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A B S T R A C T

The maturation of the autonomic nervous system (ANS) starts in the gestation period and it is
completed after birth in a variable time, reaching its peak in adulthood. However, the develop-
ment of ANS maturation is not entirely understood in newborns. Clinically, the ANS condition
is evaluated with monitoring of gestational age, Apgar score, heart rate, and by quantification of
heart rate variability using linear methods. Few researchers have addressed this problem from
the perspective nonlinear data analysis. This paper proposes a new data-driven methodology
using nonlinear time series analysis, based on complex networks, to classify ANS conditions in
newborns. We map 74 time series given by RR intervals from premature and full-term new-
borns to ordinal partition networks and use complexity quantifiers to discriminate the dynamical
process present in both conditions. We obtain three complexity quantifiers (permutation, condi-
tional and global node entropies) using network mappings from forward and reverse directions,
and considering di�erent time lags and embedding dimensions. The results indicate that time
asymmetry is present in the data of both groups and the complexity quantifiers can di�erentiate
the groups analysed. We show that the conditional and global node entropies are sensitive for
detecting subtle di�erences between the neonates, particularly for small embedding dimensions
(m < 7). This study reinforces the assessment of nonlinear techniques for RR intervals time
series analysis.

1. Introduction
Heart rate variability (HRV) is an important non-invasive measurable physiological state related to homeostasis,

which is defined as the self-regulating ability of a system or organism to maintain stability [1, 2]. HRV describes the
variation of cardiac cycles represented by di�erence between two R waves (RR or NN intervals) in the electrocar-
diographic signal. This variation reflects contributions of the two branches of the autonomic nervous system (ANS):
sympathetic and parasympathetic activities [3]. Particularly, the cardiac rhythm of the infants enable to elucidate
the state of the ANS maturation, especially considering premature and full-term newborns [4, 5]. In terms of ANS
maturation, distinguishing groups of time series from newborns (premature and full-term) is more di�cult than dis-
tinguishing healthy newborns and healthy young adults, as there is a significant di�erence of age and degree of the
maturation process of the organism.

The maturing process of the autonomic functions occurs in the gestation period, and premature newborns appear to
have a delayed maturation of HRV when compared with full-term newborns [6]. In the gestation period, the foetal heart
rate has neural and non-neural influences, such as parasympathetic and sympathetic innervations, a rise of parasympa-
thetic influence, metabolic sensitivity, and other processes [7]. Thus, the measurement of HRV provides information
about autonomic regulation of an individual, which reflects physiological fluctuations from two branches of inputs of
the ANS. These oscillations have been related to nonlinear control systems representing the versatility of the healthy
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individual [8, 9, 10, 11]. This nonlinearity can be considered an intrinsic feature of the organism as a function of the
state of the ANS maturation [12, 13].

A data-driven approach to classify RR intervals of premature newborns and full-term newborns can help to assess
cardiovascular control and its specific features and limits. Furthermore, optimal heart control in newborns is not
fully developed, and therefore future studies are required to elucidate its physiological phenomenon [12]. Today, the
understanding of cardiac signals from newborns during the first month of their lives involves adjusted interpretation
of electrocardiograms [14] and HRV analysis. Previous approaches attempting the automatic classification of RR
intervals use both linear and nonlinear methods. Conventional linear methods include standard time domain and
frequency domain approaches [1], which provide information about the periodic oscillations [4] of RR intervals. Time
domain methods are the simplest way to determine the characteristics of successive RR intervals, such as the mean RR
interval, the standard deviation RR interval and the di�erence between the longest and the shortest RR interval. These
measures are useful to describe the instantaneous heart rate and cycle length [1]. Frequency domain methods are based
on power spectral density (PSD), which uses spectral components, such as very low frequency, low frequency and high
frequency, to provide information about autonomic modulations of the heart period [15, 16]. The main limitations of
such techniques are imposed by the fluctuation of RR intervals time series, as they can provide similar or identical
results for di�erent profiles [1].

