minimum (Q2, P3, P2, P1) 0.5836 0.8059 0.4920

5 Maximum (Q3, Q2, Q1, P3, P1) 0.6469 0.8115 0.5683

Minimum (Q3, Q2, P3, P2, P1) 0.6140 0.7947 0.5340

6 − (Q3, Q2, Q1, P3, P2, P1) 0.6454 0.8050 0.5694

The corresponding sensitivities and specificities are also included
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specificities. Table 4 shows that the maximum accuracy
of classifications—assessed by F1 scores, sensitivities,
and specificities—varies insignificantly between four, five,
and six measurements. Thus, the analysis points that
similar levels of accuracies can be achieved by using only
four measurements compared to the case when all six
measurements are used, but one must be judicious in the
choice of the four measurements.

4.3.3 Importance of inlet pressure and flow-split

A further pattern noticed within the tables in Appendix
A and Fig. 8 is that classifiers trained using P1 generally
perform better than those that do not use P1. To analyse
this further, the F1 scores of classifiers trained with and
without P1 are separated and plotted in Fig. 12. For LR
and SVM classifiers, a clear improvement of �F1 ≈
0.05 is observed when P1 is included. This behaviour is
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Fig. 12 The histograms of the F1 scores achieved by the ENBCs that
include P1 (upper), and exclude P1 (lower)

expected, in part due to design. There are a total of 32
combinations of input measurements that include P1, and
31 combinations of input measurements that exclude P1.
The classifier trained using all six input measurements,
and five of the six classifiers trained using five input
measurements contain P1. Only one classifier trained using
five input measurements does not include P1. It has
previously been shown in Fig. 11 that, generally, classifiers
trained using more input measurements achieve higher
accuracy classification results. There is, therefore, some
expected skewing towards higher F1 scores in favour of
classifiers trained with P1. This expected behaviour is
further amplified by the fact that only one combination of
input measurements consists of a single input measurement
and contains P1. This compares to five combinations that
consist of a single input measurement and exclude P1. This
results in an expectation of more low scoring classifiers
without P1.

Figure 12 shows that in the case of LR, only 11 of
the 32 classifiers trained using P1 achieve an F1 score
of less than 0.54. This compares to all 31 LR classifiers
trained without P1 achieving an F1 score of less than 0.54.
In the case of SVM classifiers, only 1 combination of
input measurements containing P1 achieves an F1 score of
less than 0.54. This compares to 5 combinations of input
measurements that do not contain P1 that achieved an F1

score of less than 0.54. When the threshold for comparison
is increased to 0.6 it is found that 20 of the 32 SVM
classifiers trained with P1 exceed this threshold, compared
to 14 of the 31 trained without P1 exceeding this threshold.
Similar analysis shows that the inclusion or exclusion of Q1

produces similar patterns and behaviours in the F1 scores
produced. Thus, measurements of pressure and flow-rate at
the inlet of the system appear to be particularly informative
in differentiating between healthy and unhealthy patients.

Another observation can be made by observing the
highest scoring SVM classifiers in Fig. 11. The best
performing classifiers include P1 and a combination to
determine the flow-split between the left and the right iliacs.
For example, when three measurements are used, the best
combination is (Q3, Q1, P1), which would enable the flow
split to be known through mass conservation (note that
compliance of the arteries is relatively small) in addition to
P1. This observations bears similarity to the classical inverse
problem analysis presented in [35], where the authors show
that in order to find the parameters of any arterial network,
the inlet pressure and flow-splits to all the outlets should be
known.

4.3.4 Linear vs non-linear partitions

Comparing the results achieved by LR and SVM classifiers
in all previous analyses, it can be seen that SVM classifiers
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Fig. 13 Logistic Regression:
predicted probability of disease
against stenosis severity for
diseased patients (left) and
histogram of predicted
probability of disease for
healthy subjects (right). TP: true
positive; FN: false negative; FP:
false positive; and TN: true
negative

consistently achieve higher accuracy results than the LR
classifiers. When using all the six input measurements,
the LR and SVM classifiers achieve sensitivities and
specificities of 0.73 and 0.52; and 0.80 and 0.57,
respectively. Similarly, the F1 scores for LR and SVM
classifiers are 0.58 and 0.65, respectively. All SVM
classifiers trained up to this point have mapped the input
measurements provided to a higher order feature space
through the use of radial basis function kernel. The fact
that the accuracy of SVM classifiers are consistently higher
than LR classifiers suggests that the partition between
healthy and unhealthy VPs through the pressure and flow-
rate measurement space is likely non-linear. To test the
hypothesis that the increase in accuracy seen in SVM
classifiers is due to this higher order mapping, an SVM
classifier is trained and tested with a linear kernel. It is found
that an SVM classifier trained using all the six pressure
and flow-rate measurements and a linear kernel produces
an average sensitivity and specificity of 0.85 and 0.42
respectively over five-folds of the VPD. This corresponds to
an F1 score of 0.53. The corresponding F1 scores for LR and
radial basis function SVM are 0.58 and 0.65, respectively.
The non-linear SVM outperforms the linear SVM and LR
(also linear), thus demonstrating that a non-linear mapping
is beneficial in discerning between healthy and diseased
states.

4.3.5 Effect of disease severity

Here the effect of disease severity on the accuracy of
classification is investigated. This analysis is performed
using an SVM classifier employing an RBF kernel
and an LR classifier, both using pressure and flow-rate
measurements at all the three locations.

A scatter plot of the predicted probability returned by the
LR classifier against the severity of disease (i.e. diseased
VPs) for false negatives and true positives is shown

in Fig. 13 (left), while a histogram of the predicted
probabilities for all the healthy VPs (i.e. zero severity) is
shown in Fig. 13 (right). Contrary to intuitive reasoning,
which suggests that higher severity of stenosis should be
easier to detect, no trends are observed in Fig. 13, with
classification accuracy being independent of the severity.
This suggests that the variability in the pressure and
flow-rate waveforms induced by the boundary conditions
representing physiology before and after the anatomical
network (see Fig. 1) is large and can overshadow the
variability induced by stenosis severity alone.

Since the SVM classifiers do not predict a probability
of disease, but a direct classification of healthy of diseased
subject, histograms of the distributions of true positives and
false negatives across the range of severities for diseased
subjects are considered to assess the effect of stenosis
severity. These are shown in Fig. 14. For the healthy

Fig. 14 SVM with an RBF kernel: histograms of true positives (TP)
and false negatives (FN) against stenosis severity
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Fig. 15 The average, maximum,
and minimum F1 score achieved
by all the IVBCs when providing
different numbers of input
measurements to detect disease
in each of the three vessels. The
central markers represent the
average score achieved, while
the error bars indicate the upper
and lower limits
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subjects, 224 false positives and 1044 true negatives are
recorded. Similarly to the LR results above, the SVM results
do not show a strong trend of severity affecting classifier
performance.

