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GLYFE: Review and Benchmark of Personalized
Glucose Predictive Models in Type-1 Diabetes

Maxime De Bois, Mehdi Ammi, and Mounı̂m A. El Yacoubi

Abstract—Due to the sensitive nature of diabetes-related data,
preventing them from being shared between studies, progress in
the field of glucose prediction is hard to assess. To address this
issue, we present GLYFE (GLYcemia Forecasting Evaluation), a
benchmark of machine-learning-based glucose-predictive models.

To ensure the reproducibility of the results and the usability of
the benchmark in the future, we provide extensive details about
the data flow. Two datasets are used, the first comprising 10 in-
silico adults from the UVA/Padova Type 1 Diabetes Metabolic
Simulator (T1DMS) and the second being made of 6 real type-
1 diabetic patients coming from the OhioT1DM dataset. The
predictive models are personalized to the patient and evaluated
on 3 different prediction horizons (30, 60, and 120 minutes) with
metrics assessing their accuracy and clinical acceptability.

The results of nine different models coming from the glucose-
prediction literature are presented. First, they show that standard
autoregressive linear models are outclassed by kernel-based non-
linear ones and neural networks. In particular, the support
vector regression model stands out, being at the same time one
of the most accurate and clinically acceptable model. Finally,
the relative performances of the models are the same for both
datasets. This shows that, even though data simulated by T1DMS
are not fully representative of real-world data, they can be used
to assess the forecasting ability of the glucose-predictive models.

Those results serve as a basis of comparison for future
studies. In a field where data are hard to obtain, and where the
comparison of results from different studies is often irrelevant,
GLYFE gives the opportunity of gathering researchers around a
standardized common environment.

Index Terms—diabetes, glucose prediction, time-series forecast-
ing, machine learning, benchmark

I. INTRODUCTION

Diabetes Mellitus (DM) has become a paramount health
issue in the modern world. In 2014, 422 million adults around
the world have been estimated to be diabetic and diabetes itself
was directly imputed 1.5 million deaths in 2012 [1].

Diabetes is a chronic disease that can be divided into three
main categories: type–1 diabetes mellitus (T1DM), type-2
diabetes mellitus (T2DM) and gestational diabetes. The main
problem of diabetic people is the regulation of their blood
glucose within acceptable ranges throughout days and nights
(homeostasis around 90 mg/dL). For a healthy person, it is
done automatically by the pancreas that releases insulin and
glucagon to counteract the rises and falls of blood glucose
level, respectively (see Figure 1). However, for diabetic people,
this negative feedback loop is broken. Whereas in T1DM,
the pancreas is unable to produce insulin, in T2DM, the
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body becomes increasingly resistant to its action (leading
eventually to the death of the pancreas’ cells responsible for
the production of insulin). Consequently, with the help of
medication, diabetic people need to manually take care of
the regulation of their blood glucose. However, the task is
difficult and has severe consequences if not done correctly.
Indeed, if the glucose level falls too low (hypoglycemia, below
70 mg/dL), it can result in various short-term symptoms
including clumsiness, trouble talking, loss of consciousness
or even death depending on the severity of the hypoglycemia.
On the other hand, high blood glucose (hyperglycemia, above
180 mg/dL) can lead to more long-term complications such
as poor blood flow, cardiovascular diseases or blindness.

To help diabetic people cope with their disease, a lot of
technical solutions have been engineered. One of the most
notable and recent progress in the Internet of Things area
is the introduction of continuous glucose monitoring (CGM)
devices (e.g., FreeStyle Libre [2]). By using CGM devices,
diabetic people do not need to prick their skin with lancets
to obtain their current blood glucose level anymore. Besides,
we are currently witnessing the rise of smart-phone coaching
applications featuring diabetes such as the application mySugr,
that has been approved by the Food and Drug Administration
(FDA) in the United States [3].

From a research perspective, the question of predicting
future glucose values is of uttermost importance. Making
diabetic people know in advance their future glucose levels
would help them to anticipate hypo-/hyperglycemia events and
thus enable them to take the appropriate action (e.g., eating
sugar or taking insulin). Besides, such knowledge could be
included into closed-loop systems such as insulin pumps or
artificial pancreas to make the insulin delivery more adequate
[4].

However, to this day, the question of forecasting glucose
levels remains open. The advances in the field are hindered by
several factors, one of them being the availability of the data
used to train and test the models. First, collecting diabetes-
related data, such as the real-time blood glucose level or the
insulin boluses taken by the patients, is very time consuming.
Second, those data cannot easily be easily shared among
researchers because of their sensitive nature. This leads to the
use of datasets that are small and different in studies from one
research group to another, making comparisons between them
not relevant. Nonetheless, the situation has changed since the
development of the UVA/Padova Type 1 Diabetes Metabolic
Simulator (T1DMS). Approved by the FDA in the United
States as a substitute to pre-clinical animal testing, it simulates
the data (glucose levels, insulin boluses, carbohydrate intakes)
coming from several in-silico patients [5]. Following its in-



2

Blood glucose
level rises

Stimuli

Homeostasis
(90 mg/dL)

Blood glucose
level falls

Pancreas
secretes insulin

Pancreas se-
cretes glucagon

Blood glucose
level falls

Blood glucose
level rises

food intakes
exercise, insulin

infusions

issue in
type-1 and
late type-2
diabetes

issue in type-
2 diabetes

E

E

Fig. 1: Blood glucose level negative feedback loop.

creasing use in glucose prediction research, T1DMS alleviates
the burden of data collection. Besides, Marling et al. recently
released the OhioT1DM dataset made of diverse data such
as glucose, insulin and CHO data, but also physical activity,
events, and more [6]. Overall, the glucose prediction research
community is presented with a unique oopportunity of building
glucose predictive models around the same data. The results of
the models can be fully comparable, stimulating the research
in the field.

How do state-of-the-art glucose predictive models compare
with each other in terms of accuracy and clinical acceptability?
The goal of this paper is to lay the first stone of results com-
parison between studies by presenting the benchmark GLYFE
(GLYcemia Forecasting Evaluation). Our contributions are:

1) To initiate the benchmarking process, we implemented
nine state-of-the-art glucose predictive models and eval-
uated them on three different prediction horizons (30,
60, and 120 minutes) and on two different datasets.
Results are reported with the Root-Mean-Squared Error
(RMSE), that assesses the accuracy of the prediction, the
Time-Gain (TG) that estimates the anticipated amount of
time gained by forecasting, and the Continuous Glucose-
Error Grid Analysis (CG-EGA), that measures the clin-
ical acceptability of the predictions.

