
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11517-022-02549-5

ORIGINAL ARTICLE

Who was at risk for COVID‑19 late in the US pandemic? Insights 
from a population health machine learning model

Elijah A. Adeoye1  · Yelena Rozenfeld1 · Jennifer Beam1 · Karen Boudreau1 · Emily J. Cox2 · James M. Scanlan3

Received: 14 October 2021 / Accepted: 6 March 2022 
© International Federation for Medical and Biological Engineering 2022

Abstract
Notable discrepancies in vulnerability to COVID-19 infection have been identified between specific population groups and regions 
in the USA. The purpose of this study was to estimate the likelihood of COVID-19 infection using a machine-learning algorithm 
that can be updated continuously based on health care data. Patient records were extracted for all COVID-19 nasal swab PCR tests 
performed within the Providence St. Joseph Health system from February to October of 2020. A total of 316,599 participants were 
included in this study, and approximately 7.7% (n = 24,358) tested positive for COVID-19. A gradient boosting model, LightGBM 
(LGBM), predicted risk of initial infection with an area under the receiver operating characteristic curve of 0.819. Factors that 
predicted infection were cough, fever, being a member of the Hispanic or Latino community, being Spanish speaking, having a 
history of diabetes or dementia, and living in a neighborhood with housing insecurity. A model trained on sociodemographic, 
environmental, and medical history data performed well in predicting risk of a positive COVID-19 test. This model could be used 
to tailor education, public health policy, and resources for communities that are at the greatest risk of infection.

Keywords COVID-19 · Infection · Risk · Social determinants of health

1 Introduction

Early in the coronavirus disease 2019 (COVID-19) pan-
demic, a popular interest in predicting risk of infection 
gave rise to mobile applications and tools for predicting 
exposure risk. These tools used factors such as medi-
cal history, mask compliance, location, demographics, 
and social activity to predict likelihood of infection or 
mortality [1]. As the pandemic progressed, systematic 
reviews elucidated additional individual- and population-
level characteristics associated with disease progression 
and mortality. At-risk groups identified by our group 

and others included people who were older, had labora-
tory markers of kidney or liver dysfunction, were current 
smokers, had pre-existing cardiovascular disease, or were 
Asian, Black, Hispanic or Latino, and non-English-speak-
ing [2–4]. These early efforts to categorize at-risk popula-
tions were instructive and shaped the initial clinical and 
population-level responses to the pandemic. However, 
they generally relied on traditional statistical techniques 
and limited amounts of data available at the time.

In parallel with simpler prediction tools, artificial intel-
ligence (AI) has been used since the early days of the pan-
demic to classify and predict risk. For example, a recent 
review of 130 publications found 71 papers related to com-
putational epidemiology of COVID-19, 40 papers related to 
early detection and diagnosis of COVID-19, and 19 papers 
related to COVID-19 disease progression [5]. Common tech-
niques used by these studies were deep learning and transfer 
learning [5]. Elsewhere, an analysis of 264 papers found 
that the convolutional neural network method was the most 
frequently applied AI technique in COVID-19 studies, fol-
lowed by random forest classifier, ResNet, Support Vector 
Machine, and deep learning [6]. These studies described the 
rapid expansion in machine learning and AI tools during the 
COVID-19 pandemic.
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In 2021, mass vaccinations altered risk of COVID-19 
infection for much of the US population, but did not elimi-
nate the need for risk prediction. Emergence of vaccine-elud-
ing variants, barriers to accessing vaccines, and widespread 
vaccine refusal have made it important to continuously 
re-evaluate risk on an ongoing basis, particularly because 
disparities in vaccine acceptance may overlap with dispari-
ties in infection and/or severe outcomes. For example, older 
individuals (who were the first to be offered vaccines) are 
more likely to accept COVID-19 vaccinations than younger 
individuals, and acceptance rates are highest among Asian 
and Alaska Native/American Indian populations, and lowest 
among Black people [7, 8].