4.4 IVBC results

Following an identical procedure to that employed for
the ENBC combination search, three IVBC combination
searches—one for disease classification in each of the three
vessels—are performed using the LR and SVM methods. It
is chosen to limit the IVBC combination searches to these
two classification methods due to the higher computational
expense, and the fact that these two methods have shown
consistently higher accuracy results. The full tables of
results for the IVBC combination search are presented in
Appendix B. The average, minimum, and maximum F1

score achieved when using one to six input measurements
are shown in Fig. 15. There is a good agreement between
the overall behaviour seen across the IVBC and ENBC (as

shown in Fig. 11) combination searches. These similarities
include:

• The average and minimum F1 score achieved contin-
uously increases when increasing the number of input
measurements from one to six.

• The maximum F1 score initially increases rapidly and
reaches an asymptotic limit between two and four input
measurements.

• The SVM method consistently produces higher accu-
racy results than the LR method.

For the SVM configurations corresponding to maximum
F1 scores, the sensitivities, specificities, and the combi-
nation of measurements is shown in Table 5. It shows
that the combinations of input measurements that pro-
duce the highest F1 scores in the two common iliacs are
not only identical, but also symmetrical (with the same
input measurements being taken from the right and left
sides). While the combinations of input measurements that

Table 5 The combinations of input measurements that produce the maximum F1 scores when providing four, five, and six input measurements to
the IVBCs with the SVM method

Number of input
measurements

Vessel Combination F1 score Sensitivity Specificity

4 Aorta (Q3, Q2, Q1, P1) 0.8437 0.8893 0.7814

Iliac 1 (Q3, Q2, P3, P2) 0.8256 0.8439 0.7996

Iliac 2 (Q3, Q2, P3, P2) 0.8163 0.8303 0.7961

5 Aorta (Q3, Q2, Q1, P2, P1) 0.8391 0.8775 0.7862

Iliac 1 (Q3, Q2, Q1, P3, P2) 0.8387 0.8333 0.8464

Iliac 2 (Q3, Q2, Q1, P3, P2) 0.8407 0.8406 0.8409

6 Aorta (Q3, Q2, Q1, P3, P2, P1) 0.8363 0.8734 0.7847

Iliac 1 (Q3, Q2, Q1, P3, P2, P1) 0.8348 0.8255 0.8479

Iliac 2 (Q3, Q2, Q1, P3, P2, P1) 0.8364 0.8276 0.8488

The corresponding sensitivities and specificities are also included
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produce the highest F1 scores differ from the ENBC results
(see Table 4), a similarity between the two is that the best
performing classifiers include a pressure measurement and
a combination to determine the flow-split. In Section 4.3.3,
it is hypothesised that the combination of pressure at the
inlet and flow-split may be particularly informative. Table 5,
however, seems to suggest that it may be the pressure within
the diseased vessel and the flow-split that best captures the
presence of a stenosis.

Comparing Tables 4 and 5 also shows that IVBCs, owing
to their more granular characterisation of diseases states,
lead to higher F1 scores, sensitivities, and specificities,
relative to the ENBCs. Neither of them are, however, good at
pointing to the precise vessel that is diseased in the network.
Note that even if an IVBC classifier has perfect accuracy
it does not lead to knowledge of precise diseased vessel;
for example, the aortic IVBC classifier only determines
whether disease is in aorta, and considers both healthy
and diseased iliac vessel patients together in one class
(see Section 3.4.1.1). When knowledge of not only the
presence of disease but also the precise location is required,
multiclass classifiers are necessary, and their results are
presented next.

4.5 Multiclass analysis

Results of the multiclass configurations are presented here.
Unlike ENBC and IVBC classifier results presented above,
here the goal is also to determine which vessel the disease
is located in. Due to the increased computational expense,
a full combination search is not carried out for multiclass
classifiers. Instead multiclass classifiers are trained and
tested using the measurements of pressure and flow-rate at
all the three available locations.

Initially, multiclass classifiers are created using LR
employing an OVA method (see Section 3.4.2.1) and SVM
employing an OVO method (see Section 3.4.2.2). While
these initial classifiers produced high accuracy for aortic,
first iliac, and second iliac disease classification, it is
found that the sensitivity corresponding to the classification
of VPs with ‘no disease’ present is consistently close to
0. A multiclass classifier is, therefore, created using LR
employing a CPC method, as outlined in Section 3.4.2.3.

The results of the OVA, OVO, and the CPC classifiers are
shown in Table 6.

Table 6 shows that for OVA the sensitivities and
specificities for the first and second iliac are equivalent.
For aorta, the specificity is relatively higher but comes at
a compromise of reduced sensitivity. Finally, the healthy
classification sensitivity is poor, almost close to zero.
Similar behaviour is observed for OVO with almost all
classification accuracies lower when compared to OVA.
Thus, OVA outperforms OVO in all cases and is thus
superior for this application. When comparing OVA against
CPC, the highest improvement is seen for the sensitivity
of healthy classification, an increase to ∼50% compared in
CPC compared to ∼0% in OVA. For the aorta and iliacs, a
rebalancing of sensitivities and specificities is observed in
relation to OVA—an increase in sensitivity is accompanied
by a decrease in specificity, with their averages relatively
unchanged. Overall, Table 6 shows that the CPC achieves its
purpose of improving the classification accuracy for healthy
(‘no disease’) class without significantly compromising
other classification accuracies.

When creating CPC multiclass classifiers, preference can
be given to healthy or unhealthy VPs by adjusting the
decision boundary B in Eq. 24 —i.e. the certainty required
to override the default classification that a VP has no
disease present. Reducing the certainty required to change
the classification a VP is assigned to, i.e. lowering the
decision boundary, creates bias towards unhealthy VPs as
the CPC classifier is more willing to override the default
classification that a VP is healthy. Increasing the decision
boundary will require more certainty to classify a VP as
diseased, giving bias toward healthy VPs, as the CPC is less
willing to override the default classification that a VP is
healthy.

To analyse the aforementioned affect of the decision
boundary used on the classification of VPs, receiver
operating characteristic (ROC) curves [1] are plotted. ROC
curves are obtained by plotting the true positive rates
against the false positive rates of each classification when
different decision boundaries are applied. By recording
a series of discrete true-positive/false-positive points for
various decision boundaries, a curve is fitted that shows the
characteristics of the accuracy of each classification across

Table 6 Multiclass accuracies of OVA, OVO, and CPC when using pressure and flow-rate at all the three locations

Healthy Aorta First iliac Second iliac

Configuration Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

One-versus-all (OVA) 0.056 0.986 0.642 0.851 0.846 0.729 0.825 0.725

One-versus-one (OVO) 0.120 0.916 0.493 0.798 0.584 0.726 0.550 0.725

Custom probabilistic config (CPC) 0.496 0.832 0.581 0.882 0.745 0.867 0.722 0.860
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all possible decision boundaries. A complete ROC curve
must start at the point representing a true positive and false
positive rate of 0, i.e. no VPs are predicted to belong to
the classification being examined, and must end at the point
representing a true positive and false positive rate of 1, i.e.
all VPs are predicted to belong to the discrete classification
being examined. A naive classifier, achieving an accuracy of
50%, will produce a straight line between these two points,
and so the area under the curve (AUC) is equal to 0.5.
A perfect classifier ascends vertically along the the y-axis
between the points (0, 0) and (0, 1), then transverses the x-
axis between the points (0, 1) and (1, 1). This will result
in a perfect AUC score of 1. The point (0, 1) represents
a perfect classifier, as 100% of positive VPs are correctly
classification, while 0% of negative patients are incorrectly
classified.