The nonlinear characteristics of physiological systems and how their interactions influence each other motivates
nonlinear time series techniques. Nonlinear methods such as recurrence quantification analysis [17, 18], Poincaré
plots [19], Shannon entropy quantification [20], correlation dimension [21], symbolic dynamics methods and time
reversibility analysis [22], and physiology network [23] are good candidates for HRV analysis. All these methods
allow associations between biological signals and their phenomenology in the organism, providing rich information
about the systems’ dynamics. Nonlinear methods di�er from conventional linear HRV analysis because they assess
other characteristics from the signal such as scaling, and nonlinear correlation properties [24]. Some advantages can
be reported in the use of nonlinear approaches for HRV analysis, such as unpredictability, and complexity of the time
series [25]. Here, we complement previous studies on this problem by proposing the application of nonlinear time
series analysis from the perspective of complex networks. We focus, for the first time to the best of our knowledge,
on the characterisation of time series from newborns (premature and full-term) based on the application of complex
networks in biomedical data considering real-world clinical situations.

Representations of nonlinear systems using complex networks have attracted attention from researchers in di�erent
areas, such as human cardiac dynamics [26, 27, 28], epilepsy and seizure prediction [29, 30], climate models [31],
finance [32], and investigation of determinism in time series [33]. In particular, complex networks provide a way to
describe the evolution of system dynamics, where the entities describing a complex system are represented as nodes,
and edges describe the intrinsic relationship among interconnected entities. These patterns of interactions can bring
insights into the dynamical properties of the studied systems [34, 35]. In time series analysis, network representations
try to capture the essence of the dynamics by representing the system state as nodes in the network and transitions
between states as edges in the network [36]. For example, in a recurrence network, nodes are system states in the
phase-space and are linked in the network if they are considered recurrent, that is, if they are part of the same defined
neighbourhood in phase space [37]. Ordinal partition network methods also perform a partition in phase space by
mapping the time series values to a sequence of symbols that define a ranking position of the amplitude values [34, 28].
Each segment will result in a permutation of symbols which are mapped to nodes in the network. Edges define the
temporal sequence of such permutations that are characterising the system dynamics (defining a Markov transition
network). As the length of the time series increases, new data tend to improve the estimation of the transitional
probabilities instead of increasing the network size (as in the case of recurrence networks) [38].

The ordinal partition network therefore captures spatial dependencies of reconstructed phase space trajectories of
the time series. Di�erent dynamics of the time series will result in distinct exploration of phase space and consequently
will result in di�erent structural properties of the networks. Here, we propose to use the ordinal partition network and
seek network properties that are sensitive to the structural changes of di�erent nonlinear systems represented by RR
intervals of premature newborns and full-term newborns. Measuring variability and complexity of such time series in
their complex network representations is a novel and interesting way to characterise these complex systems.

We start by mapping the RR intervals time series from premature and full-term newborns into ordinal partition
networks. Using this framework, we provide two contributions. First, we use the concept of surrogate data to show that
complexity measures from the ordinal networks derived from RR intervals are helpful as discriminating statistics to
inform the underlying dynamical process in the time series [39]. Second, we conduct experiments considering forward
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and reverse mappings of the RR time series [33] to evaluate the time irreversibility of these systems [40, 41]. In other
words, the mapping of the time series into networks occurs both in forward and reverse directions. Our motivation is
that the temporal asymmetry will provide a way to discriminate RR interval time series from the two classes in the
database.

This paper is organised as follows: Section 2 describes the dataset and the strategy to map time series into ordinal
networks and how we obtain the quantifiers reflecting the systems’ complexity. Section 3 describes the viability of the
ordinal network properties to display di�erences between the premature and full-term newborns time series; including
the use of complexity quantifiers as a test for time irreversibility applied to the RR time series. Finally, we conclude
the paper with a summary of our results.

2. Material and Methods
2.1. Dataset

The RR interval database comprises 74 time series or tachograms: 48 premature newborns (PNB) were an average
*27.4 days of corrected age, and 26 full-term newborns (FNB) aged up to 8 days after their birth. The tachograms
datasets were taken from previous studies of Transdisciplinar Nucleus for Chaos and Complexity Study (NUTECC/Brazil)
[42]. Each tachogram was selected and classified (premature or full-term newborn) by a pediatric cardiologist, who
was expert in cardiac signals analysis in infants and children. The dataset was approved by respective ethics commit-
tees and conducted in agreement with Helsinki’s declaration for medical research involving human subjects, and all
parents and/or guardians of the newborns gave their informed consent for participation in the study.

Data were collected by a Polar monitor (S800i or RS800) for approximately 15 minutes with a subject in a supine
rest position. We compare the newborn’s groups using 1, 490 RR intervals (cardiac cycles) for each individual. We
pre-processed the data with an adaptive filter methodology to discard possible artifacts. The filtering algorithm first
removes the RR intervals longer than 1, 200 ms and shorter than 350 ms as such intervals are inconsistent according
to the physiology of the sinus rhythm. Based on the adaptive values of the average and standard deviation of the time
series, RR intervals are replaced if they are more than 20% di�erent than their adjacent points. The filtered time series
that di�er by more than 10% from unfiltered time series are not considered in the analysis. This adaptive filtering
methodology was discussed in a previous study [43].