In 2020, we used logistic regression to examine risk fac-
tors associated with COVID-19 infection in 34,503 cases 
from the Providence health system [2]. As the pandemic 
evolved, we recognized the need for updated risk assess-
ments and the utility of AI in risk assessment across our 
growing numbers of cases. Thus, the present paper updates 
our previous risk predictions [2] using a more sophisticated 
machine learning technique in a larger sample of patient 
data. Our findings confirm the need for ongoing risk assess-
ment and focusing public resources on the highest-risk 
communities.

2  Methods

2.1  Ethical approval

The Providence Institutional Review Board (IRB) approved 
this study and waived the requirement for written informed 
consent (IRB identifier STUDY2020000220). The study was 
conducted in compliance with IRB rules and the Declaration 
of Helsinki.

2.2  Data sources

Data for the development and validation data sets were 
collected from the electronic medical record (EMR) of 
Providence St. Joseph Health. Records were included for 
all people from Alaska, Washington, Oregon, Montana, and 
California who had at least one COVID-19 PCR test result 
on a nasal swab sample between February 21, 2020, and 
October 20, 2020. People with at least one positive test were 
coded as a positive for infection; people with exclusively 
negative tests were coded as negative for infection. Loca-
tion outcomes were evaluated by linking EMR geocoded 
data to data from the US Census Bureau’s 2018 American 
Community Survey at the census block group or tract level 
as previously described [2].

Two rounds of data splitting were employed. In initial 
tests, data were split into training and test sets with a 75/25 

ratio, respectively, and a random seed for reproducibility 
(Fig. 1). After we determined that a light gradient boosted 
model (LGBM) produced the most accurate results, we 
performed additional modeling with a train, test, and vali-
dation split (80/10/10 ratio, respectively). This was done 
(1) to increase the size of the training set and (2) to avoid 
overfitting by exploring its performance in both a test and a 
validation set. Two sets of training data were also generated: 
with clinical symptoms (fever, cough, myalgia, sore throat, 
chills, and shortness of breath) and without (Fig. 1).

2.3  Data analysis

2.3.1  Computational environment

All major statistical analyses were performed using Python 
versions 3.6.12 on a 64-bit computer and 3.6.10 leveraging 
a GPU instance in the Azure Machine Learning ecosystem.

2.3.2  Data cleaning

Continuous variables were standardized or log normalized 
to address skew and the influence of large values and out-
liers on the predictive power of trained models. Count of 
mental health diagnoses, comorbidities, community size, 
polypharmacy, and population density each had a skew of 
2.58, 1.56, 28.85, 1.04, and − 0.44, respectively. Scaling did 
not impact the skew for any of these variables. However, 
log transforming community size reduced its skewness to 
4.39. Categorical variables were encoded, and dummy vari-
ables were created for those variables with more than two 
classes. Variables were treated mostly as missing not at ran-
dom (MNAR) except body mass index (BMI) and gender. 
Missing data for MNAR variables were coded as a separate 
category, e.g. “Unknown.” For BMI, median imputation was 
used to fill in the large amount of missing data (n = 25,646 
from initial participant pool, approximately 8%). Gender 
was analyzed as legal sex, and missing values were dropped 
(n = 119; 0.04% of initial participant pool).

2.3.3  Hyperparameter tuning and cross validation

We used a randomized search approach, with cross valida-
tion, to tune and identify critical hyperparameters for each 
model (Supplementary Material Table 1). A set of hyperpa-
rameters that produced the best area under the curve (AUC) 
on the training set were selected as part of the final ensem-
ble. This was performed with a repeated, stratified k-fold 
cross validation with 10 splits and 3 repeats. A random seed 
was set for reproducibility of the cross-validation step. We 
chose a randomized approach due to the computationally 
intensive nature of the alternative, more comprehensive 
grid search approach. We report the best hyperparameters 
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selected for the best model with symptoms (Supplementary 
Material Table 1).