Within the context of the multiclass CPC, when a
decision boundary of 1 is applied, all VPs are classified as
healthy, and so the ROC curves of aortic disease, first iliac
disease, and second iliac disease classification all begin at
the true positive and false positive position (0, 0). When a
decision boundary of 1 is applied, the true positive and false
positive position of healthy classification is (1, 1), i.e. all
VPs are being assigned to the classification of no disease
present. When the decision boundary is set to be 0 all VPs
are classified as having disease in one of the three vessels,
and so the healthy classification will reach the point (0, 0). A
complete ROC curve can, therefore, be obtained for healthy
classification accuracy. When the decision boundary is set
to be 0, while all VPs are classified as having disease in
one of the three vessels, this does not necessarily ensure that
the true positive and false positive classification accuracy
is equal to 1 for disease classification in each individual
vessel. Complete ROC curves can, therefore, not be plotted
for aortic, first iliac, and second iliac disease classification.
The ROC curve of healthy VP classification accuracy is
plotted against the reported true positive and false positive
rates of 193 current general screening methods, recorded
in [30] and [3], and is shown in Fig. 16. Note that the
general screening methods in this Figure are not necessarily
all cardiovascular related, i.e. this analysis does not compare
the results achieved here to current directly comparable
methods for identical configuration. Instead, it shows a
comparison of the results achieved against the general
landscape of clinically used methods for screening.

Figure 16 shows that the ROC curve of healthy VP
classification follows a desirable profile. The AUC of the
ROC curve is computed 0.75. An AUC of between 0.7
and 0.9 can be considered as moderate accuracy [12]. The
overall correct classification of healthy VPs by the CPC
outperforms approximately 20 of the current methods.

The ROC curve of classifiers created in this PoC study
can not be fairly compared to current screening methods,
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Fig. 16 The ROC curve of healthy VP classification within the
CPC ensemble trained and tested using pressure and flow-rate
measurements at all the three measurement locations. The accuracy
of classification is compared to current general screening methods
(shown in red) [1]

as the affects of simplifications such as only using a
simple three vessel system, and limiting the number of
diseased vessels to one are not understood. However, Fig. 16
provides some indication of how the results achieved in this
PoC study compare to currently used screening methods.
Overall, the results, despite simplifications and assumptions
used in this study, are encouraging and point towards the
potential of increased classification accuracies when larger
networks and more sophisticated ML or deep learning
algorithms are used.

5 Conclusions

This is the first-of-its-kind PoC study exploring ML
application to detection of stenosis in arterial networks.
The key conclusion is that ML methods are appropriate
for detection of arterial disease, as demonstrated in the
three-vessel network. The most balanced classifier, the
CPC, achieves specificities larger than 80% and sensitivities
ranging from 50–75%. The AUC under the ROC for this
classifier is 0.75, which outperforms approximately 20 of
the current methods used in clinical practice for various
types of screening (see Section 4.5). This observation,
motivates further exploration of more sophisticated ML and
deep learning methods on virtual databases created on larger
networks. This can facilitate home monitoring of disease
and/or larger-scale, cost-effective, screening programmes.

Among the four ML methods considered, it is shown
that LR and SVM perform significantly better than NB
and RF, with the further advantage that these require little
to no problem-specific optimisation. While this conclusion
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may be specific to the network considered, the results
show that non-linear classification methods, such as the
SVM with radial basis functions, perform better than linear
classification methods for arterial disease detection. Finally,
it is demonstrated that the standard methods can be modified
in a custom probabilistic configuration to not only detect
the presence of stenosis in the network, but also identify the
diseased vessel.

This study also presents a methodological framework to
both create the virtual patient database and assess that it is
of adequate size for the ML applications. The conclusion
from ML classifier performance is that all measurements
are not equally informative (or the classifiers are not able to
extract the information equally from all the measurements),
and that similar classification accuracies can be achieved
by using fewer measurements as long as the measurements
are chosen judiciously. For example, the spread of F1

scores for a given number of measurements in Fig. 11
(also see Table 4) shows that the best performing classifier
with only three measurements outperforms the worst
performing classifiers with four and five measurements. In
this context of which measurements are more informative,
for the arterial network considered, the importance of inlet
pressure, inlet flow-rate, and flow-split at the bifurcation is
highlighted.

6 Limitations and future work

Several simplifications and assumptions are made during
both the creation of the VPD and the training and testing of
ML classifiers. These are likely to affect the classification
accuracies achieved within this study. Some of these major
limitations are:

• The arterial network, containing only three vessels,
is small. It is not clear whether this aids or hinders
classification. On the one hand, due to small nature
of the network, the signals are less diffused, and on
the other hand specific features which may be result
of unique reflections in certain anatomical locations
is not accounted for. However, the small arterial
network does allow for a preliminary analysis which,
with encouraging results, points towards exploration in
larger networks.

• The distributions of all arterial network parameters,
excluding disease conditions, across the VPD are
described using independent distributions. These sim-
ple distributions ignore the complex inter-parameter
relationships likely seen within real arterial networks.
The simplification of the distribution of arterial net-
work parameters likely results in a wider range of
pressure and flow-rate profiles across the VPD, making

distinction between healthy and unhealthy VPs more
difficult. This may be potentially solved by first deter-
mining the probability distributions through an inverse
problem approach, for example Markov chain monte
carlo.

• This study is completed without significant consid-
eration for clinical requirements. For example which
measurements are really obtainable easily, and what
range of stenosis severities should a ML classifier be
able to detect? These questions are best explored on a
larger network.

• The pressure and flow-rate profiles are free of noise and
other measurement errors. A straightforward inclusion
of additive Gaussian white noise to the measurements
is likely to not result in any significant changes as the
representation of the measurements is based on Fourier
series. With truncation of the Fourier series at low
orders, such a representation will filter-out most of the
added noise. A careful investigation of the errors in
the measurements, including biases, is thus needed to
make the results more robust. This should be performed
while considering the nature and magnitude of errors
in the measurement devices used in the clinic and also
procedural errors which may include biases.

Appendix A: ENBC combination
search results

The F1 scores, sensitivities, and specificities achieved
by ENBC classifiers when employing each of the four
classification methods are shown in Tables 7, 8, and 9.

