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Abstract
In this paper, implementation and validation of a target tracking system based on the received signal strength indicator (RSSI) 
for an indoor corridor environment of the hospital is presented. Six tracking methods of a moving target (i.e., equipment, 
robot, or human) using RSSI signals measured from two stationary reference nodes located at the different sides of the cor-
ridor are proposed. A filter with its optimal weight value is also applied to smoothen and increase the accuracy of estimated 
position results (i.e., the x-position in the corridor). Additionally, a determination approach for finding the optimal parameters 
assigned for the proposed tracking methods and the filter are also introduced. The proposed methods are implemented in 
MATLAB/Simulink, and experiments using a 2.4 GHz, IEEE 802.15.4/ZigBee wireless network have been carried out in 
the indoor corridor of the hospital building. Experimental results obtained from the corridor size of 22 m demonstrate that 
our proposed methods can automatically and efficiently track the moving target in real time. The average distance errors, in 
the case of varying and manual tuning the optimal parameters of the proposed methods and the filter, reduce from 5.14 to 
1.01 m and 4.55 to 0.86 m (i.e., two test cases; slow moving speed and double moving speed). Here, the errors decrease by 
80.35% and 81.10%, respectively. For the case using the optimal parameters determined by the optimization approach, the 
average errors can reduce to 0.97 m for the first test case and 0.78 m for the second test case, respectively.
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1 Introduction

Wireless sensor networks (WSNs) are a significant tech-
nology which has attracted much attention of academic 
researchers and real-world users [1, 2]. With advances in 
this technology, applications employing WSNs have become 
more popular [1, 2]. Localization is one of the most essen-
tial subjects in WSNs [3], since locations of sensor nodes 

or targets are critical to both network operations and appli-
cation level tasks [4, 5]. Location information of people, 
objects, and equipment is very useful for many applications 
such as elderly and patients monitoring systems in hospitals 
[6, 7], people tracking in buildings [8], mobile robot and 
equipment tracking [9], and automated control of devices. 
Focusing on medical and healthcare applications [10–13], 
in recent years, the WSN localization technology has been 
facilitating pervasive medical and healthcare services. 
For example, access to real-time location monitoring can 
enhance workflow efficiency to reduce delays required for 
critical care, especially as a mean of providing ensure safety 
for hospital patients, such as Alzheimer’s disease, psychiatry 
disorder, and infant abduction. Related to improve queuing 
at the outpatient department (OPD), the location service sys-
tem is implied to notify and display appointment directly to 
caregivers/patients to be less of a need to rely on waiting list 
by receptionists. Finally, mobile robots with their location 
information, which move in hospitals, can be used to carry 

 * Apidet Booranawong 
 apidet.boo@gmail.com; apidet.b@psu.ac.th

1 Department of Electrical Engineering, Faculty 
of Engineering, Prince of Songkla University, 
Songkhla 90110, Thailand

2 Department of Mechanical and Mechatronics Engineering, 
Faculty of Engineering, Prince of Songkla University, 
Songkhla 90110, Thailand

3 Division of Computer Engineering, The University of Aizu, 
Aizu-Wakamatsu 965-8580, Japan

/ Published online: 6 January 2022

Medical & Biological Engineering & Computing (2022) 60:439–458

http://orcid.org/0000-0002-5346-1594
http://crossmark.crossref.org/dialog/?doi=10.1007/s11517-021-02489-6&domain=pdf


1 3

meals, medical records, diagnostic samples, and other loads 
in hospitals. Especially, in COVID-19 pandemic, the mobile 
robot plays a very significant role for this situation.

One of the main challenges in WSNs is the localization 
problem. Accurate location information can lead to efficient 
decisions of the systems and applications, as mentioned 
above. Methods of localization include time of arrival (TOA), 
time of difference of arrival (TDOA), angle of arrival (AOA), 
RSSI, and some combinations of these methods [14, 15]. 
Here, TOA and the TDOA methods require timing and extra 
hardware to guarantee the precise synchronization between 
transmitting equipment and receiving equipment [16]. For 
the AOA method, it is sensitive to non-line-of-sight and 
multipath propagation effects, especially in indoor scenarios 
[17]. Hence, the AOA is preferred in outdoor environments. 
AOA measurement also requires additional hardware, such 
as an array antenna or a digital compass [15, 18]. Therefore, 
it is not appropriate for resource-limited WSNs. Among the 
mentioned methods, localization using RSSI as the power 
level of the received signal is more widely used [18, 19]. 
The major reason is that since most wireless sensor nodes 
have RSSI circuits built into them, additional hardware and 
extra cost are not required that can help to reduce the cost and 
complexity of the overall system.