2.3.4  Data augmentation

Most COVID-19 test results were negative. Thus, differ-
ent data augmentation techniques were applied to address 
class imbalance by over-sampling and/or down-sampling 
the minority and majority class, respectively. This was done 
to address model bias towards the negative class (i.e., the 
population of persons who tested negative for COVID-19), 
which is important to prevent the model from learning to 
predict the dominant negative class. We used a synthetic 
minority oversampling technique (SMOTE) and case–con-
trol approach to augment the training data as part of mul-
tiple modeling experiments. SMOTE is used to create syn-
thetic data that is close, or nearest neighbor, to the minority 
class in the feature space [9]. We also experimented with 
a case–control (CC) approach typically used in epidemio-
logical studies to create a 1:1 match by down-sampling 
the majority class (COVID-19 negative) to the size of the 

minority class. Negative classes were selected using a simple 
random sample method without replacement. This strategy, 
unlike SMOTE techniques, uses real, non-synthetic data 
for model training. These approaches helped to create a 1:1 
match of the negative (majority) class and the positive class. 
No augmentation was performed on the validation/test data 
set.

Twelve experiments were conducted such that at each 
experiment, models were fitted on the training set depending 
on whether data augmentation and dimensionality reduction 
techniques were applied to that set (Fig. 1). For dimension-
ality reduction, we applied principal component analysis 
(PCA) to compute the minimal set of principal components 
that explained 95% of the variance in the data. Recursive 
feature elimination (RFE) approach was also used, as part 
of different experiments, to select the minimal set of pre-
dictors that were most predictive for a COVID-19 positive 
test. Dimensionality reduction techniques were also applied 
on the test/validation sets; however, no augmentation was 
applied to the validation/test data set. PCA was not applied 
to comparative logistic regression models.

Data preprocessing
N = 316,599

COVID-19 positive N = 
24,358

Data cleaning and train/test/validation split^
Split into train, test, and validation sets (75/25)

Train N = 237,449
Train_negative = 219,282; Train_positive = 18,167

Model training and hyperparameter tuning 

SMOTE augmentation

PCA

Ensemble

RFE

Ensemble
LR

None

Ensemble
LR

Case-control augmentation^
Train_negative = 18,167; Train_positive = 18,167

PCA

Ensemble

RFE

Ensemble
LR

None

Ensemble
LGBM*

LR 

LGBM with symptoms

Model explainability (SHAP 
scores) (Figure 2)

LGBM without symptoms

Model explainability (SHAP 
scores) (Figure 3)

No augmentation

None

RFE
LR

80/10/10 splits

Fig. 1  Schematic of predictive modeling experiments performed 
to predict risk of initial COVID-19 infection. Legend: ^LGBM out-
performed other models on the 25% test set. Thus, we re-trained 
an LGBM model on a 80/10/10 split (1) to increase the size of the 
training set and (2) to avoid overfitting by exploring its perfor-
mance in both a test and a validation set. The training samples, for 
the 80% split, was 253,279 (train_negative = 233,889; train_posi-
tive = 19,390). After case–control augmentation (downsampling the 

training samples count to the positive samples count), we arrived at a 
train_negative = 19,390 and train_positive = 19,390. RFE = recursive 
feature elimination, LR = logistic regression, LGBM = light gradient 
boosting machine, PCA  = principal component analysis, SMOTE  = 
synthetic minority oversampling technique. *LGBM was the final 
selected model. The refresh icon indicates that the LGBM model was 
put through a second round of modeling with a train, test, and valida-
tion split of 80/10/10, respectively, for the final steps
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2.3.5  Model training and selection

An ensemble approach was used as the predictive model 
for each possible experiment. Four models — logistic 
regression, random forest, and two gradient boosting 
libraries, XGBoost (XGB) and LightGBM (LGBM) — 
were used as classifiers for training. We selected the best 
hyperparameters for each classifier, after hyperparameter 
tuning, and included these as part of the ensemble for the 
prediction task. We used a soft-voting ensemble due to the 
need to compute probabilities of a positive test or event.