2) To make the results reproducible and to ensure the
relevancy of the use of the benchmark in the future,
we provide the reader with exhaustive details about
the machine-learning pipeline, from the acquisition and
preprocessing of the data, to the building of the models
and their evaluation.

3) Compared to former exhaustive reviews that have been
done in the field of glucose prediction [7]–[9], we pro-
vide an analysis of the performances of the models. This
is made possible by testing the models on a standardized
methodology.

4) The source code of the entire data flow written in
Python is provided alongside with detailed benchmark

user guidelines through a GitHub repository. It is made
flexible so that new models, evaluation metrics, and
datasets can easily be added in the future.

5) Various alternative ways to obtain diabetes-related data
exist (such as public datasets or other simulators). We
review most of them by showing their strengths and
weaknesses.

The rest of the paper is structured as follows. First, we
review the diabetes public datasets and simulators and glucose
predictive models in the literature. Second, we present the
whole benchmarking methodology, from the acquisition of
the data, to the training, optimization and evaluation of the
machine-learning models. Finally, we analyze the benchmark
results and conclude.

II. STATE OF THE ART

This section reviews the existing public datasets and simu-
lators that can be used in glucose prediction, and covers the
state of the art of glucose predictive models.

A. Public Datasets and Simulators

The most common way of getting data without having to
conduct the experiments or data collection is to use public
datasets. Besides, recent advances in diabetes metabolic sim-
ulation made the emergence of simulators possible [10]. This
subsection goes through the most popular public datasets and
simulators in the field of glucose prediction.

1) Diabetes Research in Children Network (DirectNet):
Since its creation in 2007, DirectNet has been a network whose
goal is to investigate the potential use of CGM devices to
improve the management of type 1 diabetes in children [11].
To this day, they have conducted multiple studies involving
several dozens of subjects (children and adolescents) under
various protocols that may include food intake or physical
activity. Their work has led to the publication of datasets [12]
which have been used in the glucose prediction research field
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Fig. 2: Standard one-layer feedforward neural network (left) and recurrent neural network (right).

[13]–[16]. The main downside of these datasets is that they
are not representative of the whole type 1 diabetic population
because of the instability of glycemic control in diabetic
children [17].

2) Diabetes UCI Machine Learning Repository: The Dia-
betes Data Set from the UCI Machine Learning Repository
[18] has been first introduced for the 1994 AI in Medicine
Symposium (AIM-94). It is made of weeks to months of data
on 70 diabetic patients. Because of its availability, the dataset
has been used outside AIM-94 [19]–[21]. The reason why
it has not been used more extensively is because the data
are very scarce making the predictions very hard to make.
Moreover, the low sampling frequency of glucose data makes
the dataset less relevant nowadays. Indeed, through the use of
CGM devices, glucose readings can easily be obtained every
5 to 15 minutes, which is not practical through the traditional
use of lancets.

3) AIDA: AIDA is a software that simulates the effects of
insulin and diet changes on blood glucose for T1DM patients
[22]. Started in the early nineties [23], the program has been
updated throughout the years with its last version published
in 2011 (v4.3b). Even though it has been used a few times
in the glucose prediction research field [24]–[28], the authors
of the simulator claim that, because of the high complexity of
the human glucoregulatory system, it is made for educational
use only [22].

4) Hovorka Simulation Environment: Wilinska et al. have
presented a simulation environment [29] based on Hovorka’s
mathematical model [30]. By simulating 18 synthetic subjects,
the simulator aims at supporting the testing of closed-loop
insulin delivery systems. The simulator is mainly used in
closed-loop environment to build model predictive controllers
[31]–[33]. However, to this day, the simulator is still under
clinical trials and has not been fully validated yet.

5) UVA/Padova T1DMS: T1DMS, also known as the
UVA/Padova Type 1 Diabetes Metabolic Simulator, is a
MATLAB-based environment for in-silico diabetes modeling.
First announced in 2009 [10], it has been updated in 2014 [5]
and is currently undergoing another upgrade [34]. In 2018, it

has been accepted by the FDA, in the context of developing
new treatments strategies for type-1 diabetes, as a substitute for
pre-clinical animal testing. In its public version, T1DMS pro-
vides a population of 30 virtual T1DM patients (10 children,
10 adolescents, and 10 adults). During the simulation, every
virtual patient is subject to a daily scenario, over which the
user has a total control. A scenario can be either open-loop or
closed-loop and is defined by meals (timings and quantities),
insulin boluses (timings and quantities). In a research field
where real-life data are hard to obtain, the simulator has
seen a growing use in the recent years [28], [35]–[47]. The
main downside of using this simulator is that a license must
be purchased. Also, there exists an extended version of the
simulator with 300 patients which is, to this day, unfortunately
not publicly available.

6) OhioT1DM Dataset: In 2018, Marling and Bunescu
released a dataset named OhioT1DM for the Blood Glucose
Level Prediction (BGLP) Challenge [6]. The dataset comprises
6 type-1 diabetic patients (identified by theirs IDs: 559,
563, 570, 575, 588, and 591) who have been monitored
for 8 weeks in free-living conditions. They wore Medtronic
530G insulin pumps, Medtronic Enlite CGM devices, Basis
Peak fitness bands and used a smartphone app to record life
events. The following data have been collected: glucose level
every 5 minutes from CGM, glucose level from finger sticks,
insulin infusions (bolus and basal), meals (times and CHO
quantities), exercise, sleep, work, stress, illness, heart rate
(every 5 minutes), galvanic skin response, skin temperature,
air temperature, and step count. Being the first public dataset
to have this variety and per-patient quantity of data, it is seeing
a growing interest by the research community [28], [46]–[56]

B. Glucose Predictive Models

Extensive reviews of glucose prediction techniques have
been done in the past few years [7]–[9]. They showed that we
can classify predictive models into three different categories:
the physiological models, the data-driven models and the
hybrid models.
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1) Physiological Models: Physiological models such as
the Hovorka model [30], the Dalla Man model [57] or the
Bergsman minimal model [58], use mathematical equations
to describe the human metabolism (food intake, insulin and
glucose kinetics).