Although the RSSI-based method is often used, the chal-
lenge is that the measured RSSI signal is affected by envi-
ronmental parameters including temperature, humidity, and 
other factors [40–43]. The RSSI signal is time-varying. It 
often fluctuates due to environments and multipath effects 
caused by reflection, diffraction, and scattering of radio 
signals in a physical environment, especially in an indoor 
scenario [3]. High variation of the RSSI signals can sig-
nificantly cause high levels of localization errors. Unstable 
estimated results can lead to poor decisions in the system. 
Consequently, RSSI-based methods and optimal solutions to 
solve the RSSI variation problem are required.

Based on prior studies in the research literature, methods 
related to RSSI-based estimation and localization have been 
presented. In the study by Jianwu and Lu [20], an RSSI-based 
distance estimation method for IEEE802.15.4 ZigBee networks 
was presented. A Gaussian distribution function or the Gaussian 
model was applied to check and limit measured RSSI values 
used for the distance estimation. Experiments using CC2430 
RF transceivers showed that the average estimation errors by 
the Gaussian model were 1.964 m and 3.618 m within 20 m and 
30 m of the test areas, respectively. The Gaussian model and the 
Gaussian mixture model filters were also introduced by Tseng 
and Yen [21] to remove and compensate outlier RSSI values 
before the RSSI-to-distance conversion using the log-distance 
path-loss model. Experiments using CC2540 Bluetooth chipset 
in a 6 × 8 m meeting room indicated that the average distance 
errors by both mentioned filters were 0.750 m and 0.483 m, 
respectively. Although the Gaussian models, in the studies by 

Jianwu and Lu [20] and Tseng and Yen [21], can improve the 
estimation accuracy, for the large test area as in the study by 
Jianwu and Lu [20], the errors are quite high. In contrast, for 
Tseng and Yen [21], it can be worked well in the small room.

Adaptive distance estimation in WSNs using RSSI signals 
was presented in Awad et al. [22]. Two methods to estimate the 
distance based on a statistical method (i.e., linear and exponen-
tial regression) and an artificial neural network with a back-
propagation learning method were proposed. The authors dem-
onstrated that by the experiments in a 3.5 × 5.0 m indoor area 
using CC1000 low-power RF transceivers, the average error 
distances were between 0.50 and 1.00 m, approximately. How-
ever, although the precise estimation accuracy can be achieved 
for the small test area, an artificial neural network solution 
requires time for the training phase and the experimental setup. 
In the study by Svečko et al. [23], distance estimation using 
RSSI and a particle filter for a 2.4 GHz IEEE802.15.4 standard 
were presented. Multiple antennas with two different place-
ments (i.e., parallel and circular) were also used for the receiver 
node (required extra hardware). Experimental results showed 
that, for the distances of 1 to 5 m, the particle filter method 
and antennas placed on a circular board and a parallel-board 
provided mean error values of 0.87 m and 1.34 m, respectively. 
In the study by Sung [24], the author stated that if the distance 
between two nodes could be measured or estimated accurately, 
the precise location in indoor environments could be obtained. 
The RSSI-based distance estimation using a Kalman filter was 
then proposed. Here, the variation of the measured RSSI data 
was filtered by the Kalman filter, and the log-distance path-loss 
model was then applied to convert the filtered RSSI value to the 
distance value. Experimental results using a WiFi network indi-
cated that the method in the study by Sung [24] was more accu-
rate for distance estimation. The estimation accuracy improved 
8% compared with the case without the Kalman filter. However, 
although the Kalman filter provides the improved results, it suf-
fers from high computational complexity [25].

From our research motivation and research problems 
described above, the hypothesis of this work is that devel-
oping a real-time and efficient RSSI-based tracking method 
for an indoor corridor environment of the hospital by taking 
unreliable RSSI measurements into consideration can lead 
to improve the localization and tracking accuracy. Therefore, 
in this work, we develop and test an RSSI-based tracking 
system. The contributions of our work are threefold.

• First, a real-time RSSI-based tracking system for a 
mobile target in the indoor corridor environment is 
implemented and tested. Six methods using RSSI signals 
from two reference nodes located at the opposite sides of 
the test area are proposed to track the mobile target node 
in the indoor corridor. A filter technique is also applied 
to smoothen and increase the estimation accuracy of the 
estimation results by the proposed methods.
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• Second, a determination approach for finding the optimal 
parameters assigned for the proposed tracking methods and 
the filtering method is also introduced, where the minimum 
error is obtained by minimizing the mean absolute error 
between the estimated positions and the reference positions 
or the actual positions. Here, the average estimated error of 
the proposed methods can be significantly improved.

• Third, since the proposed system is developed to sup-
port medical and healthcare services, experiments using 
a 2.4 GHz, IEEE 802.15.4/ZigBee wireless network have 
been carried out in the corridor of the hospital building, 
and the mobile target (e.g., human, equipment, or robot) 
with different moving speeds has been tested to validate 
and evaluate the proposed system.