2.3.6  Model explainability

Two LGBMs were generated, one with symptoms and one 
without symptoms (Fig. 1). We used the Python imple-
mentation of SHAP (SHapley Additive exPlanations) 
[10] to examine the key predictor variables that contrib-
ute to a patient’s probability of a positive COVID-19 test 
result. The library computes Shapley values, which aim 
to demonstrate the marginal contribution of a feature to 
the predicted outcome of a vector or an instance [11]. 
This approach examines how much each feature in the 
model pushes the predicted value of that instance from a 
baseline, or average, prediction (expected value). Using 
the SHAP methodology provides a method for improving 
the interpretability of a machine learning model. SHAP 
values were computed using the final selected model.

3  Results

3.1  Study participants

A total of 316,599 participants were included in this study, 
and approximately 7.7% tested positive for COVID-19 
(n = 24,358). The average age was 47 ± 22 years old, 56.7% 
(179,381) were female, 63% (199,492) were identified as 
white or Caucasian, and 55.2% (174,683) had at least one 
chronic condition (Table 1).

3.2  Model performance

In general, models trained with CC augmented data 
performed better on test/validation sets than SMOTE 
augmented data. Area under the receiver operating char-
acteristic curve (AUC) scores for models that included 
symptoms and were trained on augmented data ranged 
approximately from 0.756 to 0.816, while the logistic 
regression model trained on non-augmented data yielded 
an AUC of 0.767. The gradient boosting library, Light-
GBM (LGBM), produced an AUC of 0.816. Because 

this model is computationally lightweight compared to 
ensembling all models, separate analyses were performed 
with this model on CC augmented training data split into 
training/testing/validation sets (80/10/10 ratio, respec-
tively). LGBM AUC on the training set with repeated, 
stratified k-fold cross validation with 10 splits and 3 
repeats gave a mean AUC of 0.811 ± 0.007. AUC was 
approximately 0.819 on the test set and 0.814 on the 
validation set.

When symptoms (fever, cough, myalgia, sore throat, 
chills, and shortness of breath) were not included as predic-
tive variables, AUC on the training set with the same cross 
validation approach was acceptable, but comparatively poorer 
(0.735 ± 0.007). AUC on the test and validation sets was 0.734 
and 0.727, respectively (Table 2).

3.3  Feature importance

3.3.1  Model with symptoms

When symptoms were included as predictors of infec-
tion risk, cough and fever were the two most important 
predictors (Fig. 2A). Being a member of the Hispanic or 
Latino community, living in the Washington-Montana or 
Southern California regions, being non-English-speaking 
and especially Spanish-speaking, polypharmacy, and hav-
ing shortness of breath were all comparable influences 
on the risk of a positive COVID-19 test (SHAP scores 
0.10–0.30). All of these features except polypharmacy 
were also directly associated with risk of infection from 
COVID-19, while polypharmacy, co-morbidity, higher 
income, and tobacco or alcohol use were inversely asso-
ciated with risk of infection (Fig. 2B).

3.3.2  Model without symptoms

Because symptom information may not always be avail-
able for risk assessments of the population at large, a 
second model was developed to assess the importance 
of static population factors. When symptoms were 
removed from the predictive model, being of Hispanic/
Latino ethnicity became the most important predictor of 
COVID-19 infection (Fig. 3A) in this patient population. 
Other risk factors with at least two-fold lower SHAP 
scores included speaking Spanish, being from Montana 
or a region with housing instability, identifying with an 
“other” race category, using tobacco, being male, being 
Christian, and having an “other” BMI. Tobacco use, 
co-morbidity, polypharmacy, an “other” BMI category, 
income level, and illicit drug use were inversely asso-
ciated with risk of infection, while other features were 
positively associated with this risk (Fig. 3B).
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Table 1  Study participant demographics and characteristics

Tested people Tested positive Tested negative

(N = 316,599) (N = 24,358) (N = 292,241)