Figure 1 displays two examples of non-filtered RR intervals time series (Fig.1a from PNB group and Fig.1d from
FNB group) and their corresponding filtered series (Figs.1b and 1e), respectively. The first non-filtered time series
(Fig.1a) is an example with few artifacts, whereas the second one (Fig.1d) is an example with a large number of visible
artifacts, which are not related to sinus rhythm. The filtering strategy clearly helps to reduce the artifacts. Figs.1c and
Figs.1f shows the corresponding time series in more detail.

2.2. Ordinal partition network
The strategy to map the time series into a complex network is based on the ordinal partition presented in [28]. The

authors showed that a univariate time series can be defined as a network with unique ordinal patterns (nodes), and
edges linking nodes for which patterns occur sequentially in the observed data.

Given a tachogram X = {x1, x2, ..., xN}, where N is the number of the RR intervals, a series of embedding vectors
Z = {z1, z2, ..., zN*(m*1)⌧} is obtained based on patterns of length m and time lag ⌧. We tested di�erent values for
m and ⌧ in our analysis. Each vector z

i
= {x

i
, x

i+⌧ , xi+2⌧ , ..., xi+(m*1)⌧} is mapped to a symbol sequence according
to the amplitude (y-axis) of each element in it. If two elements of z

i
have the same value (x

i
= x

j
), the symbol

is assigned by order of appearance. A unique set of all symbol sequences s is obtained in the time series, where
S = {s1, s2, ..., sN*(m*1)⌧} for s

i
À s.

Each ordinal symbol in s represents a node in the network G = {V ,E}, where V is the set of nodes (s) and E

is the set of edges. The adjacency matrix A (V  ù V ) is the representation of the network, and a
i,j

> 0 represents
the link from node i to node j. The weight of the directed edges in the network indicates the number of times that two
adjacent symbols are presented sequentially in the time series.

In this work, the time series are mapped into a ordinal network considering two di�erent directions, forward and
reverse mapping, where the first one is the standard time sequence and the second one is the reversed time direction.
It has been suggested that this technique is a reliable way to distinguish symmetrical from asymmetrical dynamical
processes [10]. To illustrate the process, consider the time series with 16 RR intervals depicted in Figure 2. For
m = 3 and ⌧ = 2, the first two forward ordinal patterns s are {3, 1, 2} and {2, 1, 3}, and the first two reverse ordinal
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Figure 1: Examples of RR intervals time series before and after the adaptive filtering method: a) non-filtered time series

of premature newborn with few visible artifacts (black arrows), b) filtered time series of premature newborn, c) detail of

the time series shown in b) with 500 RR intervals, d) non-filtered time series of full-term newborn with a large number of

artifacts (black arrows), e) filtered time series of full-term newborn, and f) detail of the time series shown in e) with 500
RR intervals.

patterns are {2, 1, 3} and {2, 3, 1} obtained by ranking the amplitude of the elements in the first two embedding vectors,
respectively. Each unique ordinal pattern is a node of network and the temporal succession of ordinal patterns in the
time series is an edge, as illustrated in 2e.

Time-forward and corresponding time-reversed time series are statistically equally probable if they are time re-
versible [44]. In nonlinear time series analysis, time series reversibility analysis is used to identify systems for which
dynamics look similar whether time runs forward or backward [45]. For instance, linear stochastic Gaussian processes
(and their static nonlinear transformations) are statistically reversible, while systems of nonlinear dynamics are usually
statistically irreversible [44]. There has been recent evidence that the statistical di�erences between networks con-
structed from forward and reverse mappings can be a strategy to quantify the time irreversibility [40, 33]. According
to the literature, time irreversibility in cardiovascular signals is more frequent in short-time scales than in long-time
scales [9, 10, 12]. These studies used time series with 256 cardiac cycles [9, 10] and 1000 cardiac cycles [12] to detect
temporal asymmetries using indices such as Porta’s index P%, Guzik’s index G% and Ehler’s index E. Despite this
interest, no one to the best of our knowledge has focused on the application of time irreversibility analysis to distin-
guish RR intervals from similar individuals’ classes. Here, we use temporal asymmetry indexes from ordinal networks’
properties to investigate individuals’ RR interval classes and verify the feasibility of these properties to separate RR
intervals from premature newborns and full-term newborns.