From our study, the experimental results demonstrate 
that the proposed system with optimal value setting can 
automatically and efficiently track the moving target in real 
time, where the smallest average distance error is 0.78 m 
for the corridor size of 22 m.

The structure of this paper is as follows. Section 2 presents 
the proposed RSSI-based tracking system which includes the 
wireless communication network, RSSI-to-distance conver-
sion, position estimation by the proposed methods, filter-
ing of the estimated target positions, and a determination 
approach for finding the optimal parameters. Section 3 pro-
vides details of experiments including experimental setups, 
finding of log-distance path-loss equation, and performance 
metrics. Section 4 provides experimental results and discus-
sion. We finally conclude the paper in Section 5.

2  The proposed RSSI‑based tracking system

A. Wireless communication network

The RSSI-based tracking system develped in this work is 
shown in Fig. 1. There are three wireless nodes connected 

togather including two reference nodes fixed at known positions 
(e.g., at the different sides of a corridor), and an unknown target 
node to be estimated its location. We have three processes to 
track the target node: the RSSI measurement and collection, the 
RSSI-to-distance conversion using the log-distance path-loss 
equation, and the position estimation by the proposed methods.

To determine the target node position, first, the target node 
sends a request packet to the reference nodes (i.e., the ref. 
node 1 and the ref. node 2) by broadcasting. Here, the target 
node ID is also encapsulated in the request packet. Upon 
receiving the request packet, the reference nodes suddenly 
generate a beacon packet and then send such a packet back 
to the target node, continuously. By receiving the beacon 
packets from both reference nodes, the target node can read 
the RSSI levels from its radio circuit. The target node finally 
transfers the RSSI data to the computer via wire connection.

B. RSSI-to-distance conversion

After the computer receiving the RSSI data from the ref-
erence nodes, the RSSI value is converted to the distance 
value using the log-distance path-loss equation [26–28], as 
expressed by (1) to (5), where RSSId is the measured RSSI 
level at the distance d (i.e., the distance between the refer-
ence node and the target node), RSSId0 is the RSSI level at 
the reference distance ( d0 ; d0 = 1m ), and � is the path-loss 
exponent indicating the decrease of received signal strength 
along with distance. We note that � is the significant param-
eter that corresponds to the power loss of the signals affected 
by environmental factors. By the Eqs. (1) to (5), the average 
received signal strength level decreases logarithmically with 
distance. Both RSSId0 and � can be determined by collecting 
the RSSI data in the test field, where the distances between 
the transmitter to the receiver are known.

(1)RSSId = RSSId0
−

[
10 × � × log10

(
d

d0

)]

Fig. 1  The RSSI-based tracking 
system
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 III. Position estimation by the proposed methods

After, the distance values (i.e., d1 distance and d2 distance as 
in Fig. 1) are determined. The proposed methods are applied to 
estimate the position of the target node. Here, six solutions for 
estimating the target positions in terms of the distance in x-axis 
(distance from the reference node 1) are introduced. They are 
described below. We note that traditional solutions (like the 
solutions 1 and 2) to more efficient solutions are presented.

Solution 1:

For the solution 1 in (6), the estimated target position 
( Pet,i ) is equal to the distance between the target node and the 
referent node 1 ( d1,i ; d1,i is calculated from (5)), where i is 
the number of iteration or the RSSI sample index. By (6), the 
estimated result is the distance from the reference node 1.

Solution 2:

(2)
RSSId = RSSId0

−
(
10 × � × log10(d)

)
+
(
10 × � × log10

(
d0
))

(3)
RSSId = RSSId0

−
(
10 × � × log10(d)

)
+
(
10 × � × log10(1)

)

(4)RSSId = RSSId0
−
(
10 × � × log10(d)

)

(5)d = 10

RSSId0
−RSSI

d

10×�

(6)Pet,i = d1,i

(7)Pet,i =
||ref .1 to ref .2 distance − d2,i

||

For the solution 2 in (7) and (8), Pet,i is equal to the differ-
ent distance between the reference node1-to-reference node 
2 distance ( ref .1 to ref .2 distance) and the distance between 
the target node and the reference node 2 ( d2,i ; d2,i is calcu-
lated from (5)). By the solution 2, the estimated result is 
determined by giving the priority to the RSSI signal received 
from the reference node 2. We note that, since both d1,i and 
d2,i are calculated from the RSSI values which often fluc-
tuate over time due to environmental factors [40–43] and 
multipath effects caused by reflection, diffraction, and scat-
tering of radio signals in a physical environment [3, 29, 30]. 
Such RSSI variations can cause significantly high levels of 
estimated distance errors [31]. Therefore, by the solution 
1 (giving the priority to the RSSI signal received from the 
reference node 1) and the solution 2, results will demonstrate 
that which and when the reference nodes 1 and 2 should be 
considered.