To forecast the glucose time-series, the Hovorka model
is the most used one [31], [59], followed by the Bergman
minimal model [15], [60]. It should be noted that, to simulate
in-silico diabetic patients, the Dalla Man model is used in
T1DMS and the Hovorka model is used in the Hovorka
Simulation Environment.

2) Data-driven Models: However, nowadays, researchers
have moved away from pure physiological models to time-
series analysis and machine learning techniques that show
better performances in predicting future glucose values. Vari-
ous data such as the past glucose values, carbohydrate (CHO)
intakes, insulin boluses or measures of physical activity are
used to forecast future glucose values. Different prediction
horizons (PH) are investigated, with the main ones being 30
(short-term), 60 (mid-term), and 120 minutes (long-term) [7].
Predicting at higher PH is of no value for the patient as the
predictions will often be wrong, due to the high number of
life events that may occur between the time the prediction is
made and the time for which the glucose value is forecast.

Using only the past glucose values, we can predict future
ones using an auto-regressive (AR) model [61], which is the
most traditionally used glucose predictive model. Equation 1
describes the 1-step ahead forecast process using an AR model
(gi and ĝi are respectively the true and predicted glucose
values at time i, p is the autoregressive order, and α and β
the weights of the model). The prediction at a given horizon
PH is achieved by predicting one step after another, using
the previous prediction as the input to the model. To this
model, we can include a moving-average (MA) component to
build what we call an ARMA [62], or ARIMA [63] process.
We can incorporate past CHO intakes and insulin boluses
into an AR model as exogenous inputs (ARX model) [47],
[64]–[67]. The MA and exogenous components can both be
integrated together into an ARMAX process [62], [67] or
ARIMAX process [68]. The ARIMAX includes an Integration
(or derivative) component which may be needed when the
time-series that is being predicted is non-stationary.

ĝt+1 =

p−1∑
i=0

αi · gt−i + βt+1 (1)

After AR models, Artificial Neural Networks (ANN) are
the most used models to predict future glucose values. The
most common ANN is the Feed-forward Neural Network
(FFNN) and has thus been used numerous times to predict
future glucose values in diabetes [43], [46], [53], [69]–[71].
Recurrent Neural Networks (RNN) are special ANN that are
made for time-series forecasting. In RNN, the output (the
prediction) of the network at a given time is fed into the inputs
of the next prediction, which gives the network a memory of
past predictions and therefore, events (see Figure 2). RNN in
its basic form have been widely used in glucose prediction
[64], [65], [72]. Besides, some more complex forms of RNN

such as RNN with Long Short-Term Memory units (LSTM),
extensively used in the machine-learning community, have
seen an increased use in recent years [28], [45], [51], [54],
[55], [73], [74]. The idea behind using LSTM units is to
cope with the vanishing gradient problem that occurs while
training classic RNN [75]. Another type of ANN that is quite
popular nowadays is the Extreme Learning Machine network
(ELM), derived from random vector functional link networks
[76], [77]. With its single hidden layer made of fixed and
randomized weighted neurons, it is extremely easy and fast
to train. As other ANN, it can be used to build a glucose
predictive model [26], [65], [78], [79]. Other types of ANN
have been tried out throughout the years such as neuro-fuzzy
neural networks [69], self-organizing map [69], jump neural
networks [80], convolutional neural networks [47], [48], [81]
or echo state networks [82].

Another popular approach revolves around the use of ker-
nels to transform the original input space into a higher-
dimension space. Known as the kernel trick, it enables the
learning of non-linear decision boundaries [83]. Equation 2
describes the Gaussian kernel (also known as the radial basis
function, RBF, kernel), which is one of the most widely used
kernel (x and x′ being two feature vectors in the original input
space, and γ a scaling coefficient). In glucose forecasting,
this method is used with Gaussian Processes (GP) [21], [84],
Support Vector Regression (SVR) [19], [25], [70], [85]–[87],
and kernel adaptive filters [88]–[92].

K(x, x′) = exp(−γ ||x− x′||2) (2)

Finally, because of the interpretability of their predictions
(which is highly valuable in healthcare), various kinds of
decision trees are used (classic, random forests, gradient
boosting trees) [51]–[53].

3) Hybrid Models: Hybrid models are models that use
compartmental models (taken from physiological models such
as Bergman’s or Dalla Man’s) as input to data-driven mod-
els. For instance, Zecchin et al. incorporated Dalla Man’s
compartmental models into an ANN [93]. The combination
of ANN and compartmental models has also been explored
by Bertachi et al. [49]. In their work, Mougiakakou et al.
presented a hybrid model based on a RNN and Lehmann’s
equations that describe the insulin and CHO intake kinetics
[94]. Finally, Contreras et al. developed an approach using
grammatical evolution alongside with compartmental models
to forecast mid-term future glucose values [39], [50].

III. GLYFE
This section aims at presenting the whole benchmark

methodology. In particular, we go through the data acquisition
and preprocessing, the training and tuning of the benchmarked
models, and their evaluation. Figure 3 provides a graphical
representation of the benchmarking process.

A. Preprocessing

This section describes the preprocessing and acquisition
of the data. The steps are described by the red block 1.
Preprocessing in Figure 3.
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1) Loading Data: Because of their wide research accep-
tance, the two datasets used in this study come from the
T1DMS software and the OhioT1DM dataset. We provide here
details on how to obtain them.

The T1DMS data being the property of The Epsilon Group,
we must proceed to its whole simulation. It is done on the 10-
adult type-1 diabetic population of the software. Every patient,
while using generic insulin pumps and CGM sensors, were
subject to the following daily scenario [43], [95], [96]:
• For every day of the simulation, a patient takes 3 meals

whose CHO quantities and timings are randomized. In
particular, the timings have been sampled on Gaussian
distributions with a variance of 0.5 and means of 7h, 13h
and 20h respectively. As for the quantities, they have
also been sampled from normal distributions with mean
of 40g, 85g and 60g respectively, and variance of 0.5
times the mean CHO quantity of the given meal. Every
meal lasts 15 minutes.

• At the start of every meal, an insulin bolus is taken.
The bolus value is taken uniformly between 0.7 and 1.3
times the optimal personalized bolus (computed from
the patient’s personal carbohydrate-to-insulin ratio).

• Every patient is subject to a constant basal insulin
injection, which is optimized by the simulator.