Once we get the networks derived from the forward and backward mapping of the time series, we propose to obtain
quantifiers reflecting the complexity of the dynamics of the system from each adjacency matrix A: (i) permutation
entropy (hPE), (ii) conditional entropy (hCPE), and (iii) global node entropy (hGNE). These quantifiers can be used as
a proxy of the complexity of the temporal structure in multiscale ordinal symbolic dynamics from time series, which
can reveal changes on complexities of interbeat interval dynamics. We refer the reader to [28] for a comprehensive
study regarding the use of these measures for ordinal partition networks when addressing properties of dynamical
systems.

The permutation entropy (hPE) is estimated by counting the probability of occurrence of each symbol in S repre-
senting the state of the system:

h
PE = *

n
…

i

p
i
logp

i
(1)

where n is the total of symbols, and p
i

is the relative frequency of each symbol in S. This measure describes the static
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Figure 2: Example of the process for forward (left-to-right direction) and reverse (right-to-left direction) mappings of a

time series in an ordinal network: a) find the first embedding vector with ⌧ and m according to the direction for mapping,

b) determine its ordinal pattern by ranking the amplitudes of the elements in the window, c) obtain the ordinal symbols for

all embedding vectors in both directions, d) obtain sequence of ordinal symbols based on both forward mapping and reverse

mapping, e) compute the forward and reverse adjacency matrices using all ordinal patterns, where the edges represent the

temporal sequence between nodes. Colours represent the unique ordinal symbols. Adapted from [28].

complexity, randomness, or prediction accuracy of the system. In general, higher values of permutation entropy relate
to lower prediction accuracies [46, 47]. The permutation entropy has been used in many biomedical applications,
including epilepsy studies and cognitive neuroscience [48].

Conditional entropy (hCPE) is an extension of permutation entropy [49], and quantifies the local uncertainty of
each state in the model:

h
CPE =

…

i

H

*p
i

…

j

p
i,j

logp
i,j

I

(2)

where p
i

is the relative frequency of each symbol in S, and p
i,j

is an element of the stochastic matrix P defined as the
probability of a transition from symbol (state) i to j:

p
i,j

=
a
i,j

≥

j
a
i,j

(3)

where a
i,j

are the elements of the adjacency matrix A.
For the calculation of both quantifiers in Equations 1 and 2, the adjacency matrix A includes the possibility of

self-loops in the network. Thereafter, a modified stochastic matrix P (Eq. 3) is obtained by removing self-loops
connections:

p
T

i,j
=
h

n

l

n

j

0 if i = j

ai,j
≥

j,jëi ai,j if i ë j.

(4)

The global node entropy (hGNE) is related to fractal scaling exponent [28] and is defined as the transitional com-
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plexity value of S. According to [50], hGNE provides an average of the local transitional complexity of the attractor:

h
GNE =

…

i

p
<
i
h
LNE

i
(5)

where p
<
i

is estimated by summing the weights for edges leaving node i and dividing the result by the total sum of the
edges weights of the ordinal network, and h

LNE

i
is the local node entropy defined as:

h
LNE

i
= *

…

j

p
T

i,j
logpT

i,j
. (6)

Statistical comparisons of hPE , hCPE , and hGNE obtained from a range of values for embedding dimension (m) and
lag (⌧) regarding both forward and reverse mappings were carried out by Mann-Whitney test, with p < 0.05 for a 95%
significance level. This statistical analysis was performed for intragroup comparisons and intergroup comparisons. In
the first case, we use the network quantifiers for the same group’s time series to investigate their temporal asymmetry.
In the second case, we check whether these quantifiers can discriminate RR intervals from premature and full-term
newborns. The code for mapping the time series into an ordinal partition network and its complexity quantifiers
respectively is available at: https://github.com/laurita-santos/ordinal_partition_network.git.