Solution 3:

For the solution 3 in (9), Pet,i is the average result 
between the outputs of the solution 1 ( d1,i ) and the solution 
2 ( ||ref .1 to ref .2 distance − d2,i

|| ). Here, (9) is calculated 
by taking the information of d1,i and d2,i into consideration, 
where there is no priority assigned for any reference nodes.

Solution 4:

(8)ref .1 to ref .2 distance = Ref .2position − Ref .1position

(9)Pet,i =
d1,i +

||ref .1 to ref .2 distance − d2,i
||

2

Fig. 2  The proposed solution 6 in (12) and the filter in (13) implemented on MATLAB/Simulink
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For the solution 4 in (10), Pet,i is determined based 
on the weighted centroid localization concept [32, 33]. 
This solution assigns a greater weight (i.e., W1 = 1∕d1,i 
or W2 = 1∕d2,i ) to the reference node closest to the target 
node, where Ref .1position and Ref .2position are the reference 
node positions in x-axis (i.e., the constant values depend 
on the experimental setup). Here, the shorter distance (i.e., 
strong RSSI value) has more weight value than the longer 
distance (i.e., weak RSSI value). Thus, W and d are inversely 
proportional.

Solution 5:

(10)

Pet,i =

∑n

j=1
(Wj,i × Ref .jposition)∑n

j=1
(Wj,i)

;n = number of ref . node

Pet,i =

�
(W1,i × Ref .1position)(W2,i × Ref .2position)

W1,i +W2,i

�

Pet,i =

⎛⎜⎜⎜⎝

(
1

d1,i
× Ref .1position)(

1

d2,i
× Ref .2position)

1

d1,i
+

1

d2,i

⎞⎟⎟⎟⎠
;

where W1,i =
1

d1,i
and W2,i =

1

d2,i

(11)

P
et,i =

(
W × d1,i

)
+
(
(1 −W) × ||ref.1 to ref.2 distance − d2,i

||
)

W =

{
1, RSSI

d1,i
≥ RSSI

d2,i

0,Else

For the solution 5 in (11), Pet,i is determined based on 
the condition of the RSSI value. If RSSId1,i ≥ RSSId2,i (i.e., 
RSSId1,i is stronger than RSSId2,i ), a weight ( W ) is set to 1 and 
d1,i is used as the estimation result. On the other hand, W  is 
set to 0, and ||ref .1 to ref .2 distance − d2,i

|| is used for the 
estimation result instead. By the solution in (11), the result 
is automatically provided based on the RSSI signal level. 
We note that if W = 0.5 , the estimated target position is then 

Fig. 3  A flowchart of the pro-
posed methods with the filter

Table 1  Optimization information for determining the optimal values 
of � and �

Description Parameter/equation/technique

(1) Position estimation by the 
solution 6

Inputs: RSSI1,i and RSSI2,i
Estimated positions:

Pet,i =

∑n

j=1

�
(1−�)

RSSImax−RSSIj,i×Ref .jposition

�
∑n

j=1
(1−�)

RSSImax−RSSIj,i

Objective function: Minimize MAE =
∑n

i=1�Pet,i−xactual,i�
n

Where xactual,i is the actual target 
distance ( xactual)

Subject to the constraint: 0 ≤ � ≤ 1

Solving method: Evolutionary
Output: Optimal value of �
(2) Filter
Input: Pet,i

Smoothed value: Ps_et,i = � × Pet,i + (1 − �) × Ps_et,i−1

Objective function: Minimize MAE =
∑n

i=1�Ps_et,i−xactual,i�
n

Subject to the constraint: 0 ≤ � ≤ 1

Solving method: Evolutionary
Output: Optimal value of �
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equal to the result obtained from the solution 3 in (9). Thus, 
the solutions 3 and 5 can be integrated together.

Solution 6:

Finally, in the solution 6 in (12), Pet,i is determined based 
on the concept of the relative span exponential weighted 
localization [34, 35], where the weight is obtained by the 
relative placement of the RSSI value within the span of all 
the RSSI values measured by the target node [36]. Here, the 
solution 6 favors the reference node which exhibits higher 
RSSI values and therefore are likely to be closer to the target 
node. This is obtained using the weighting factor � , accord-
ing to the exponentially moving average concept. We note 
that, by (12), RSSImax is the maximum value in the span of 
the RSSI values measured by the target node. Also, in this 
work, � will be varied during the experiment where the opti-
mal value can be determined when the estimated distance 
error reaches the minimum value.