The simulation lasts 8 weeks for the sake of uniformity with
the OhioT1DM dataset. The randomization of meals timings,
CHO quantities and insulin bolus values accounts for the
variability of real-life situations (uncontrolled environment).
In the end, for every patient, the simulation outputs three
different time-series with a sample every minute: glucose

readings (mg/dL), CHO intakes (g/min) and insulin boluses
(pmol/min).

To obtain the OhioT1DM dataset, one should refer to the
instructions in [6]. For the sake of uniformity with the T1DMS
dataset, we restrict ourselves to glucose readings (mg/dL),
CHO intakes (g/min), and insulin infusions (in units).

2) Data Cleaning: Depending on the dataset, data might
possess erroneous sensor readings, wrongly reported informa-
tion by the patients, or formatting errors. For instance, in our
previous research, working with another dataset that required
the removal of sensor errors, we proposed a methdology to
automatically them [54]. This step is optionnal and should
be done with caution as modifying the data can introduce
biases that will eventually negate the evalution. In this study,
as we aim to produce baseline results following a standard
methodology, we did not use any data cleaning steps.

3) Data Samples Creation: The original sampling fre-
quency of the T1DMS dataset, one sample every minute, is
much higher than actual CGM devices. To make the T1DMS
dataset more representative of real data, we resample it to one
sample every 5 minutes, which is the sampling frequency of
the OhioT1DM dataset. During the resampling, we took the
mean of glucose values, and the sum of CHO intakes and
insulin infusions.

The data samples that are given to the models for their
training and evaluation are made of the 3-hour history of
glucose values, CHO intakes, and insulin infusions (input)
and the glucose reading at the prediction horizon (output). In
this study, three prediction horizons are explored: 30 minutes
(short-term), 60 minutes (mid-term), and 120 minutes (long-
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term).
4) Training, Validation, and Testing Sets Splitting: As it is

done traditionally in machine learning, both datasets are split
into training, validation, and testing sets, each of them having a
different purpose. The training set is used to train the models.
The validation set is used to evaluate the model during the
optimization of its hyperparameters, to ensure that the learnt
model and hyperparameters translate well onto unseen data.
The testing set is used for the final evaluation of the models.

In this study, the testing sets of both datasets are the last 10
days of data (traditional testing set of the OhioT1DM dataset
[6]). The remaining days are split into training and validation
sets following a 80%/20% distribution, according to a 5-fold
cross-validation evaluation.

5) Recovering Missing Data: Contrary to the T1DMS
dataset, the OhioT1DM dataset possesses a lot of missing
glucose readings. Some of those values can be recovered by
following this strategy applied to every sample:

1) linearly interpolate the glucose history when possible
(i.e., when the missing value is surrounded by two
known glucose readings);

2) linearly extrapolate the glucose history if the linear
interpolation is not possible (usually when the missing
glucose reading is the most recent one);

3) throw away samples when the ground truth is not known
to prevent from training on artificial ground truths.

This cleaning strategy ensures that data from the future are not
used (as they are not available in real-life situations) and that
the models are evaluated on real observations and not artificial
ones.

6) Feature Scaling: At the end of the preprocessing stage,
the data are standardized (zero mean and unit variance) w.r.t.
their training set. This ensures that the models are evaluated
on similar data distributions as they have been trained on.

B. Processing
The training and tuning of all the models are personalized to

the patient. We present here the models that have been bench-
marked, providing the hyperparameters and their optimization
methodology. In Figure 3, it corresponds to the blue block 2.
Processing.

1) Coarse-to-fine Tuning: Most of the models tested in this
study have been previously used in the context of glucose fore-
casting. Using the same model hyperparameters as in the state
of the art would not be fair to the model, as the experimental
settings (e.g., data, preprocessing steps) are different. Instead,
we need to optimize them individually. Because the models
are personalized to the patient, the hyperparameters of the
models need also to be personalized to the patient. Because
of the high number of models and patients in this study, it
is too costly to perform a uniform and detailed grid search
for every hyperparameter. Instead, we propose the following
coarse-to-fine tuning methodology for the optimization of the
hyperparameters:

1) Based on the state of the art, coarse boundaries for each
hyperparameter search space are identified. Hyperpa-
rameters, for which changes in value yield no change
in performance, have been frozen to a default value.

2) A shallow grid-search is performed on the identified
search space. The scale of the search can either be linear
or logarithmic, depending on the hyperparameter.

3) The best coarse value for each hyperparameter from the
previous step is refined by a local search.

2) Models: We present here the nine models that have been
implemented for this benchmark: the Base model that provides
a baseline comparison, three traditional regression models
(Poly, AR, ARX), two more complex non-linear regression
models (SVR, GP), and three neural-network-based models
(ELM, FFFN, LSTM).

The Base model predicts a glucose value equal to the value
at the time it makes the prediction. This model does not require
any training nor tuning. It serves as a baseline model for
comparison.

The Poly [97] model is a polynomial regression model using
only the time of the prediction as input to the model. It is not
expected to perform very well because of the day-to-day high
variability, especially concerning meal times. The order of the
model is optimized in the [100, 102] range.

The AR [61] and the ARX [64]–[67] models come both
from the family of ARIMAX models. ARIMAX models have
3 different hyperparameters: the endogenous order p, the
integration order d, the MA order q. For both AR and ARX
models, we have optimized p in the range [1, 12] since it
represents the glucose history available to the model, kept d
to 0, and fixed q to 0 since adding any MA component did
not seem to make the models any better. ARX models differ
from AR models by using additional exogenous inputs (CHO
intakes and insulin boluses). The amount of exogenous inputs
given to the ARX model matches its order p.

The SVR (Support Vector Machine) model has been im-
plemented using the Radial Basis Function (RBF) kernel to
transform the input space [25], [85], [86]. We have optimized
the coefficient of the kernel in the range [10−4, 10−2]. Whereas
the loss has been optimized within [100, 103], the wideness
of the no-penalty-tube has been optimized in the [10−3, 100]
range.

The GP (Gaussian Process) model uses a dot-product kernel
with an inhomogeneity coefficient of 1 [98]. Noise has been
added to the observations to help the fitting of the model. The
amount of noise has been optimized in the [10−3, 102] range.

The ELM (Extreme Learning Machines) [26], [78], [79]
model only has two hyperparameters: the number of neurons
(logistic activation function) in its single hidden layer, and
the L2 penalty applied to the weights, for regularization.
Whereas the number of neurons has been optimized in the
range [2000, 20000], the L2 penalty has been searched within
the [100, 103] range.