2.3. Surrogate data
The surrogate framework was initially developed by Theiler and colleagues [39, 51]. The idea of this framework

is to investigate explanations about the variability of a continuous time series. Suppose simple factors contributing to
the variability can be discarded with some level of significance (for instance, variability is due to linear correlation or
noise). In that case, one can justify a nonlinear analysis of the data. The basic approach consists of specifying a well-
defined null hypothesis and generating an ensemble of surrogate data (new realisations of the time series) consistent
with the null hypothesis. Then, one can check whether or not the null hypothesis can be rejected by looking at the
distribution of a meaningful discriminating statistic estimated for the ensemble of surrogate data and the corresponding
value for the original data. The surrogates framework has already been successfully used as a method to identify
mechanisms of the system generating the observed data [51, 52, 53, 54, 55]. Here we will use the surrogate framework
to check if variability measures in the time series help discriminate possibly nonlinear dynamics for the di�erent
groups in the dataset. The three null hypotheses proposed by Theiler [39, 51] are defined according to an increasing
complexity assumption of the data: temporally independent data (Algorithm 0), linearly auto-correlated Gaussian
noise (Algorithm 1), and static nonlinear transformation of linear Gaussian noise (Algorithm 2). For Algorithm 0
(Alg0), the null hypothesis states that the data is consistent with i.i.d. noise. In that case, surrogates can be random
permutations of the original data, and the autocorrelation function at lags ⌧ g 1 will serve as a discriminating statistic.
For Algorithm 1 (Alg1), the null hypothesis states that the data is consistent with linear filtered Gaussian noise. In this
case, surrogates are obtained by shu�ing the phases of the Fourier transform of the data. As rearranging the phases
preserves the Fourier power spectrum, the surrogate data has the same autocorrelation characteristics (in addition to
the probability distribution) as the original data. In that case, a nonlinear discriminating statistic is required, such as
the mutual information at di�erent lags. Algorithm 2 (Alg2) is an extension of Algorithm 1 for systems in which data
is not normally distributed. Here, the null hypothesis states that data is consistent with a monotonic static nonlinear
transformation of linearly filtered noise. In this case, the surrogate generated preserves the amplitude distribution
and autocorrelation of the data. The most used procedure to generate surrogates consistent with this null hypothesis is
Amplitude Adjusted Fourier Transform (AAFT) [39]. Mutual information at di�erent lags, correlation dimensions and
other nonlinear invariants can be used as the discriminating statistic. More recently, measures from complex networks
have also been used as discriminating statistics for surrogate tests [56].

To say that the original data is statistically likely to be inconsistent with the null hypothesis, one must define an
appropriate test statistic. One way to conduct a hypothesis test is to use a parametric criterion: the mean (�

H
) and the

standard deviation (�
H

) of a discriminating statistic computed from the surrogates are used to determine a significance
level ↵ = QD*�H 

�H

, where Q
D

is the value of the discriminant statistics for the original data [51]. However, for cases in
which the statistical distribution is less likely to be Gaussian, the rank-order criterion is appropriate. This statistic-test
ranks in increasing order the N + 1 discriminating statistics Q1,Q2, ...QN

computed for N surrogates and Q
D

of
the original data. If the original data is consistent with the null hypothesis, Q

D
has probability 1_(N + 1) to be the
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smallest or the highest value. Thus, the null hypothesis is rejected when Q
D

is the smallest or the higher value among
all (N + 1)Q’s. This means that, for a two-sided hypothesis test at 95% significance level, a minimum of N = 39
surrogates are required.

In summary, the main steps of the proposed methodology are: a) map the time series into an ordinal network con-
sidering two di�erent directions, forward and reverse mappings; b) compute the complexity quantifiers from adjacent
matrix (networks); c) discriminate the complexity quantifiers of the RR intervals time series (PNB and FNB groups)
from their surrogate data to assess the origin of variability in RR intervals; d) compare the complexity quantifiers
obtained from forward and reverse mappings to characterise the system time irreversibility represented by the RR
intervals time series.

3. Results
We present the results of our approach by first illustrating the viability of our methodology on chaotic time series

from dynamical systems. Then we discriminate the variability in the RR intervals time series using the surrogate
approach. Finally, we use complexity measures from original networks considering forward and reverse mapping to
distinguish RR interval time series from the two groups.

3.1. Lorenz system and surrogate data
To show the use of surrogate data to unveil features about the variability of the time series, we generated time series

from the standard Lorenz attractor under chaotic regime given by the following equations:

h

n

n

l

n

n

j

dx

dt
= �(y * x)

dy

dt
= x(⇢ * z) * y

dz

dt
= xy * �z

(7)

where � = 10, ⇢ = 28, � = 8_3, and an incremental step 0.025 were used. For comparison, 10 time series were gen-
erated using a fourth-fifth Runge-Kutta method with randomised initial conditions, where each of {x(0), y(0), z(0)} À
(0, 1). The peaks of x*component of Lorenz series (local maxima) with transients removed were sampled to form a
time series with 1490 peaks (points). For the ordinal partition network, the parameter m were selected according to
the false nearest neighbor [57, 58]. For the peaks of x*component of Lorenz series the chosen parameters were ⌧ = 1
and m = 3.