 IV. Filtering of the estimated target position

We also apply the filter to the estimated target position 
( Pet,i ) as introduced in the previous section. The filter is 
used to reduce the variation of the Pet,i value which is deter-
mined from raw RSSI signals (sample-by-sample). Thus, 

(12)

Pet,i =

∑n

j=1
(Wj,i × Ref .jposition)∑n

j=1
(Wj,i)

;n = number of ref . node

Wj,i = (1 − �)
RSSImax−RSSIj,i

Pet,i =

∑n

j=1
((1 − �)

RSSImax−RSSIj,i × Ref .jposition)

∑n

j=1
(1 − �)

RSSImax−RSSIj,i

Pet,i =
((1 − �)RSSImax−RSSI1,i × Ref .1position) + ((1 − �)RSSImax−RSSI2,i × Ref .2position)

((1 − �)RSSImax−RSSI1,i ) + ((1 − �)RSSImax−RSSI2,i )

the Pet,i data stream and its average values then will be 
improved. The output value after applying the exponential 
weighted moving average filter ( Ps_et,i ) is shown in (13), 
where Ps_et,i is the smoothed value at the sample number i , 
and � is the weighting factor. By (13), the result depends on 
the previous smoothed value ( Ps_et,i−1 ) and the recent Pet,i 
value multiplied by the weighting factor which is between 
0 and 1. � close to 1 gives high priority to recent changes 
in the Pet,i value, while � close to 0 indicates that the previ-
ous output Ps_et,i−1 plays a role in the calculation. In this 
work, � is also varied during the experiment, and the opti-
mal value is corresponding to the value which gives the 
smallest average distance error. Derivation of (13) is also 
provided below.

By substituting Pet,i−1 , Pet,i−2 …, and Pet,1 into (13), the 
general form can be obtained, as shown in (14).

An example of the solution 6 in (12) and the filter in (13) 
implemented on MATLAB/Simulink is also illustrated in 

(13)Ps_et,i = � × Pet,i + (1 − �) × Ps_et,i−1

(14)

P
s_et,i = � × P

et,i + � × (1 − �) × [� × P
et,i−1 + (1 − �) × P

s_et,i−2]

= � × P
et,i + � × (1 − �) × P

et,i−1 + (1 − �)2 × P
s_et,i−2

= � × P
et,i + � × (1 − �) × P

et,i−1 + (1 − �)2 × [� × P
et,i−2 + (1 − �) × P

s_et,i−3]

= � × P
et,i + � × (1 − �) × P

et,i−1 + (1 − �)2 × P
et,i−2 + (1 − �)3 × P

s_et,i−3

.

.

.

P
s_et,i = � × P

et,i + � × (1 − �) × P
et,i−1 + � × (1 − �)2 × P

et,i−2 +⋯ + � × (1 − �)i−1 × P
et,1

Fig. 4  A flowchart for determining the optimal values of � and �
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Fig. 2. Flowchart of the proposed methods with the filter is 
also presented in Fig. 3.

E. A determination approach for finding the optimal param-
eters

As we mentioned above, for the solution 6 in (12) and the fil-
ter in (13), generally, the values of � and � are varied by manual 
tuning during the experiment, and the optimal values can be 

obtained when the average estimated distance error reaches the 
minimum value. However, the manual tuning technique is not 
the appropriate solution since it requires time and inaccurate 
result. Therefore, we also propose a determination approach 
for finding the optimal values of � and � using the optimi-
zation technique, where the optimal values are determined 
by minimizing the mean absolute error (MAE) as the error 
between the estimated positions and the reference positions (or 
the actual positions). In this work, optimization problems are 

Fig. 5  The test field with the 
equipment. a Corridor in the 
hospital building. b Equipment

(b) Equipment

(a) Corridor in the hospital building
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implemented and solved using the Solver optimization tool in 
Excel program. Table 1 provides the optimization information, 
and Fig. 4 illustrates a flowchart for determining the optimal � 
and � . Here, the MAE is minimized by adjusting the values of 
� and � where they are in the range between 0 and 1.

We note that, in our approach, we require the off-line phase 
or the training phase. In the beginning, the mobile target node 
moves from the starting point to the destination point in the 
test field (i.e., we know the moving route; the reference posi-
tions or the actual positions). Then, the solution 6 and the 
filter are applied, while the optimal values of � and � are deter-
mined by the optimization approach as illustrated in Fig. 4. 
Finally, for the online phase or the testing phase, the optimal 
values of � and � determined from the first phase are used.

3  Experiments

A. Experimental setup

As we mentioned in the introduction section, the proposed 
system can be applied for medical and healthcare services, like 

patient and mobile robot tracking systems in hospitals. Thus, 
in our test, experiments have been performed in the hospital 
building as shown in Fig. 5. Figure 6 also shows the layout of 
the test field. Here, two reference nodes are fixed at the defined 
positions xref .1 = 1 m and xref .2 = 22 m (i.e., Ref .1position and 
Ref .2position ), respectively. Hence, ref .1 to ref .2 distance in 
(8) is equal to 21 m. The moving target node connected to the 
computer is also between these two reference nodes. All nodes 
are placed 1 m above the floor level.