The FFNN (Feed-forward Neural Network) [43], [69]–[71]
model is made of 4 hidden layers of respectively 128, 64,
32, and 16 neurons. The activation function of the neurons
is the Scaled Exponential Linear Unit (SELU), which is the
ELU with an optimized value of α [99]. The model is then
fine-tuned by mini-batch (1500) using the Adam optimizer
[100] with the Mean-Squared Error (MSE) loss function and
a learning rate optimized within [10−4, 10−2]. To prevent the
model from overfitting the training set, we stopped the training
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of the model after 100 epochs of no improvement on the
validation set (early stopping).

The LSTM (Long Short-Term Memory RNN) [45], [73],
[74] is made of 2 hidden layers of 256 long short-term memory
units. The model is trained with the Adam optimizer and the
MSE loss function as well. Mini-batches of size 50, and a
learning rate automatically grid searched within [10−4, 10−3]
have been used. As for the amount of regularization that has
been used, we applied L2 penalties to the weights (10−4) and
early stopping (patience of 50 epochs).

The boundaries of the hyperparameters’ search spaces have
been identified based on the state of the art. Personalized to the
patient, the values used for the final evaluation on the testing
set are the values minimizing the MSE on the validation set.

C. Post-processing

The post-processing step is the final step of the benchmark-
ing process (see Figure 3, represented as the green block 3.
Post-processing). It aims at making the final evaluation of the
predictions made by the models.

1) Rescaling and Reshaping: During the preprocessing
stage, the glucose values have been scaled to have a zero mean
and unit variance. To properly evaluate the predictions, we first
need to scale them back to their original mean and variance.

Then, because some of our metrics evaluate consecutive pre-
dictions (CG-EGA and TG, see below), we need to reconstruct
the prediction timeline according to the sampling frequency
(one prediction every 5 minutes).

2) Evaluation Metrics: Every model is evaluated on the
testing set using a 5-fold cross-validation by permutating the
training and validation sets. The results are averaged on their
respective dataset population for three different prediction
horizons: 30 minutes (short-term), 60 minutes (mid-term),
and 120 minutes (long-term). Four complementary metrics
are used: the Root-Mean-Squared Error (RMSE), the Mean-
Absolute-Percentage Error (MAPE), the Time Gain (TG), and
the Continuous Glucose-Error Grid Analysis (CG-EGA).

Both the RMSE and the MAPE are standard metrics to
evaluate the accuracy of time-series forecasting models and
are, therefore, widely used in the glucose prediction field
[7]. Whereas the RMSE provides a real scale accuracy (see
Equation 3, g and ĝ representing respectively the ground truths
and the predictions, N the number of samples), the MAPE is
scale independent making the comparison between different
patients more relevant (see Equation 4).

RMSE(g, ĝ) =

√√√√ 1

N
·

N∑
n=1

(gn − ĝn)2 (3)

MAPE(g, ĝ) =
100

N
·

N∑
n=1

∣∣∣∣gn − ĝngn

∣∣∣∣ (4)

The TG metric measures the number of minutes gained by
the patient through the anticipation of future glucose varia-
tions. It is computed as the difference between the prediction
horizon and the time-shift (in minutes) that maximizes the

correlation between the true and the predicted glucose values
(see Equation 5) [101], [102].

TG(g, ĝ, PH) = PH−argmax
i∈[0,PH]

corr(g1...N−i, ĝ1+i...N ) (5)

Initially introduced to evaluate the clinical acceptability of
CGM devices [103], the CG-EGA has seen a lot of use in
the glucose prediction research community [7]. The CG-EGA
uses two grids evaluating the accuracy of the predictions (P-
EGA) and the accuracy of the predicted rates of change (R-
EGA). Each grid gives the prediction a rank from A (best) to E
(worst) estimating the danger, for the patient, of making such
a prediction. Then, depending on the true glycemia region
(hypoglycemia, euglycemia1, or hyperglycemia), both marks
are used to determine if the prediction is either an Accurate
Prediction (AP), a Benign Error (BE), or an Erroneous Pre-
diction (EP). Whereas AP are overall good predictions for the
patient, BE are harmless errors, and EP are life-threatening
errors. For a model to be clinically acceptable, it needs to
have a high AP rate as well as a low EP rate.

Figure 4 provides a graphical representation of the CG-
EGA.

We chose the CG-EGA over other similar metrics (e.g.,
Clarke Error Grid Analysis [104], Parkes Error Grid [105])
as it penalizes the lack of coherence between consecutive
predictions, potentially confusing and then dangerous to the
patient.

D. Open-Source Software

Aiming at making the results reproducible and at promoting
its use in the future, we have released the benchmark in a
GitHub repository [106].

To use the GLYFE source code, the user first needs to obtain
the data. Whereas the OhioT1DM dataset can be accessed
through [6], the T1DMS data needs to be simulated by the user
using the T1DMS software (v3.2.1) in MATLAB (R2018a). To
ensure the simulated data are identical to the data used in the
benchmark, we provide a step-by-step tutorial that includes:
the scenario file, the parameters of the simulator, the random
seed, and the SHA-256 checksum. In particular, the random
seed is set twice to 1: first, before launching the simulator
by running the rng(1,”twister”) command in the MATLAB
console, and then directly in the simulator interface before
running the simulation.

The benchmark has been written in Python 3.7 with the
help of standard machine-learning libraries such as Scikit-learn
(Poly, SVR, GP, and ELM models) [107], statsmodels (AR
and ARX models) [108], PyTorch (FFNN and LSTM models)
[109].

Following Figure 3, the source-code is made of three
main modules called preprocessing, processing, and post-
processing. The preprocessing module contains the general
preprocessing functions shown in the figure as well as the
dataset-specific functions (e.g., the function that handles the

1 Euglycemia is the glycemia region between hypoglycemia and hyper-
glycemia, or between 70 and 180 mg/dL.
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Fig. 4: CG-EGA of predictions of the SVR model (see III-B2) for patient 570 from the OhioT1DM dataset for a specific day and a prediction
horizon of 30 minutes.

missing data in the OhioT1DM dataset). The processing mod-
ule is made of the general cross-validation training and tuning
loop, as well as a folder containing the implementation of
the models, and another folder with their respective hyperpa-
rameters. Finally, the post-processing module contains all the
metrics’ implementations as well as convenient tools for the
visualization of the results.