Table 7 The F1 scores achieved across the ENBC combination search
by each of the four classification methods

Classification method

Input combination NB LR SVM RF

Q3 0.3494 0.4915 0.5138 0.4789

Q2 0.5318 0.4824 0.4989 0.4965

Q1 0.3008 0.4932 0.5621 0.4540

P3 0.4328 0.4908 0.5292 0.4926

P2 0.4413 0.5060 0.5287 0.5122

P1 0.3059 0.4924 0.5307 0.4705

Q3, Q2 0.4930 0.4878 0.5510 0.4852

Q3, Q1 0.3126 0.5136 0.6015 0.4756

Q3, P3 0.4244 0.4989 0.5710 0.5053

Q3, P2 0.4342 0.5032 0.5757 0.5109

Q3, P1 0.3208 0.5077 0.5801 0.4910

Q2, Q1 0.4228 0.4962 0.5892 0.4916

Q2, P3 0.4916 0.5057 0.5559 0.5080
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Table 7 (continued)

Classification method

Input combination NB LR SVM RF

Q2, P2 0.4934 0.5081 0.5479 0.5046
Q2, P1 0.3997 0.5054 0.5570 0.4861
Q1, P3 0.3698 0.5163 0.6050 0.4956
Q1, P2 0.3806 0.5316 0.6121 0.5086
Q1, P1 0.3140 0.5190 0.6152 0.4776
P3, P2 0.4378 0.5052 0.5391 0.5200
P3, P1 0.3668 0.5267 0.5617 0.5065
P2, P1 0.3729 0.5397 0.5620 0.5106
Q3, Q2, Q1 0.4181 0.5091 0.6098 0.4901
Q3, Q2, P3 0.4739 0.5079 0.5883 0.5080
Q3, Q2, P2 0.4778 0.5092 0.5824 0.5090
Q3, Q2, P1 0.3957 0.5104 0.5918 0.4945
Q3, Q1, P3 0.3728 0.5292 0.6240 0.4957
Q3, Q1, P2 0.3840 0.5292 0.6279 0.5138
Q3, Q1, P1 0.3205 0.5290 0.6356 0.4909
Q3, P3, P2 0.4360 0.5041 0.5769 0.5085
Q3, P3, P1 0.3702 0.5420 0.5983 0.5049
Q3, P2, P1 0.3770 0.5435 0.5985 0.5160
Q2, Q1, P3 0.4444 0.5223 0.6117 0.5036
Q2, Q1, P2 0.4437 0.5348 0.6105 0.5013
Q2, Q1, P1 0.3780 0.5262 0.6182 0.4901
Q2, P3, P2 0.4741 0.5090 0.5629 0.5179
Q2, P3, P1 0.4119 0.5378 0.5769 0.5103
Q2, P2, P1 0.4165 0.5478 0.5761 0.5153
Q1, P3, P2 0.4121 0.5344 0.6143 0.5196
Q1, P3, P1 0.3433 0.5470 0.6221 0.4948
Q1, P2, P1 0.3507 0.5549 0.6228 0.5146
P3, P2, P1 0.3938 0.5518 0.5740 0.5239
Q3, Q2, Q1, P3 0.4376 0.5292 0.6280 0.5023
Q3, Q2, Q1, P2 0.4395 0.5384 0.6273 0.5060
Q3, Q2, Q1, P1 0.3797 0.5350 0.6368 0.4947
Q3, Q2, P3, P2 0.4696 0.5098 0.5929 0.5183
Q3, Q2, P3, P1 0.4105 0.5466 0.6100 0.5119
Q3, Q2, P2, P1 0.4144 0.5482 0.6078 0.5175
Q3, Q1, P3, P2 0.4104 0.5364 0.6240 0.5079
Q3, Q1, P3, P1 0.3516 0.5588 0.6429 0.5043
Q3, Q1, P2, P1 0.3540 0.5587 0.6407 0.5103
Q3, P3, P2, P1 0.3956 0.5596 0.6025 0.5163
Q2, Q1, P3, P2 0.4511 0.5387 0.6153 0.5093
Q2, Q1, P3, P1 0.3956 0.5538 0.6268 0.5053
Q2, Q1, P2, P1 0.3982 0.5676 0.6274 0.5170
Q2, P3, P2, P1 0.4238 0.5597 0.5836 0.5229
Q1, P3, P2, P1 0.3773 0.5698 0.6277 0.5180
Q3, Q2, Q1, P3, P2 0.4455 0.5397 0.6275 0.5161
Q3, Q2, Q1, P3, P1 0.3955 0.5670 0.6469 0.5129
Q3, Q2, Q1, P2, P1 0.4000 0.5686 0.6432 0.5139

Q3, Q2, P3, P2, P1 0.4251 0.5595 0.6140 0.5127

Q3, Q1, P3, P2, P1 0.3791 0.5695 0.6434 0.5191

Q2, Q1, P3, P2, P1 0.4100 0.5718 0.6306 0.5188

Q3, Q2, Q1, P3, P2, P1 0.4139 0.5815 0.6454 0.5246

Table 8 The sensitivities achieved across the ENBC combination
search by each of the four classification methods