For each of the three null hypotheses of surrogate data, a set of 100 surrogate series was constructed for each Lorenz
series. As test statistics, we used the h

PE , hCPE , and h
GNE from the ordinal partition networks (only considering

forward mapping in this case). Figure 3 shows the distribution of these three quantifiers for Lorenz series (peaks of
x*component) and surrogate data. As expected, all hypotheses were rejected, the distribution of quantifiers for the data
series di�er from the distribution of quantifiers for the surrogate data, corroborating with the nonlinearity of the data.
Clearly the h

PE , hCPE , and h
GNE for the surrogate time series show di�erent distributions compared to the original

time series. These results confirm previous statements that these quantifiers obtained from the complex network reflect
the dynamics present in the analysed data [28].
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Figure 3: Distribution of quantifiers for time series given by the peak intervals of the Lorenz x-component and surrogate

data: (a) time evolution of the x*component for Lorenz model (for � = 10, ⇢ = 28, � = 8_3) and peaks marked with

red dots detailed, (b) h
PE , (c) h

CPE , and (d) h
GNE for peaks of the Lorenz time series and corresponding surrogate data,

using parameters m = 3 and ⌧ = 1.
As expected, the test statistic distribution for the original data differs from the surrogate data distributions, showing the

feasibility of this framework as hypothesis tests for nonlinear determinism.

3.2. Hypothesis tests for nonlinear determinism in RR interval time series
This work aims to assess the origin of variability in the RR intervals time series using the surrogate framework

and the complexity quantifiers from ordinal partition network as test statistics. For each RR intervals time series we
generate 100 surrogates time series consistent with null hypothesis given by Alg0 (non-correlated noise), Alg1 (linear
correlated Gaussian noise), and Alg2 (nonlinear static transformation of linear Gaussian noise). To date, there is no
established way to determine the optimum value for the embedding parameter m. It has been suggested that m should
be large enough to allow forbidden patterns, and small enough to promote accurate statistics of the transitions and
minimise spurious results due to finite-size e�ects. Here, we map the RR time series into ordinal partition networks
using parameter values m = 1, 2, . . . , 16 and ⌧ = 1, 2, 3, 4 for both original and surrogate data, which cover common
choices in the literature. Complexity quantifiers were obtained from the ordinal networks according to the description
in the Section 2.2. We used a combination of the embedding m and lag ⌧ parameters to investigate the underlying
dynamical process in the RR time series. We use the three quantifiers for each group of RR interval time series.

Figure 4 shows the statistical comparisons (p-values p) of the complexity quantifiers for di�erent values of m and ⌧

considering RR interval time series of PNB and FNB groups and their corresponding Alg0 surrogate data. We observe
that there is statistical di�erence (p < 0.05) for most of the parameters used, which supports the rejection of the null
hypothesis for time series from both groups (left panel is the PNB data and right panel is the FNB data).

Comparisons between the original data and Alg1 surrogate data is presented in Figure 5. We note there is significant
statistical di�erence for most of the parameters used between original data and Alg1 surrogate data for both premature
group (left panel) and full-term group (right panel). The quantifier hPE of the PNB group (Figure 5a) detect di�erences
between the original data and the Alg1 data for all values of parameters used, except m = 7. Interestingly, for the FNB
group, we could accept the null hypothesis for other values of m. We observe that quantifiers hCPE and h

GNE were
consistent in distinguishing the original data from Alg1 surrogates when m > 5 up to m < 12 for all ⌧ values for both
two groups.

Similar behavior is observed when we compare original data to Alg2 surrogate data (Figure 6). There is an interval
of parameter values (when 5 < m < 12 for all ⌧ used) in which the complexity quantifiers hCPE and h

GNE reject the
null hypothesis that variability of the data is consistent with nonlinear static transformation of linear Gaussian noise.
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Figure 4: P-values results for the comparison between original data and Alg0 surrogate data considering the complexity

measures h
PE , hCPE and h

GNE . Left panels show the results for the premature group and right panels show the results for

the full-term group. Symbols below the blue line (p = 0.05) mean that there are statistical difference between the original

data and the surrogate time series, supporting the rejection of the null hypothesis that variability of the data is consistent

with i.i.d noise.