Overall, the implementation of the whole pipeline described
by Figure 3 has been made flexible so that new models, new
metrics, new preprocessing steps or even new data can easily
be included while preserving, at the same time, the integrity
of the benchmark.

IV. RESULTS & DISCUSSION

Whereas Table I and Table II present the accuracy-related
performances (RMSE, MAPE, TG) of the models for the
T1DMS and OhioT1DM datasets respectively, Table III and
Table IV provide the detailed clinical acceptability of the
models (CG-EGA).

First, only the Poly model is performing worse than our
baseline (having a worse accuracy for both datasets and all
prediction horizons). While this shows that the day-to-day
variability is too important for a simple model based on
time to work, this also shows that the simulated data are
irregular enough, as a result of the randomization of the meal
and insulin quantities and timings. However, the Poly model
displays the best TG scores and the average dynamics are well
captured (CG-EGA in euglycemia and hyperglycemia) since
they are more or less the same day after day. Nonetheless,
the model is still not usable since it is unable to detect
hypoglycemia with over 99% of EP for every PH due to its
low accuracy. Besides, as for the TG scores, this shows that

we need to be careful when using the TG metric, as it cannot
be used on its own to assess the forecasting ability of a model
but should always be used in combination with other standard
accuracy metrics.

The results displayed by the AR and ARX models are
quite similar, with the ARX being slightly better (this shows
the interest of using additional information, such as past
insulin boluses or CHO intakes, to predict future glucose
values). However, both models are significantly outclassed by
the other remaining models. They are less accurate (higher
RMSE and MAPE), provide less anticipation (lower TG),
and are overall less safe (CG-EGA). This is due to their
inherent simplicity (linear regression) hindering the modeling
of glucose variations.

When it comes to the SVR and GP models, we can witness
a lot of improvement when compared to the linear regression
models (Poly, AR, ARX) for every PH and for every metric.
The clinical acceptability of the GP model deteriorates more
rapidly than the SVR model, making the use of the SVR model
more interesting as it has overall very good performances. This
shows the usefulness of the non-linear transformation of the
input space through the use of kernels, transformation the SVR
model seems to take advantage of really well.

As for the neural-network-based models, apart from the
ELM whose results are poor overall, their results fall between
these of the autoregressive the kernel-based models. The
FFNN and the LSTM models both shine in different and
complementary areas. While the LSTM is good at making
short-term predictions and predictions in hyperglycemia, the
FFNN performs best at longer PH and in hypoglycemia. This
difference in performance could be explained by their inherent
nature. While the LSTM model makes predictions which
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TABLE I: Mean accuracy (with standard deviation) of glucose
prediction models over the T1DMS population grouped by
prediction horizon (30, 60, and 120 minutes).

Models RMSE MAPE TG

Prediction Horizon = 30 minutes

Ref 22.31 (3.39) 12.01 (1.67) 0.00 (0.00)

Poly 42.94 (15.40) 25.63 (10.55) 24.10 (2.70)
AR 13.08 (1.13) 7.77 (0.83) 13.30 (2.15)
ARX 11.78 (0.87) 7.21 (0.78) 16.90 (3.73)

SVR 9.05 (0.51) 5.90 (0.60) 22.70 (2.37)
GP 9.00 (0.54) 5.88 (0.56) 22.50 (2.50)

ELM 13.39 (2.53) 7.33 (0.84) 24.50 (1.20)
FFNN 10.37 (0.73) 6.46 (0.61) 19.60 (2.76)
LSTM 10.14 (0.78) 6.35 (0.64) 18.60 (2.11)

Horizon de prdiction = 60 minutes

Ref 32.63 (5.78) 17.75 (2.97) 0.00 (0.00)

Poly 42.94 (15.40) 25.63 (10.55) 54.10 (2.70)
AR 24.44 (3.32) 13.94 (1.98) 16.50 (2.29)
ARX 22.73 (2.69) 13.38 (2.02) 20.00 (5.20)

SVR 16.07 (1.53) 9.52 (1.22) 44.00 (2.19)
GP 16.19 (1.56) 9.84 (1.25) 42.30 (2.37)

ELM 18.40 (2.89) 10.52 (1.51) 48.00 (2.14)
FFNN 17.84 (1.65) 10.82 (1.29) 43.60 (4.10)
LSTM 18.66 (1.95) 11.34 (1.63) 37.70 (4.10)

Horizon de prdiction = 120 minutes

Ref 46.25 (9.93) 26.53 (5.75) 0.00 (0.00)

Poly 42.94 (15.40) 25.63 (10.55) 114.10 (2.70)
AR 37.42 (7.43) 22.38 (4.87) 20.10 (5.94)
ARX 36.81 (7.02) 22.30 (4.77) 23.90 (7.54)

SVR 26.55 (4.96) 14.26 (2.56) 93.80 (13.20)
GP 27.27 (4.74) 15.85 (2.81) 72.40 (10.70)

ELM 26.75 (4.71) 14.81 (2.59) 108.40 (6.12)
FFNN 25.48 (4.54) 14.71 (2.90) 104.80 (4.79)
LSTM 32.78 (5.81) 20.21 (4.14) 55.80 (9.23)

TABLE II: Mean accuracy (with standard deviation) of glucose
prediction models over the OhioT1DM population grouped by
prediction horizon (30, 60, and 120 minutes).

Models RMSE MAPE TG

Prediction Horizon = 30 minutes

Ref 28.32 (2.38) 13.51 (2.72) 0.00 (0.00)

Poly 57.27 (6.59) 31.09 (6.71) 23.17 (10.01)
AR 20.70 (2.23) 9.62 (2.26) 5.17 (0.37)
ARX 20.61 (2.20) 9.59 (2.19) 4.33 (1.49)

SVR 20.10 (2.34) 9.08 (2.12) 5.83 (1.86)
GP 20.01 (2.33) 9.16 (2.16) 5.83 (1.86)

ELM 25.38 (1.60) 11.56 (2.43) 5.67 (4.15)
FFNN 21.00 (2.24) 9.33 (2.19) 6.00 (1.83)
LSTM 20.46 (2.08) 9.24 (2.10) 6.17 (1.86)

Horizon de prdiction = 60 minutes

Ref 41.02 (2.80) 20.37 (3.87) 0.00 (0.00)