Classification method

Input combination NB LR SVM RF

Q3 0.7431 0.5516 0.6868 0.5961

Q2 0.4624 0.5896 0.6932 0.5669

Q1 0.8321 0.5348 0.7154 0.5956

P3 0.6755 0.5833 0.7289 0.5654

P2 0.6732 0.6038 0.7445 0.5681

P1 0.8094 0.6309 0.7634 0.6168

Q3, Q2 0.5447 0.5686 0.7186 0.59611

Q3, Q1 0.8127 0.5355 0.7220 0.6413

Q3, P3 0.6817 0.5738 0.7144 0.5741

Q3, P2 0.6710 0.5928 0.7183 0.5704

Q3, P1 0.7803 0.6239 0.7603 0.6121

Q2, Q1 0.6912 0.5684 0.7387 0.6150

Q2, P3 0.5907 0.5840 0.7311 0.5791

Q2, P2 0.5941 0.5879 0.7466 0.5812

Q2, P1 0.7303 0.6213 0.8000 0.6344

Q1, P3 0.7664 0.5754 0.7532 0.5930

Q1, P2 0.7657 0.5946 0.7595 0.5926

Q1, P1 0.8299 0.6406 0.7934 0.6283

P3, P2 0.6731 0.5984 0.7402 0.5729

P3, P1 0.7607 0.7386 0.8009 0.6027

P2, P1 0.7631 0.7349 0.8067 0.6047

Q3, Q2, Q1 0.6952 0.5706 0.7693 0.6200

Q3, Q2, P3 0.6100 0.5784 0.7379 0.5835

Q3, Q2, P2 0.6075 0.5798 0.7378 0.5880

Q3, Q2, P1 0.7167 0.6201 0.7854 0.6255

Q3, Q1, P3 0.7560 0.5708 0.7516 0.6052

Q3, Q1, P2 0.7507 0.6032 0.7607 0.6034

Q3, Q1, P1 0.8129 0.6330 0.7857 0.6217

Q3, P3, P2 0.6699 0.5949 0.7297 0.5813

Q3, P3, P1 0.7507 0.7209 0.7966 0.6173

Q3, P2, P1 0.7485 0.7198 0.7910 0.6094

Q2, Q1, P3 0.6925 0.5963 0.7723 0.5982

Q2, Q1, P2 0.6950 0.5896 0.7773 0.5999

Q2, Q1, P1 0.7711 0.6376 0.8059 0.6420

Q2, P3, P2 0.6308 0.5890 0.7418 0.5811

Q2, P3, P1 0.7187 0.7151 0.7992 0.6095

Q2, P2, P1 0.7181 0.7290 0.8165 0.6140

Q1, P3, P2 0.7330 0.5935 0.7623 0.5968

Q1, P3, P1 0.7951 0.7096 0.7934 0.6220

Q1, P2, P1 0.7926 0.7060 0.8023 0.6264

P3, P2, P1 0.7391 0.7388 0.8016 0.5958

Q3, Q2, Q1, P3 0.6903 0.6116 0.7872 0.6062

Q3, Q2, Q1, P2 0.6872 0.6169 0.7861 0.5911

3, Q2, Q1, P1 0.7593 0.6470 0.8098 0.6410

Q3, Q2, P3, P2 0.6325 0.5846 0.7370 0.5868

Q3, Q2, P3, P1 0.7089 0.7115 0.7963 0.6096
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Table 8 (continued)

Classification method

Input combination NB LR SVM RF

Q3, Q2, P2, P1 0.7081 0.7219 0.7970 0.6134

Q3, Q1, P3, P2 0.7266 0.6026 0.7680 0.6088

Q3, Q1, P3, P1 0.7760 0.6973 0.7994 0.6221

Q3, Q1, P2, P1 0.7754 0.6911 0.7965 0.6211

Q3, P3, P2, P1 0.7314 0.7321 0.7962 0.6056

Q2, Q1, P3, P2 0.6908 0.6039 0.7773 0.5978

Q2, Q1, P3, P1 0.7517 0.6999 0.8006 0.6297

Q2, Q1, P2, P1 0.7514 0.7156 0.8152 0.6207

Q2, P3, P2, P1 0.7081 0.7386 0.8059 0.6005

Q1, P3, P2, P1 0.7682 0.7115 0.7982 0.6213

Q3, Q2, Q1, P3, P2 0.6872 0.6186 0.7858 0.6013

Q3, Q2, Q1, P3, P1 0.7402 0.7121 0.8115 0.6127

Q3, Q2, Q1, P2, P1 0.7394 0.7175 0.8103 0.6386

Q3, Q2, P3, P2, P1 0.7022 0.7310 0.7947 0.6029

Q3, Q1, P3, P2, P1 0.7587 0.7016 0.7968 0.6182

Q2, Q1, P3, P2, P1 0.7390 0.7234 0.8022 0.6149

Q3, Q2, Q1, P3, P2, P1 0.7322 0.7267 0.8050 0.6106

Table 9 The specificities achieved across the ENBC combination
search by each of the four classification methods

Classification method

Input combination NB LR SVM RF

Q3 0.2660 0.4720 0.4540 0.4421

Q2 0.5570 0.4484 0.4344 0.4733

Q1 0.2067 0.4797 0.5022 0.4125

P3 0.3657 0.4608 0.4574 0.4689

P2 0.3757 0.4730 0.4512 0.4930

P1 0.2150 0.4472 0.4467 0.4255

Q3, Q2 0.4762 0.4618 0.4873 0.4497

Q3, Q1 0.2199 0.5061 0.5497 0.4239

Q3, P3 0.3550 0.4741 0.5137 0.4821

Q3, P2 0.3685 0.4732 0.5181 0.4906

Q3, P1 0.2331 0.4682 0.5065 0.4517

Q2, Q1 0.3508 0.4724 0.5268 0.4515

Q2, P3 0.4594 0.4793 0.4885 0.4838

Q2, P2 0.4604 0.4810 0.4729 0.4788

Q2, P1 0.3171 0.4663 0.4633 0.4385

Q1, P3 0.2799 0.4958 0.5407 0.4635

Q1, P2 0.2900 0.5089 0.5471 0.4800

Q1, P1 0.2179 0.4764 0.5361 0.4304

P3, P2 0.3718 0.4738 0.4649 0.5015

P3, P1 0.2784 0.4510 0.4683 0.4740

P2, P1 0.2834 0.4676 0.4664 0.4784

Q3, Q2, Q1 0.3448 0.4882 0.5399 0.4480

Table 9 (continued)

Classification method

Input combination NB LR SVM RF

Q3, Q2, P3 0.4317 0.4840 0.5260 0.4823

Q3, Q2, P2 0.4372 0.4852 0.5186 0.4820

Q3, Q2, P1 0.3166 0.4729 0.5104 0.4515

Q3, Q1, P3 0.2850 0.5143 0.5662 0.4597

Q3, Q1, P2 0.2969 0.5027 0.5672 0.4829

Q3, Q1, P1 0.2265 0.4917 0.5658 0.4484

Q3, P3, P2 0.3707 0.4736 0.5150 0.4838

Q3, P3, P1 0.2837 0.4756 0.5137 0.4670

Q3, P2, P1 0.2908 0.4778 0.5164 0.4835

Q2, Q1, P3 0.3734 0.4962 0.5410 0.4718

Q2, Q1, P2 0.3721 0.5149 0.5373 0.4684

Q2, Q1, P1 0.2863 0.4865 0.5343 0.4408

Q2, P3, P2 0.4254 0.4817 0.4929 0.4959

Q2, P3, P1 0.3324 0.4726 0.4869 0.4764

Q2, P2, P1 0.3371 0.4795 0.4789 0.4811

Q1, P3, P2 0.3288 0.5129 0.5487 0.4926

Q1, P3, P1 0.2497 0.4859 0.5448 0.4530

Q1, P2, P1 0.2568 0.4970 0.5417 0.4759

P3, P2, P1 0.3092 0.4806 0.4825 0.4985

Q3, Q2, Q1, P3 0.3668 0.4996 0.5551 0.4675

Q3, Q2, Q1, P2 0.3697 0.5095 0.5548 0.4773

Q3, Q2, Q1, P1 0.2908 0.4942 0.5560 0.4466

Q3, Q2, P3, P2 0.4196 0.4843 0.5322 0.4944

Q3, Q2, P3, P1 0.3335 0.4847 0.5282 0.4784

Q3, Q2, P2, P1 0.3376 0.4827 0.5252 0.4841

Q3, Q1, P3, P2 0.3287 0.5122 0.5587 0.4736

Q3, Q1, P3, P1 0.2610 0.5051 0.5688 0.4646

Q3, Q1, P2, P1 0.2634 0.5074 0.5673 0.4724

Q3, P3, P2, P1 0.3127 0.4927 0.5190 0.4853

Q2, Q1, P3, P2 0.3813 0.5147 0.5434 0.4791

Q2, Q1, P3, P1 0.3078 0.4979 0.5475 0.4633

Q2, Q1, P2, P1 0.3104 0.5090 0.5416 0.4809

Q2, P3, P2, P1 0.3473 0.4903 0.4920 0.4954

Q1, P3, P2, P1 0.2865 0.5134 0.5497 0.4819

Q3, Q2, Q1, P3, P2 0.3762 0.5106 0.5552 0.4865

Q3, Q2, Q1, P3, P1 0.3105 0.5096 0.5683 0.4785

Q3, Q2, Q1, P2, P1 0.3151 0.5095 0.5640 0.4708

Q3, Q2, P3, P2, P1 0.3504 0.4930 0.5340 0.4816

Q3, Q1, P3, P2, P1 0.2902 0.5170 0.5707 0.4844

Q2, Q1, P3, P2, P1 0.3251 0.5112 0.5516 0.4852

Q3, Q2, Q1, P3, P2, P1 0.3308 0.5221 0.5694 0.4941
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Appendix B: IVBC combination
search results