These results suggest the presence of nonlinearity for the system underlying the newborn time series, and that these
quantifiers are sensitive and provide evidence regarding the di�erence between the dynamics present in the original
data and the surrogates data, for a range of m and ⌧ used.

3.3. Comparison between forward and reverse mapping
The direction of the mapping (forward and reverse) of the complex network ordinal-based symbolic encoding is

first used to assess the system time irreversibility represented by the RR intervals time series. It has been demonstrated
that such forward and reverse encoding exhibited evidence for time irreversibility for low-order cycles of compression
networks of chaotic time series [33]. Motivated by this study, here we investigate if forward and reverse mappings can
provide information about time asymmetry of the distribution of the ordinal patterns found in the neonatal heart rate
control. Here, each time series was mapped in two directions (forward and reverse), and we obtained the complexity
quantifiers for each direction. We inspect evidence of time asymmetry using complexity quantifiers for intragroup time
series (forward and reverse mappings for each time series of the same group), and intergroup time series (same network
direction mapping for time series from PNB and FNB groups). A Mann-Whitney test is used to assess the significant
di�erence in each case. This statistical test assumes a null hypothesis that there is no di�erence between forward and
reverse mappings for each time series (intragroup comparison), and there is no di�erence between the time series from
both premature and full-term newborns (intergroup comparison).

Figure 7 displays the intragroup statistical comparison between complexity measures obtained from forward and
reverse network mapping for di�erent values of ⌧ and m. In the intragroup comparison for the premature newborns
(PNB), we observed that there is statistical di�erence (p < 0.05) between both mappings mainly for the hPE and h

CPE

complexity quantifiers (see Fig.7a-b). For hPE and h
CPE measures the null hypothesis is rejected when ⌧ = 1 and

⌧ = 2 for most of the m values used. For the particular case ⌧ = 1, we verified that the h
PE quantifier is able to

detect the di�erence between the ordinal symbols obtained from the di�erent mapping directions for all values of m.
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For the h
CPE quantifier, we observed a similar result for ⌧ = 1 (except for m = 4 and m = 5). These results suggest

that these quantifiers reveal time asymmetry present in the RR intervals time series of the PNB group. For ⌧ = 2 we
observed that the quantifiers hPE and h

CPE reject the null hypothesis of symmetry at the level of 5% depending on
the embedding value considered. For the h

GNE the di�erence for ⌧ = 1 and ⌧ = 2 is also observed for larger values
of m (m > 12).

In the intragroup comparison for the full-term newborns (FNB), we observe that for hPE there is a statistically sig-
nificant di�erence for ⌧ = 1 considering m f 8 (Fig.7d), while hCPE suggest such di�erence for m = 2, 4, 10 up to 14
(Fig.7e). These results demonstrate that time asymmetry is also detected in the group of FNB, however for less com-
binations of values for m and ⌧ than for the group of prematures. The complexity quantifier hGNE displays a similar
behavior for both intragroup comparisons: PNB (Fig.7c) and FNB (Fig.7f) groups, where the null hypothesis is ac-
cepted when m < 11 for all values of ⌧, with exception for when ⌧ = 1 and m = 3 for the PNB group.

Figure 8 displays the intergroup statistical comparison between complexity measures obtained from forward (Fig.8a-
c) and reverse mapping (Fig.8d-f). Here we observed that results for both forward and reverse mappings are similar
(left and right panels), and they are consistent among the comparisons. The obtained p-values for the h

PE measure
demonstrate that there is statistically significant di�erence between PNB and FNB when ⌧ = 1 for di�erent values of
m, except m = 3 (forward mapping) and m = 3 and 4 (reverse mapping). Additionally, we observe in Figs.8a and 8d
that the null hypothesis is rejected for all ⌧ and m values for m g 9. The ⌧ is an important parameter to be properly
established, particularly for m < 9.

Note that the quantifier hCPE shows similar results in Figs.8b and 8e for forward and reverse mapping, respectively.
For both comparisons when m f 5 the null hypothesis is rejected (p < 0.05), except for ⌧ = 1 and m = 3. For the
quantifier h

GNE (Figs. 8c and 8f) we observe that there is statistically significant di�erence for m f 6 for both
comparisons considering the values of ⌧ used, except ⌧ = 1 and m = 3 (for PNB group) and ⌧ = 1 and m = 4 (for
FNB group).