Poly 57.27 (6.58) 31.04 (6.67) 51.33 (13.79)
AR 33.20 (2.69) 16.73 (3.94) 6.33 (2.98)
ARX 33.43 (2.53) 16.73 (3.95) 5.83 (1.86)

SVR 32.27 (2.35) 15.38 (3.43) 10.17 (6.99)
GP 31.97 (2.55) 15.92 (3.80) 9.33 (5.12)

ELM 35.14 (2.15) 16.91 (3.69) 12.67 (9.21)
FFNN 32.93 (2.58) 15.83 (3.97) 10.00 (3.70)
LSTM 32.88 (2.66) 16.00 (3.57) 9.67 (3.94)

Horizon de prdiction = 120 minutes

Ref 57.65 (3.57) 30.16 (4.94) 0.00 (0.00)

Poly 57.26 (6.59) 31.01 (6.64) 109.33 (18.45)
AR 47.48 (3.75) 25.69 (5.79) 9.67 (6.37)
ARX 47.56 (3.57) 25.11 (5.33) 8.00 (6.51)

SVR 46.96 (2.67) 23.45 (4.96) 24.33 (19.46)
GP 46.24 (2.86) 24.65 (5.69) 20.00 (14.57)

ELM 46.64 (3.38) 24.28 (5.16) 31.50 (23.92)
FFNN 46.86 (2.83) 23.82 (5.39) 30.67 (18.89)
LSTM 47.56 (3.05) 24.69 (5.34) 21.00 (14.12)

are coherent between each other’s (because of its ability to
remember past events), this ability might not be helpful in all
the situations [110]. In our context, remembering CHO intakes
and insulin boluses helps the LSTM model to be one of the
best models in the hyperglycemia regions. The LSTM model
seems to correctly capture the global dynamics of glucose
through its variations, but has a harder time predicting rare
events such as hypoglycemia (compared to the FFNN model).

With the help of Figure 5, we provide more insight on the
intra-/inter-patient variability. For both datasets, some patients
are easier to make predictions for, and some patients have
higher daily variability than others. However, while we show
that the day-to-day variability of T1DMS patients is enough
to prevent a simple time model to perform well, the graph
shows that the real OhioT1DM patients seems to have an even
higher day-to-day variability. This difference in variability can
be explained by several factors. First, real glucose signals are
not only impacted by insulin infusions and CHO intakes (as
the synthetic glucose signals are) but also by other factors

such as physical activity, sleep, or emotions. Second, there
are a lot of missing data in the OhioT1DM dataset, making
the predictions for certain days very hard to make. That being
said, because the relative strengths of the models are the same
for both datasets, we can conclude that the evaluation of a
model forecasting ability can be done on T1DMS even though
its data are synthetic and thus not fully representative of real
data.

V. CONCLUSION

Data availability is a big challenge that holds the glucose
prediction research field back. T1DMS, the diabetic metabolic
simulator made by the universities of Virginia and Padova,
alongside the recently released OhioT1DM dataset present a
unique opportunity to gather researchers around the same data
to work on improving the forecast of future glucose values.

In this paper, we presented a methodology to benchmark
the machine-learning-based glucose-predictive models. After
going through the exhaustive details on how to run the
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TABLE III: Clinical acceptability of glucose-predictive models, averaged over the T1DMS population (with standard deivation), and grouped
by prediction horizon (30, 60, and 120 minutes).

Models
CG-EGA

Hypoglycemia Euglycemia Hyperglycemia
AP BE EP AP BE EP AP BE EP

Prediction Horizon = 30 minutes

Base 73.52 (14.09) 2.18 (3.86) 24.30 (11.79) 95.98 (1.05) 3.47 (0.85) 0.56 (0.31) 85.94 (9.07) 10.88 (6.87) 3.18 (2.38)

Poly 0.11 (0.33) 0.00 (0.00) 99.89 (0.33) 99.27 (0.33) 0.68 (0.31) 0.05 (0.06) 79.88 (7.80) 2.11 (1.35) 18.02 (7.57)
AR 63.96 (10.62) 14.65 (7.21) 21.39 (9.03) 79.79 (3.41) 18.01 (2.89) 2.20 (0.59) 79.66 (4.35) 18.00 (3.51) 2.34 (1.00)
ARX 71.51 (7.51) 10.90 (5.84) 17.60 (6.59) 85.86 (3.90) 12.59 (3.60) 1.55 (0.43) 83.15 (2.05) 15.07 (1.66) 1.78 (0.76)

SVR 83.27 (7.05) 2.81 (4.15) 13.91 (5.96) 97.63 (0.47) 1.95 (0.34) 0.43 (0.14) 96.59 (0.93) 2.81 (0.61) 0.60 (0.53)
GP 78.95 (8.34) 4.83 (3.49) 16.22 (7.22) 94.52 (1.05) 4.72 (0.91) 0.76 (0.26) 94.53 (1.34) 4.52 (1.04) 0.95 (0.49)

ELM 77.84 (12.82) 2.24 (2.50) 19.92 (12.80) 95.19 (0.96) 4.21 (0.85) 0.60 (0.19) 89.59 (1.74) 8.54 (1.37) 1.86 (0.79)
FFNN 85.66 (6.71) 3.78 (3.62) 10.56 (3.76) 95.02 (0.72) 4.15 (0.49) 0.83 (0.33) 91.57 (2.23) 6.94 (1.82) 1.49 (0.58)
LSTM 85.89 (9.37) 3.84 (4.18) 10.27 (5.63) 93.77 (1.12) 5.32 (0.91) 0.91 (0.32) 91.90 (1.69) 6.77 (1.51) 1.33 (0.66)

Horizon de prdiction = 60 minutes

Base 39.98 (22.15) 1.50 (2.52) 58.51 (21.89) 95.55 (1.53) 3.60 (1.26) 0.85 (0.41) 81.41 (7.75) 11.30 (5.00) 7.29 (3.54)

Poly 0.11 (0.33) 0.00 (0.00) 99.89 (0.33) 99.27 (0.33) 0.68 (0.31) 0.05 (0.06) 79.88 (7.80) 2.11 (1.35) 18.02 (7.57)
AR 21.38 (15.05) 8.31 (6.39) 70.31 (20.77) 77.38 (6.28) 20.07 (5.48) 2.55 (0.87) 70.20 (7.40) 22.98 (4.98) 6.82 (2.58)
ARX 23.17 (16.21) 9.36 (5.82) 67.47 (20.74) 78.63 (6.64) 18.94 (5.79) 2.43 (0.93) 71.93 (6.17) 22.45 (4.39) 5.63 (1.92)