The F1 scores, sensitivities, and specificities achieved
by IVBC classifiers when employing each of the two
classification methods are shown in Tables 10, 11, and 12.

Table 10 The F1 scores achieved across the IVBC combination
searches by the LR and SVM classification methods

LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q3 0.5588 0.4356 0.4974 0.6431 0.5043 0.6056

Q2 0.5661 0.4953 0.4810 0.6515 0.6057 0.5750

Q1 0.5423 0.4895 0.5103 0.7010 0.6452 0.6686

P3 0.5664 0.5226 0.5659 0.6700 0.6354 0.6647

P2 0.5666 0.5650 0.5233 0.6716 0.6596 0.6309

P1 0.6395 0.5065 0.5171 0.7332 0.6143 0.6035

Q3, Q2 0.5622 0.4891 0.5144 0.6909 0.6326 0.6654

Q3, Q1 0.5626 0.4816 0.5266 0.7323 0.6715 0.7166

Q3, P3 0.5654 0.5210 0.5631 0.6939 0.6519 0.6869

Q3, P2 0.5701 0.5759 0.5401 0.6941 0.7083 0.6894

Q3, P1 0.6391 0.5081 0.5283 0.7717 0.6444 0.6632

Q2, Q1 0.5629 0.5033 0.5168 0.7339 0.6878 0.6844

Q2, P3 0.5638 0.5273 0.5806 0.6981 0.6782 0.7108

Q2, P2 0.5622 0.5652 0.5205 0.6965 0.6850 0.6528

Q2, P1 0.6405 0.5208 0.5199 0.7733 0.6584 0.6534

Q1, P3 0.5832 0.5226 0.5834 0.7586 0.7118 0.7456

Q1, P2 0.5893 0.5865 0.5320 0.7590 0.7448 0.7098

Q1, P1 0.6843 0.5040 0.5125 0.8301 0.6996 0.7059

P3, P2 0.5658 0.7746 0.7800 0.6829 0.7478 0.7437

P3, P1 0.7233 0.5425 0.6456 0.7853 0.6477 0.7149

P2, P1 0.7235 0.6392 0.5303 0.7854 0.7156 0.6270

Q3, Q2, Q1 0.5628 0.5014 0.5374 0.7572 0.7192 0.7422

Q3, Q2, P3 0.5651 0.5369 0.5783 0.7221 0.7069 0.7328

Q3, Q2, P2 0.5675 0.5754 0.5498 0.7210 0.7355 0.7175

Q3, Q2, P1 0.6417 0.5144 0.5369 0.7935 0.6844 0.7020

Q3, Q1, P3 0.5806 0.5271 0.5794 0.7693 0.7267 0.7687

Q3, Q1, P2 0.5949 0.6066 0.5367 0.7739 0.7763 0.7475

Q3, Q1, P1 0.6844 0.5028 0.5327 0.8346 0.7149 0.7409

Q3, P3, P2 0.5745 0.7821 0.7680 0.7024 0.7825 0.7728

Q3, P3, P1 0.7300 0.5465 0.6477 0.7980 0.6670 0.7329

Q3, P2, P1 0.7201 0.6455 0.5400 0.7940 0.7368 0.6892

Q2, Q1, P3 0.5881 0.5240 0.6055 0.7745 0.7331 0.7824

Q2, Q1, P2 0.5864 0.5815 0.5354 0.7701 0.7546 0.7239

Q2, Q1, P1 0.6901 0.5169 0.5151 0.8329 0.7246 0.7182

Q2, P3, P2 0.5620 0.7650 0.7857 0.7076 0.7680 0.7721

Q2, P3, P1 0.7220 0.5492 0.6507 0.7953 0.6869 0.7366

Q2, P2, P1 0.7373 0.6330 0.5290 0.7960 0.7272 0.6632

Q1, P3, P2 0.5926 0.7646 0.7647 0.7631 0.7775 0.7717
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Table 10 (continued)

LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q1, P3, P1 0.7291 0.5439 0.6408 0.8259 0.7084 0.7606

Q1, P2, P1 0.7329 0.6481 0.5392 0.8249 0.7614 0.7052

P3, P2, P1 0.7265 0.7698 0.7728 0.7869 0.7499 0.7414

Q3, Q2, Q1, P3 0.5866 0.5330 0.6016 0.7857 0.7489 0.8039

Q3, Q2, Q1, P2 0.5947 0.6009 0.5501 0.7858 0.7918 0.7641

Q3, Q2, Q1, P1 0.6898 0.5156 0.5412 0.8437 0.7388 0.7538

Q3, Q2, P3, P2 0.5693 0.8255 0.8167 0.7259 0.8256 0.8163

Q3, Q2, P3, P1 0.7288 0.5538 0.6481 0.8053 0.7107 0.7550

Q3, Q2, P2, P1 0.7358 0.6402 0.5517 0.8049 0.7557 0.7175

Q3, Q1, P3, P2 0.5975 0.7783 0.7686 0.7769 0.8188 0.8115

Q3, Q1, P3, P1 0.7358 0.5490 0.6459 0.8322 0.7266 0.7857

Q3, Q1, P2, P1 0.7352 0.6461 0.5562 0.8309 0.7851 0.7465

Q3, P3, P2, P1 0.7309 0.7762 0.7693 0.7967 0.7880 0.7910

Q2, Q1, P3, P2 0.5932 0.7752 0.7818 0.7789 0.8033 0.8144

Q2, Q1, P3, P1 0.7325 0.5551 0.6498 0.8310 0.7359 0.7857

Q2, Q1, P2, P1 0.7438 0.6422 0.5397 0.8322 0.7717 0.7197

Q2, P3, P2, P1 0.7353 0.7655 0.7771 0.7968 0.7898 0.7784

Q1, P3, P2, P1 0.7358 0.7606 0.7583 0.8213 0.7759 0.7707

Q3, Q2, Q1, P3, P2 0.5932 0.8147 0.8069 0.7875 0.8387 0.8407

Q3, Q2, Q1, P3, P1 0.7412 0.5568 0.6498 0.8387 0.7550 0.8028

Q3, Q2, Q1, P2, P1 0.7466 0.6401 0.5616 0.8391 0.7961 0.7622

Q3, Q2, P3, P2, P1 0.7352 0.8241 0.8139 0.8051 0.8219 0.8180

Q3, Q1, P3, P2, P1 0.7391 0.7764 0.7728 0.8283 0.8208 0.8190

Q2, Q1, P3, P2, P1 0.7440 0.7738 0.7733 0.8269 0.8096 0.8125

Q3, Q2, Q1, P3, P2, P1 0.7461 0.8208 0.8086 0.8363 0.8348 0.8364

Table 11 The sensitivities achieved across the IVBC combination searches by the LR and SVM classification methods

LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q3 0.5937 0.3853 0.4850 0.6992 0.4245 0.5942

Q2 0.6166 0.4791 0.4844 0.7289 0.6135 0.5500

Q1 0.5691 0.4990 0.5216 0.7338 0.5971 0.6517

P3 0.6065 0.5310 0.5868 0.7239 0.6156 0.6873

P2 0.6096 0.5847 0.5390 0.7212 0.6410 0.6332

P1 0.6932 0.5064 0.5276 0.7930 0.5808 0.5705

Q3, Q2 0.6020 0.4694 0.5210 0.7591 0.5777 0.6411

Q3, Q1 0.5861 0.4751 0.5303 0.7549 0.6045 0.7036

Q3, P3 0.6055 0.5236 0.5784 0.7258 0.6110 0.6891

Q3, P2 0.6117 0.6006 0.5435 0.7248 0.7045 0.6733

Q3, P1 0.6958 0.5048 0.5442 0.8258 0.5967 0.6457

Q2, Q1 0.5957 0.4969 0.5320 0.7694 0.6324 0.6541

Q2, P3 0.6086 0.5149 0.6119 0.7536 0.6376 0.7327

Q2, P2 0.6030 0.5772 0.5377 0.7538 0.6744 0.6407

Q2, P1 0.6978 0.5183 0.5374 0.8416 0.6327 0.6285

Q1, P3 0.6262 0.5325 0.6023 0.7755 0.6488 0.7341
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Table 11 (continued)

LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q1, P2 0.6302 0.5988 0.5343 0.7764 0.7207 0.6854

Q1, P1 0.7549 0.4968 0.5078 0.8779 0.6385 0.6629

P3, P2 0.6108 0.8456 0.8583 0.7330 0.7637 0.7817

P3, P1 0.8102 0.4944 0.7059 0.8471 0.6036 0.7590

P2, P1 0.8065 0.6963 0.4919 0.8454 0.7481 0.5741

Q3, Q2, Q1 0.5902 0.4941 0.5501 0.7899 0.6566 0.7202

Q3, Q2, P3 0.6072 0.5351 0.6046 0.7635 0.6667 0.7376

Q3, Q2, P2 0.6101 0.5912 0.5629 0.7614 0.7339 0.6940

Q3, Q2, P1 0.6986 0.5144 0.5577 0.8508 0.6394 0.6857

Q3, Q1, P3 0.6177 0.5405 0.5851 0.7826 0.6695 0.7583

Q3, Q1, P2 0.6400 0.6358 0.5318 0.7919 0.7631 0.7136

Q3, Q1, P1 0.7532 0.4911 0.5272 0.8790 0.6522 0.7067

Q3, P3, P2 0.6239 0.8500 0.7952 0.7356 0.8219 0.7660

Q3, P3, P1 0.8069 0.4988 0.6968 0.8548 0.6122 0.7529

Q3, P2, P1 0.8023 0.6937 0.5076 0.8503 0.7523 0.6437

Q2, Q1, P3 0.6329 0.5124 0.6436 0.8043 0.6743 0.7861

Q2, Q1, P2 0.6292 0.5812 0.5465 0.7978 0.7328 0.6938

Q2, Q1, P1 0.7612 0.5049 0.5232 0.8811 0.6683 0.6797

Q2, P3, P2 0.6059 0.7882 0.8550 0.7607 0.7520 0.8307

Q2, P3, P1 0.8055 0.5029 0.7119 0.8524 0.6340 0.7709

Q2, P2, P1 0.8169 0.6692 0.5051 0.8576 0.7400 0.6165

Q1, P3, P2 0.6354 0.8278 0.8265 0.7876 0.7660 0.7731

Q1, P3, P1 0.8070 0.5115 0.6879 0.8700 0.6476 0.7670

Q1, P2, P1 0.8049 0.6871 0.5168 0.8662 0.7595 0.6538

P3, P2, P1 0.8067 0.8150 0.8229 0.8487 0.7658 0.7633

Q3, Q2, Q1, P3 0.6289 0.5288 0.6266 0.8076 0.6904 0.8054

Q3, Q2, Q1, P2 0.6365 0.6110 0.5596 0.8077 0.7937 0.7322

Q3, Q2, Q1, P1 0.7537 0.5016 0.5509 0.8893 0.6819 0.7169

Q3, Q2, P3, P2 0.6162 0.8627 0.8549 0.7631 0.8439 0.8303

Q3, Q2, P3, P1 0.8086 0.5132 0.6983 0.8581 0.6552 0.7652

Q3, Q2, P2, P1 0.8138 0.6736 0.5337 0.8574 0.7631 0.6761

Q3, Q1, P3, P2 0.6424 0.8407 0.7974 0.7949 0.8245 0.8028

Q3, Q1, P3, P1 0.8091 0.5181 0.6845 0.8729 0.6630 0.7847

Q3, Q1, P2, P1 0.8083 0.6830 0.5379 0.8686 0.7800 0.7047

Q3, P3, P2, P1 0.8054 0.8194 0.7916 0.8514 0.8050 0.7969

Q2, Q1, P3, P2 0.6359 0.8010 0.8413 0.8105 0.7784 0.8351

Q2, Q1, P3, P1 0.8104 0.5246 0.7019 0.8735 0.6765 0.7940

Q2, Q1, P2, P1 0.8219 0.6682 0.5249 0.8762 0.7607 0.6734

Q2, P3, P2, P1 0.8133 0.7799 0.8236 0.8561 0.7863 0.8126

Q1, P3, P2, P1 0.8093 0.8070 0.8024 0.8633 0.7673 0.7711

Q3, Q2, Q1, P3, P2 0.6387 0.8516 0.8452 0.8109 0.8333 0.8406

Q3, Q2, Q1, P3, P1 0.8164 0.5283 0.6906 0.8796 0.6936 0.7987

Q3, Q2, Q1, P2, P1 0.8213 0.6673 0.5517 0.8775 0.7907 0.7172

Q3, Q2, P3, P2, P1 0.8133 0.8496 0.8457 0.8571 0.8300 0.8187

Q3, Q1, P3, P2, P1 0.8103 0.8190 0.7974 0.8658 0.8197 0.8138

Q2, Q1, P3, P2, P1 0.8218 0.7905 0.8176 0.8696 0.7923 0.8236

Q3, Q2, Q1, P3, P2, P1 0.8197 0.8451 0.8408 0.8734 0.8255 0.8276
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Table 12 The specificities achieved across the IVBC combination searches by the LR and SVM classification methods

LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q3 0.4688 0.6165 0.5352 0.5250 0.7410 0.6320

Q2 0.4382 0.5448 0.4703 0.4915 0.5879 0.6371

Q1 0.4703 0.4602 0.4777 0.6405 0.7463 0.7023

P3 0.4652 0.4989 0.5133 0.5633 0.6781 0.6195

P2 0.4580 0.5150 0.4793 0.5735 0.6976 0.6260

P1 0.5255 0.5070 0.4871 0.6300 0.6899 0.6799

Q3, Q2 0.4605 0.5502 0.4956 0.5619 0.7514 0.7144

Q3, Q1 0.5026 0.5023 0.5166 0.6934 0.8042 0.7401

Q3, P3 0.4638 0.5139 0.5242 0.6341 0.7365 0.6828

Q3, P2 0.4658 0.5150 0.5312 0.6366 0.7153 0.7202

Q3, P1 0.5184 0.5181 0.4842 0.6857 0.7448 0.6985

Q2, Q1 0.4793 0.5225 0.4734 0.6729 0.7937 0.7428

Q2, P3 0.4500 0.5623 0.5041 0.5949 0.7574 0.6711

Q2, P2 0.4581 0.5348 0.4718 0.5893 0.7056 0.6780

Q2, P1 0.5189 0.5281 0.4703 0.6652 0.7109 0.7049

Q1, P3 0.4791 0.4947 0.5377 0.7312 0.8260 0.7651

Q1, P2 0.4917 0.5571 0.5258 0.7307 0.7856 0.7544

Q1, P1 0.5487 0.5256 0.5265 0.7628 0.8132 0.7849

P3, P2 0.4521 0.6623 0.6576 0.5865 0.7214 0.6797

P3, P1 0.5700 0.6718 0.5194 0.6899 0.7400 0.6358

P2, P1 0.5771 0.5179 0.6370 0.6927 0.6573 0.7430

Q3, Q2, Q1 0.4931 0.5235 0.5032 0.7038 0.8308 0.7795

Q3, Q2, P3 0.4582 0.5420 0.5137 0.6489 0.7805 0.7247

Q3, Q2, P2 0.4601 0.5363 0.5153 0.6496 0.7383 0.7596

Q3, Q2, P1 0.5214 0.5146 0.4805 0.7065 0.7711 0.7323

Q3, Q1, P3 0.4902 0.4900 0.5656 0.7481 0.8271 0.7855

Q3, Q1, P2 0.4885 0.5397 0.5501 0.7456 0.7972 0.8045

Q3, Q1, P1 0.5524 0.5380 0.5481 0.7727 0.8278 0.7991

Q3, P3, P2 0.4522 0.6766 0.7246 0.6412 0.7213 0.7837

Q3, P3, P1 0.5963 0.6736 0.5452 0.7127 0.7767 0.6986

Q3, P2, P1 0.5742 0.5445 0.6277 0.7087 0.7104 0.7759

Q2, Q1, P3 0.4807 0.5569 0.5180 0.7275 0.8349 0.7768

Q2, Q1, P2 0.4833 0.5823 0.5051 0.7259 0.7907 0.7772

Q2, Q1, P1 0.5553 0.5517 0.4920 0.7654 0.8239 0.7870

Q2, P3, P2 0.4499 0.7278 0.6786 0.6109 0.7937 0.6791

Q2, P3, P1 0.5744 0.6717 0.5240 0.7090 0.7882 0.6779

Q2, P2, P1 0.6012 0.5550 0.5956 0.7030 0.7050 0.7576

Q1, P3, P2 0.4910 0.6625 0.6649 0.7236 0.7956 0.7697

Q1, P3, P1 0.5935 0.6307 0.5409 0.7633 0.8193 0.7503

Q1, P2, P1 0.6086 0.5670 0.6002 0.7662 0.7647 0.7998

P3, P2, P1 0.5862 0.6977 0.6933 0.6918 0.7235 0.7045

Q3, Q2, Q1, P3 0.4847 0.5449 0.5435 0.7519 0.8467 0.8018

Q3, Q2, Q1, P2 0.4962 0.5774 0.5252 0.7521 0.7891 0.8157

Q3, Q2, Q1, P1 0.5685 0.5562 0.5154 0.7814 0.8360 0.8150

Q3, Q2, P3, P2 0.4518 0.7727 0.7614 0.6608 0.7996 0.7961

Q3, Q2, P3, P1 0.5898 0.6600 0.5434 0.7270 0.8114 0.7383

Q3, Q2, P2, P1 0.6020 0.5693 0.5993 0.7271 0.7436 0.7916

2111Med Biol Eng Comput (2021) 59:2085–2114



Table 12 (continued)

LR SVM

Input combination Aortic Iliac 1 Iliac 2 Aortic Iliac 1 Iliac 2

Q3, Q1, P3, P2 0.4922 0.6805 0.7225 0.7488 0.8107 0.8244

Q3, Q1, P3, P1 0.6100 0.6309 0.5653 0.7752 0.8381 0.7874

Q3, Q1, P2, P1 0.6096 0.5688 0.6038 0.7780 0.7930 0.8169

Q3, P3, P2, P1 0.6017 0.7082 0.7338 0.7141 0.7619 0.7821

Q2, Q1, P3, P2 0.4921 0.7347 0.6891 0.7296 0.8405 0.7843

Q2, Q1, P3, P1 0.5978 0.6345 0.5418 0.7713 0.8381 0.7730

Q2, Q1, P2, P1 0.6119 0.5873 0.5798 0.7707 0.7893 0.8022

Q2, P3, P2, P1 0.6012 0.7425 0.7040 0.7074 0.7954 0.7248

Q1, P3, P2, P1 0.6096 0.6850 0.6861 0.7612 0.7895 0.7702

Q3, Q2, Q1, P3, P2 0.4856 0.7612 0.7505 0.7516 0.8464 0.8409

Q3, Q2, Q1, P3, P1 0.6137 0.6308 0.5653 0.7821 0.8563 0.8090

Q3, Q2, Q1, P2, P1 0.6212 0.5825 0.5870 0.7862 0.8045 0.8354

Q3, Q2, P3, P2, P1 0.6010 0.7878 0.7677 0.7281 0.8103 0.8172

Q3, Q1, P3, P2, P1 0.6177 0.7093 0.7338 0.7755 0.8226 0.8266

Q2, Q1, P3, P2, P1 0.6128 0.7475 0.7032 0.7665 0.8352 0.7964

Q3, Q2, Q1, P3, P2, P1 0.6225 0.7859 0.7614 0.7847 0.8479 0.8488
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