Figure 5: P-values results for the comparison between original data and Alg1 surrogate data considering the complexity

measures h
PE , hCPE and h

GNE . Left panels show the results for the premature group and right panels show the results

for the full-term group. Symbols below the blue line (p = 0.05) mean that there are significant statistical difference, then

the null hypothesis is rejected. Symbols below the blue line (p = 0.05) mean that there are statistical difference between

the original data and the surrogate time series, supporting the rejection of the null hypothesis that variability of the data

is consistent with linear correlated Gaussian noise.
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Figure 6: P-values results for the comparison between original data and Alg2 surrogate data considering the complexity

measures h
PE , hCPE and h

GNE . Left panels show the results for the premature group and right panels show the results for

the full-term group. Symbols below the blue line (p = 0.05) mean that there are statistical difference between the original

data and the surrogate time series, supporting the rejection of the null hypothesis that variability of the data is consistent

with nonlinear static transformation of linear Gaussian noise.

4. Discussion
Our results suggest that the time asymmetry is more evident in the PNB group in terms of numbers of combinations

of ⌧ and m for which we can reject the null hypothesis. However, it is possible that such evidence for the presence of
asymmetry in the PNB group is associated with the presence of accelerations and decelerations in the RR intervals
time series in this group, which were related to sepsis [42, 59]. In our case, this clinical situation is a regular diagnosis
for premature neonates under intensive care units. In this context, it is not possible to a�rm that the time asymmetry
can be associated only to the higher complexity of the PNB group.

In summary, our findings show that the complexity quantifiers indicate the time asymmetry in the RR interval time
series for the PNB group and the FNB group, which is evidenced by the statistically significant di�erences shown in
Fig. 7. This finding corroborates with the results in [12], in which they found that time asymmetry was present in heart
rate oscillations in healthy eutrophic neonates. The authors also associated time asymmetry with nonlinear dynamics
of the systems: the asymmetry seems to be higher of healthy newborns than healthy adults [12]. However, our results
suggest that the time asymmetry is more evident in premature than in full-term newborns. The di�erence pointed out
by the complexity quantifiers for the PNB group can be related to parasympathetic control’s immaturity compared to
the full-term newborns, which relative sympathetic dominance in neonatal heart rate control [11, 8].

Another finding of this study is that the complexity quantifiers detect di�erences in terms of maturation of au-
tonomic functions between premature and full-term newborns. Some studies argue that HRV provides important
information on the regulation of the cardiovascular system [18], and the ANS maturation for infants [42, 7, 4]. Our
result shows that the complexity quantifiers based on ordinal partition network encoding display di�erences (p < 0.05)
between the groups in the two directions of mapping the ordinal symbols (forward and reverse). We considered the
complexity quantifiers are sensitive for detecting small di�erences between the neonates groups for embedding dimen-
sions m < 7.
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Figure 7: P-values results for the intragroup statistical comparison between forward and reverse mapping considering the

complexity measures hPE , hCPE and h
GNE . Left panels show the results for the premature group and right panels show the

results for the full-term group. Symbols below the blue line (p = 0.05) mean that there are significant statistical difference,

then the null hypothesis is rejected.

5. Conclusion
Some features about the underlying dynamical process in the HRV and how they impact on the physiological phe-

nomenon are not completely understood. It is expected that levels of ANS maturation are di�erent between premature
and full-term newborn. This study looks into that question by assessing the complexity quantifiers obtained from
ordinal partition network as classifiers for di�erent ANS maturation periods.

Our results suggest that time asymmetry is present in the ordinal patterns of RR interval time series of both groups,
as a proxy for the presence of nonlinear dynamics. In other words, the multiscale complexity measures obtained from
forward and reverse mapping detect time asymmetry in the RR intervals time series. The results show that the time
asymmetry is more present in the premature newborns than full-term newborns. This presence could be related to the
accelerations and decelerations of RR intervals interpreted as sepsis. In terms of complexity quantifiers, we observed
that they are sensitive to distinguish dynamics from the two groups, particularly considering m < 7, and this was
consistent for forward and reverse mappings. These results reinforce that entropy-related measures from networks
work well as complexity quantifiers, and can provide complementary information about the neonatal heart control
from newborns.
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Figure 8: P-values results for the intergroup statistical comparison between PNB and FNB groups considering the com-

plexity measures h
PE , hCPE and h

GNE . On the left panel we show the results for the forward mapping comparisons, and

on the right panel for the reverse mapping comparisons. Symbols below the blue line (p = 0.05) mean that there are

significant statistical difference, then the null hypothesis is rejected.
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