We define that there are two test cases. In the first test 
case, the target node moves from the position xactual = 
2 m (i.e., near the reference node 1) to the position xactual 
= 21 m (i.e., near the reference node 2) with a low mov-
ing speed (see the moving direction in Fig. 5). For the 
second test case, the target node moves from the position 
xactual = 2 m to the position xactual = 21 m with higher 
moving speed (i.e., double speed of the first test case, 
approximately).

Low-power Z1 modules [37] are employed in our experi-
ments, as shown in Fig. 5(b). Z1 is equipped with a second-
generation MSP430F2617 low-power microcontroller and 
a CC2420 [38] RF transceiver, 2.4 GHz IEEE 802.15.4 

Fig. 6  The layout of the test 
field in Fig. 5

Fig. 7  The path-loss equation of 
the test field in Fig. 5
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standard with 250-kbps data rate, and 0 dBm output power. 
Z1 sensor nodes can be applied for many wireless sensor 
network applications such as environmental monitoring, 
personal healthcare monitoring, emergency detection, and 
Internet of Thing (IoT) scenarios [37]. In our system, Z1 
(the reference node) is attached with a tripod and connected 
to the power source through a serial port. A carrier-sense 
multiple-access/collision-avoidance (CSMA/CA) proto-
col [39] is also used for medium access, and channel 26 
(2.480 GHz) is operated. In our experiments, we make sure 
that there is no signal interference from the WiFi channels 
in the corridor environments, since we first monitor them by 
using the WiFi analyzer software. Most of WLAN devices 
deployed in the test field use the channels 1, 6, and 11 as 
corresponding to the channel frequencies of 2.412, 2.437, 
and 2.462 GHz. Therefore, during the experiment, we set 
the different channel from the WLAN devices, to avoid sig-
nal interference.

We note that, in this paper, we concentrate on sampling 
RSSI signals and deciding the location of targets or patients. 

In the next step of this work, we are going to collect environ-
mental information using sensors to support patient's condi-
tion in addition to tracking.

B. Finding of log-distance path-loss equation

As introduced in Sect. 2 (B), the measured RSSI values 
collected from the test field are converted to the distance 
values using the log-distance path-loss equation as in (1) to 
(5) that it is used for the solutions 1 to 5 in Sect. 2 (C)). To 
determine the path-loss equation for the test field in Fig. 5, 
in the beginning, one transmitter node and one receiver 
node are used to measure RSSI data at different distances 
throughout the corridor. At each distance, the receiver node 
collects 10,000 RSSI data samples. Figure 7 is a plot of the 
average RSSI in dBm units versus the distance in meters 
(i.e., a logarithmic scale). By applying linear curve fitting, 
the path-loss equations can be found. Here, from (1) and (5), 
� or the path-loss exponent of the test field (i.e., the slope 

Fig. 8  Raw RSSI signals 
received from the reference 
node 1 and the reference node 
2; a the first test case and b the 
second test case
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Fig. 9  The actual target posi-
tions ( xactual ) of the target node 
during the experiment and the 
estimated target positions before 
and after smoothing ( P

et,i and 
P
s_et,i with � = 0.05 ); a the first 

test case and b the second test 
case
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of the graph) is 2.5334, and RSSId0 is −14.046 dBm with 
R2 of 0.9358.

 III. Performance metrics

To evaluate the estimation accuracy of the proposed system, 
the actual target position ( xactual ) of the target node during the 
experiment and the estimated target position after smoothing 
( Ps_et,i ) are reported. An error distance defined in (15) is also 
used as the performance metric. It is the deference between 
xactual,i and Ps_et,i . Additionally, an average error distance 
defined in (16) is provided, where N is the number of samples 
to be averaged.

(15)Error distance =

√
(xactual,i − Ps_et,i)

2

4  Experimental results and discussion

The experimental results and discussion are separated into 
two parts: the part 1) results by the manual tuning of � and 
� , and the part 2) results by the optimization approach. In 
the part 1), both values of � and � are varied, and we show 
the best values which provide the minimum value of the 
average error distances. For the part 2, the optimization 
approach for finding the optimal parameters of � and � in 
Sect. 2 (E) is applied.

(16)Avg.error distance =
1

N

∑N

i=1

√
(xactual,i − P

s_et,i)
2

Fig. 10  The average error dis-
tances by the solution 1 to the 
solution 6 with � = 0.05 ; a the 
first test case and b the second 
test case
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We note that, as mentioned in Sect. 3, there are two major 
test cases of experiments. For the part 2), the first test case 
(i.e., the low moving speed case) is used as the off-line phase 
or the training phase for finding the optimal � and � (we 
know the reference positions), while the section test case 
(i.e., the high moving speed case) is as the online phase or 
the testing phase.