N % of  totala N In-group, %b N In-group, %b

Sociodemographic
  Age
     < 18 25,640 8.10 1766 6.89 23,874 93.11
     18–29 51,328 16.21 4992 9.73 46,336 90.27
     30–39 49,570 15.66 3875 7.82 45,695 92.18
     40–49 41,634 13.15 3565 8.56 38,069 91.44
     50–59 45,760 14.45 3707 8.10 42,053 91.90
     60–69 45,976 14.52 2804 6.10 43,172 93.90
     70–79 34,057 10.76 1941 5.70 32,116 94.30
    80 + 22,634 7.15 1708 7.55 20,926 92.45
  Gender
     Female 179,381 56.66 12,826 7.15 166,555 92.85
     Male 137,218 43.34 11,532 8.40 125,686 91.60
  Education
     Education < 12 years 219,444 69.31 13,409 6.11 206,035 93.89
  Employment
     Student 17,475 5.52 1574 9.01 15,901 90.99
     Employed 131,019 41.38 10,725 8.19 120,294 91.81
     Not employed 58,380 18.44 4946 8.47 53,434 91.53
     Retired 63,324 20.00 3864 6.10 59,460 93.90%
     Unknown 46,401 14.66 3249 7.00 43,152 93.00%
  Race
    White 199,492 63.01 9742 4.88 189,750 95.12
    American Indian|Alaska Native 4069 1.29 293 7.20 3776 92.80
    Asian 13,334 4.21 1044 7.83 12,290 92.17
    Black|African American 12,018 3.80 1095 9.11 10,923 90.89
    Native Hawaiian | Pacific Islander 2700 0.85 424 15.70 2276 84.30
    Hispanic | Latino 39,997 12.63 7962 19.91 32,035 80.09
    Unknown 44,989 14.21 3798 8.44 41,191 91.56
  Ethnicity
    Other ethnic groups 276,602 87.37 16,396 5.93 260,206 94.07
    Hispanic or Latino 39,997 12.63 7962 19.91 32,035 80.09
    Religious affiliation
    Agnostic 90,655 28.63 5585 6.16 85,070 93.84
    Christian 121,557 38.39 10,293 8.47 111,264 91.53
    Other religion 10,534 3.33 679 6.45 9855 93.55
    Unknown 93,853 29.64 7801 8.31 86,052 91.69
  Relationship
    Single 123,850 39.12 10,096 8.15 113,754 91.85
    Divorced or legally separated 37,797 11.94 2412 6.38 35,385 93.62
    Married or significant other 128,944 40.73 9817 7.61 119,127 92.39
    Unknown 26,008 8.21 2033 7.82 23,975 92.18
  Language
     English 288,252 91.05 18,964 6.58 269,288 93.42
     Sino-Tibetan 2192 0.69 244 11.13 1948 88.87
     Spanish 12,435 3.93 3679 29.59 8756 70.41
     Other languages 13,720 4.33 1471 10.72 12,249 89.28
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Table 1  (continued)

Tested people Tested positive Tested negative

(N = 316,599) (N = 24,358) (N = 292,241)

N % of  totala N In-group, %b N In-group, %b

Clinical
  Body mass index
     Normal 66,179 20.90 4231 6.39 61,948 93.61
     Underweight 5180 1.64 296 5.71 4884 94.29
     Moderately obese 45,918 14.50 4061 8.84 41,857 91.16
     Overweight 70,933 22.40 5918 8.34 65,015 91.66
     Severely obese 23,334 7.37 2078 8.91 21,256 91.09
     Very severely obese 19,981 6.31 1643 8.22 18,338 91.78
     Unknown 85,074 26.87 6,131 7.21 78,943 92.79
  Number of chronic conditions
     0 141,916 44.83 12,551 8.84 129,365 91.16

     1–2 103,464 32.68 7629 7.37 95,835 92.63
     3–4 46,632 14.73 2905 6.23 43,727 93.77