SVR 44.20 (22.04) 1.42 (1.56) 54.38 (23.00) 96.67 (0.69) 3.13 (0.61) 0.20 (0.11) 91.63 (4.42) 7.55 (3.51) 0.82 (1.01)
GP 35.66 (23.20) 1.93 (2.02) 62.41 (24.44) 94.27 (1.91) 5.07 (1.67) 0.65 (0.29) 89.59 (2.67) 8.84 (2.31) 1.57 (0.75)

ELM 43.07 (21.59) 2.06 (2.64) 54.87 (22.89) 94.37 (2.02) 5.20 (1.89) 0.43 (0.20) 88.30 (4.00) 10.25 (3.04) 1.45 (1.12)
FFNN 49.55 (18.33) 2.39 (1.93) 48.06 (19.06) 92.19 (1.93) 7.07 (1.71) 0.74 (0.29) 83.68 (3.45) 14.13 (2.91) 2.19 (0.88)
LSTM 43.31 (18.99) 3.54 (2.91) 53.16 (20.07) 92.21 (2.66) 6.89 (2.22) 0.90 (0.47) 85.34 (3.25) 11.96 (3.00) 2.70 (0.90)

Horizon de prdiction = 120 minutes

Base 18.64 (14.36) 0.56 (0.77) 80.80 (14.83) 94.71 (2.25) 4.29 (1.32) 1.00 (1.03) 73.61 (7.63) 12.04 (4.45) 14.35 (4.79)

Poly 0.11 (0.33) 0.00 (0.00) 99.89 (0.33) 99.27 (0.33) 0.68 (0.31) 0.05 (0.06) 79.88 (7.80) 2.11 (1.35) 18.02 (7.57)
AR 1.92 (3.19) 1.29 (2.15) 96.79 (5.32) 85.52 (8.74) 12.49 (7.84) 1.99 (1.03) 71.38 (8.94) 14.13 (5.84) 14.50 (4.38)
ARX 2.43 (4.08) 1.33 (2.16) 96.24 (6.21) 84.65 (8.52) 13.22 (7.67) 2.14 (0.95) 70.72 (8.26) 14.60 (5.42) 14.67 (4.51)

SVR 38.53 (18.09) 2.36 (2.22) 59.11 (19.62) 95.58 (1.29) 4.10 (1.14) 0.33 (0.19) 84.03 (4.93) 9.49 (3.29) 6.49 (2.61)
GP 17.53 (14.60) 1.27 (1.07) 81.20 (15.30) 93.34 (2.90) 6.02 (2.45) 0.64 (0.46) 82.53 (5.03) 10.67 (2.44) 6.79 (3.24)

ELM 17.36 (13.11) 2.69 (2.70) 79.95 (14.18) 89.63 (4.38) 9.16 (3.68) 1.21 (0.75) 76.49 (7.35) 15.72 (4.22) 7.79 (3.21)
FFNN 32.83 (17.69) 1.80 (1.74) 65.37 (18.57) 90.90 (2.44) 8.38 (1.99) 0.72 (0.47) 80.15 (3.70) 15.66 (2.22) 4.19 (1.80)
LSTM 10.98 (10.94) 2.96 (2.49) 86.06 (12.68) 89.56 (4.90) 9.30 (4.30) 1.14 (0.65) 77.19 (5.20) 14.19 (2.25) 8.63 (3.33)

AP: Accurate Prediction; BE: Benign Error; EP: Erroneous Prediction

benchmark from the acquisition of data to the evaluation of
the models, we present the results of nine models taken from
the glucose-prediction literature.

The results showed that, while more in favor of complex,
non-linear, predictive models (kernel-based or neural-network-
based regression), no model outperforms the others in every
category. Every model has its own strengths and weaknesses.
The support vector regression model is the most accurate
model when the prediction horizon is short-term. Finally, as
the relative performances of the models are the same for the
virtual (T1DMS) and real (OhioT1DM) datasets, we conclude
that the virtual data obtained through T1DMS and our scenario
can be used to evaluate the ability of the models to forecast
future glucose values.

However, these results also show the difficulty of predicting
future glucose values, in particular at high prediction horizons,
and the need of the GLYFE benchmark to incentivize compar-

isons between studies. We hope that our work will serve as a
basis for future work in the glucose prediction field.
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TABLE IV: Clinical acceptability of glucose-predictive models, averaged over the OhioT1DM population (with standard deivation), and
grouped by prediction horizon (30, 60, and 120 minutes).

Models
CG-EGA

Hypoglycemia Euglycemia Hyperglycemia
AP BE EP AP BE EP AP BE EP

Prediction Horizon = 30 minutes

Base 39.24 (16.93) 2.82 (4.17) 57.94 (18.85) 90.25 (3.40) 7.11 (2.44) 2.64 (1.15) 84.40 (3.88) 11.44 (2.59) 4.16 (1.83)

Poly 0.00 (0.00) 0.00 (0.00) 100.00 (0.00) 94.54 (1.74) 5.20 (1.84) 0.27 (0.55) 75.71 (6.30) 7.00 (2.82) 17.29 (5.72)
AR 38.11 (21.40) 5.30 (3.87) 56.59 (22.30) 85.42 (5.40) 11.47 (4.22) 3.10 (1.32) 79.18 (2.98) 16.06 (3.16) 4.75 (1.67)
ARX 38.32 (23.33) 4.88 (3.92) 56.80 (23.69) 85.10 (5.41) 11.67 (4.25) 3.23 (1.34) 78.96 (2.91) 16.26 (3.00) 4.78 (1.69)

SVR 46.89 (23.72) 6.62 (4.97) 46.49 (23.87) 86.44 (4.25) 10.64 (3.22) 2.92 (1.25) 80.90 (3.31) 14.64 (3.03) 4.46 (1.90)
GP 46.00 (26.35) 6.31 (3.93) 47.69 (27.78) 84.61 (5.39) 12.22 (4.16) 3.18 (1.41) 78.35 (3.63) 16.83 (3.28) 4.82 (1.60)

ELM 34.81 (23.43) 6.81 (4.22) 58.39 (23.88) 78.85 (4.32) 17.25 (3.18) 3.91 (1.57) 73.32 (4.41) 20.79 (3.54) 5.89 (1.73)
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