Part 1: Results by the manual tuning of � and � 

The raw RSSI signals measured from the first test case 
and the second test case (i.e., double moving speed) are 
shown in Fig. 8. The actual target positions ( xactual ) of the 
target node during the experiment, the estimated target 

positions before smoothing ( Pet,i ), and the estimated tar-
get positions after smoothing ( Ps_et,i ) with the weighting 
factor � (in (13)) of 0.05 (i.e., the best value by manual 
tuning) for both test cases are shown in Fig. 9. We note 
that, for the solution 6, the weighting factor � (in (12)) 
is set to 0.1 (i.e., the best value by manual tuning). Fig-
ure 10 also demonstrates the average error distances by 
the solution 1 to the solution 6 with � of 0.05 for both 
test cases.

The experimental results indicate that in Fig. 8, since the 
moving target moves from the position xactual = 2 m (i.e., 
near the reference node 1; at 1 m) to the position  xactual = 
21 m (i.e., near the reference node 2; at 22 m), the RSSI 
signals received from the reference node 1 decreases with 

Fig. 11  Examples of the average 
error distances by the solution 4 
when varying the weighting fac-
tor � of the filter in (13); a the 
first test case and b the second 
test case
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the distance increase, while in contrast, the RSSI signals 
received from the reference node 2 increases. Also, as men-
tioned before, the moving target in the first test case has 
lower moving speed than the second test case. Thus, as seen 
in the graph, in the first test case, the target requires more 
time to reach the destination and there are higher collected 
RSSI samples (i.e., 468 and 195 RSSI samples for the first 
and the second test cases, respectively).

In Fig. 9, the experimental results demonstrates that, for 
both test cases, using the solutions 1 and 2 which consider 
only the RSSI signal received from the reference node 1 or 
the reference node 2, they cannot efficiently track the actual 
target positions. Here, the solution 1 provides a good track-
ing result when the target is near the reference node 1’s loca-
tion. On the other hand, the solution 2 is better when the 
target is close to the reference node 2. The solutions 3 to 6 
which use RSSI information from both reference nodes have 
better results than the solutions 1 and 2. Here, the solution 
3 which is the combination of the solutions 1 and 2 and 
the solution 5 which estimates the target positions based 
on the selection of the RSSI level can be used to track the 

moving target, since their estimated results are more close 
to the actual target positions. However, we have found that 
the solutions 4 and 6 which are based on the weighted cen-
troid localization and the relative span exponential weighted 
localization concept significantly provide the best results, 
since they can efficiently track the actual target positions 
with small errors. This summary can also be confirmed by 
the results in Fig. 10. The average error distance results from 
both test cases reveal that there are three groups of the esti-
mation accuracy of the proposed solutions; the solutions 1 
and 2, the solutions 3 and 5, the solutions 4 and 6 (more 
accurate solution), respectively. The average distance errors 
reduce from 5.14 (the solution 2) to 1.01 m (the solution 6) 
and 4.55 (the solution 2) to 0.86 m (the solution 4) for the 
first test case and the second test case. Here, the average 
errors decrease by 81.365% and 80.854%, respectively.

Figure 11 illustrates examples of the average error dis-
tances by the solution 4 for both test cases when varying the 
weighting factor � of the filter in (13), and Fig. 12 also shows 
examples of the estimated target positions by the solution 4 
when varying � . These examples indicate that the minimum 

Fig. 12  Examples of the 
estimated target positions by 
the solution 4 when varying the 
weighting factor � ; a the first 
test case and b the second test 
case
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error can be obtained by using the weighting factor � of 0.05. 
Therefore, this is the reason why, in Figs. 9 and 10, � = 0.05 
is used and displayed for consideration. We note that, from 
Fig. 11, at � = 0.05 , the average errors are 1.11 m and 0.86 m 
that they are corresponding to the results in Fig. 10.

Figure 13 shows examples of the average error dis-
tances by the solution 6 for both test cases when vary-
ing the weighting factor � in (12). Here, the experimental 
results indicate that, to efficiently use the solution 6 as 
based on the relative span exponential weighted localiza-
tion concept, the optimal � value in the weight function 
(i.e., Wj,i = (1 − �)RSSImax−RSSIj,i ) should be determined and 
used. In our cases, � = 0.1 provides the best results. We 
note that, from the graph, at � = 0.1 , the average errors 

are 1.01 m and 0.87 m that they are corresponding to the 
results in Fig. 10.

Part 2: Results by the optimization approach

The average error distance results, when the optimiza-
tion approach for finding the optimal parameters of � (for 
the solution 6) and � (for the filter) in Sect. 2 (E) is applied, 
are demonstrated in Fig. 14. As we mentioned before, the 
first test case (i.e., the low moving speed case) is used as 
the training phase for finding the optimal � and � (we know 
the reference distance), while the second test case (i.e., 
the high moving speed case) is as the testing phase. We 
have found that after applying the optimization approach 

Fig. 13  Examples of the average 
error distances by the solution 6 
when varying the weighting fac-
tor � of the solution 6 in (12); 
a the first test case and b the 
second test case
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to the first test case, the optimal value of � is equal to 
0.0826 (by manual tuning, it is 0.1 as in Fig. 13), and the 

optimal value of � is 0.0253 (by manual tuning, it is 0.05 
as in Fig. 11). The implementation of the determination 
approach for finding the optimal value of � and � is also 
illustrated in Appendix.