     5 + 24,587 7.77 1273 5.18 23,314 94.82
  Clinical diagnosis
     Diagnosis of diabetes 34,930 11.03 3340 9.56 31,992 91.59
     Diagnosis of kidney disease 789 0.25 94 11.91 709 89.86
     Diagnosis of HIV/AIDS 767 0.24 54 7.04 718 93.61
     Diagnosis of dementia 7316 2.31 910 12.44 6510 88.98
  Polypharmacy
     0 prescriptions 104,273 32.94 9066 8.69 95,207 91.31
     1–9 prescriptions 160,387 50.66 12,403 7.73 147,984 92.27
     10–19 prescriptions 38,656 12.21 2238 5.79 36,418 94.21
     20–29 prescriptions 9809 3.10 481 4.90 9328 95.10
     30 + prescriptions 3474 1.10 170 4.89 3304 95.11
  Mental health and substance use
     History of illicit drug use 35,588 11.24 1561 4.39 34,027 95.61
     History of tobacco use 40,352 12.75 1836 4.55 38,516 95.45
     Diagnosis of serious persistent mental illness 30,246 9.55 1286 4.25 28,960 95.75
     Diagnosis of substance use disorder 24,757 7.82 1071 4.33 23,686 95.67
  Primary care affiliation
     Internal primary care provider 112,191 35.44 7017 6.25 105,174 93.75
     External primary care provider 116,348 36.75 8708 7.48 107,640 92.52
     Unknown primary care provider 88,060 27.81 8633 9.80 79,427 90.20
  Symptoms
     Fever 101,388 32.02 15,157 14.95 86,231 85.05
     Cough 113,047 35.71 16,319 14.44 96,728 85.56
     Breath 107,216 33.86 13,642 12.72 93,574 87.28
     Chills 6443 2.04 950 14.74 5493 85.26
     Myalgia 8587 2.71 1686 19.63 6901 80.37

Environmental
  Region

 Oregon 83,293 26.31 5018 6.02 78,275 93.98
     Alaska 17,269 5.45 857 4.96 16,412 95.04
     Puget Sound 34,437 10.88 2144 6.23 32,293 93.77
     Southern California 65,815 20.79 7389 11.23 58,426 88.77
     Washington|Montana 115,589 36.51 8931 7.73 106,658 92.27
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4  Discussion

Although COVID-19 vaccines are now widely available, 
predicting the risk of COVID-19 infection remains critical. 
Unvaccinated populations and new variants of COVID-19 
present an ongoing threat to disease control worldwide, and 
risk prediction is still needed to (1) to assist clinicians and 
care managers in patient education, (2) guide policy, and (3) 
allocate resources to the highest risk areas and populations. 
Our findings indicate that, as expected, fever and cough 
were the strongest predictors of infection. This validates 
public guidance to quarantine based on symptoms alone. 
However, when we removed symptoms from the model to 
assess static (i.e., not symptom-based) features alone, the 
following groups in the western USA emerged with the 
highest risk for infection: Hispanic and Latino people, indi-
viduals in the “other” race category, non-English-speaking 
people (particularly Spanish-speaking people), people liv-
ing in areas with housing insecurity, and people from the 
Washington-Montana region. Compared to previous similar 
projects, advantages of the current analysis are the size and 
geographical spread of the dataset, and the machine learning 
technique which allows the results to be updated in nearly 
real-time. We intend to update these results as the pandemic 
continues.

Immediate recommendations based on the results of 
this project are as follows. Culturally literate and language-
appropriate resources are needed to combat surging infec-
tion rates in Hispanic, Latino, and non-English-speaking 
populations in the western USA. Partnering with communi-
ties to assure broad availability of information and access 

Table 1  (continued)

Tested people Tested positive Tested negative

(N = 316,599) (N = 24,358) (N = 292,241)

N % of  totala N In-group, %b N In-group, %b

     Unknown 196 0.06 19 9.69 177 90.31
  Age-stratified communal living
     Non-communal living 230,410 72.78 16,624 7.21 213,786 92.79
     Adult community 12,534 3.96 1055 8.42 11,479 91.58
     Adult and youth 46,996 14.84 4460 9.49 42,536 90.51
     Multigenerational 15,481 4.89 1535 9.92 13,946 90.08
     Senior living 2876 0.91 300 10.43 2576 89.57
     Other 8302 2.62 384 4.63 7918 95.37
  Financial insecurity 98,537 31.12 10,285 10.44 88,252 89.56
  Housing insecurity 72,081 22.77 8849 12.28 63,232 87.72
  Transportation insecurity 88,401 27.92 7240 8.19 81,161 91.81