Figure 14 indicates that using the optimal values of � 
and � , the average error distances are 0.97 m and 0.78 m, 
respectively; they are lower than the case manual tuning 
as presented in the part 1. Although there is not much 
decrease compared with the manual tuning case, the major 
advantages are that the smallest error can be automatically 
obtained and manual tuning time by researchers/users is 
not required. We note that from Fig. 14, we have also 
found that, if the filter in (13) is not applied, the average 
error distances by the solution 6 with the optimal value 
of � are equal to 1.943 m (i.e., the first test case) and 
2.236 m (i.e., the second test case), respectively. After 
applying the filter with � of 0.0253, the average errors 
significantly reduce to 0.97 m and 0.78 m, respectively. 
These results confirm the importance and the significance 
of the filter method. Finally, Fig. 15 also illustrates the 
actual target positions ( xactual ) of the target node during 
the experiment and the estimated target positions using � 
of 0.0826 and � of 0.0253 for both test cases. Here, we can 
see that the proposed solution 6 and the filter with their 
optimal parameter setting can efficiently track the mobile 
target node, where the estimated results are more close to 
the actual target positions.

Fig. 15  The actual target posi-
tions ( xactual ) of the target node 
during the experiment and the 
estimated target positions using 
� of 0.0826 and � of 0.0253; 
a the first test case and b the 
second test case
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Fig. 14  The average error distances by the solution 6 without and 
with the optimization approach in Sect. 2 (E); a the first test case and 
b the second test case
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5  Conclusions

Implementation and validation of the real-time mobile target 
tracking system based on RSSI signals is introduced in this 
paper. We propose six solutions for target tracking in the 
hospital building using RSSIs received from two reference 
nodes located at the opposite sides of the corridor.The filter 
is also applied to smoothen and improve the estimation posi-
tion accuracy. Additionally, the determination approach for 

finding the optimal parameters assigned for the proposed 
tracking solutions and the filter is also introduced. Experi-
mental results using the 2.4 GHz, IEEE 802.15.4/ZigBee 
wireless network indicate that the proposed solutions with 
the filter can automatically and efficiently track the moving 
target. From our test scenarios with the 22-m test field, the 
smallest distance error is 0.78 m.

In future work, the proposed system will be tested and 
evaluated in the case that the mobile target moves with 

Fig. 16  Implementation of the 
determination approach for find-
ing the optimal value of α and λ

Note: Calculation examples 
The calculation of , (12); D7 = ((((1-$D$3)^((MAX(B7:C7))-B7))*1) + (((1-$D$3)^((MAX(B7:C7))-
C7))*22)) / (((1-$D$3)^((MAX(B7:C7))-B7)) + ((1-$D$3)^((MAX(B7:C7))-C7))) 
The calculation of _ , (13); E7 = (E$3*D7) + ((1-E$3)*E6) 
G7 = ABS(D7-F7), H7 = ABS(E7-F7), and G3 and H3 are the average values of G and H columns, respectively.
The above approach can be used both in mobile and stop conditions, by assigning the tracking path of the target
in the training phase (i.e., the actual target positions or the reference positions).

(a) A snapshot of Excel spreadsheet

(b) Solver parameters; the MAE (H3) is minimized by adjusting the value of (E3), where 
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various movement speeds, movement patterns (i.e., circle, 
zig-zag), and environments. In addition, the proposed track-
ing solution using RSSI will be extended to reduce the esti-
mation error more, and the filtering methods based on the 
time-series concept will be developed. Finally, for practi-
cal use, we will implement the proposed algorithms in a 
nodeMCU like Arduino to test the proposed system in real 
situations.

Appendix: The determination of the optimal 
values of ̨  and �

The implementation of the determination approach for find-
ing the optimal value of � and � is illustrated as an example 
here. As we mentioned before, the first test case (i.e., the 
low moving speed case) is used as the training phase for 
finding the optimal value of � and � , where the actual target 
positions are known, while the second test case is as the 
testing phase. A snapshot of Excel spreadsheet is shown in 
Fig. 16, where Pet,i (12), Ps_et,i (13), � , and � are determined. 
The Solver optimization tool with setting information is also 
shown. Here, the MAE is minimized by adjusting the values 
of � and � , where they are in the range between 0 and 1, 
and their optimal values are automatically determined. The 
results indicate that the optimal value of α and λ are equal 
to 0.0826 and 0.0253, respectively.
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