Legend: Characteristics of the patient population included in this analysis
a % of total is the percentage of the total N (316,599)
b In-group % is the percentage of the total tested people for each row

Table 2  Area under the curve (AUC) of modeling experiments run to 
predict COVID-19 risk of infection

Legend: All models included symptoms as predictors except for trial 
3. Except for the Light Gradient Boosting Machine model (LGBM), 
reported area under the receiver operating characteristic curve (AUC 
ROC) scores is for the 25% held-out test set of the 75/25 train/test 
split. For the LGBM model, a 80/10/10 training/test/validation split 
was used, and AUC is given for performance on the final validation set
RFE =  recursive feature elimination, LR =  logistic regression, CC 
=  case–control, LGBM =  light gradient boosting machine, PCA 
= principal component analysis, SMOTE = synthetic minority over-
sampling technique
* Final selected model. This was the model that was used for the 
SHAP scores with symptoms presented in Fig. 2
** Final selected model without symptoms. This was the model that 
was used for the SHAP scores without symptoms presented in Fig. 3

Trial Augmentation/
feature reduc-
tion

Model AUC Sensitivity Specificity

1 RFE LR 0.767 0.093 0.994
2 CC LGBM* 0.814 0.718 0.754
3 CC LGBM** 0.727 0.623 0.713
4 CC Ensemble 0.816 0.717 0.760
5 CC LR 0.800 0.721 0.730
6 CC-PCA Ensemble 0.805 0.714 0.745
7 CC-RFE Ensemble 0.816 0.715 0.759
8 CC-RFE LR 0.800 0.721 0.731
9 SMOTE Ensemble 0.797 0.552 0.864
10 SMOTE LR 0.759 0.624 0.759
11 SMOTE-PCA Ensemble 0.802 0.622 0.823
12 SMOTE-RFE Ensemble 0.792 0.555 0.858
13 SMOTE-RFE LR 0.756 0.621 0.760
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to services is critical to reducing disproportionate burden, 
and such partnership may increase trust in the information 
that is provided. Clinicians should be aware that individuals 
from these populations may be at higher risk and should 
conduct assessments and provide education accordingly. 
For example, clinicians may ask their patients whether they 
have access to masks and cleaning/disinfection supplies, or 

whether they need assistance accessing vaccine appoint-
ment registration systems. Individuals who are not at high 
risk themselves but have frequent contact with high-risk 
groups may require more frequent or intense training on 
infection control precautions. Finally, public efforts to com-
bat the spread of COVID-19 must address issues such as 
access, physical proximity of vaccine clinics to high-risk 

Fig. 2  Relative contribution of predictors in a machine learning 
model predicting COVID-19 infection based on symptoms and demo-
graphic information. Legend: A SHapley Additive exPlanations 
(SHAP) scores showing the average impact of each predictor on the 
model. SHAP values were computed using the final LGBM model. 
Higher SHAP values correspond to increased COVID-19 infection 
risk. B The relative importance of the top 20 COVID-19 predictors in 
descending order is shown here. The plot is made of dots correspond-

ing to each prediction for a single patient. The horizontal axis shows 
the relative impact of a low or high prediction value for each variable, 
the impact ranging from blue (least associated with infection) to red 
(most associated with infection). Blue on the left to red on the right 
shows increasing infection risk as the feature increases (i.e., Cough: 
0 = No Cough, 1 = Cough). Red on the left to blue on the right shows 
decreasing infection risk as the feature increases (i.e., polypharmacy)

Fig. 3  Relative contribution of predictor variables in a machine learn-
ing model trained to predict COVID-19 infection based on demo-
graphic information alone. Legend: A SHAP scores showing the 
average impact of each predictor on the model using the final LGBM 
model. Higher SHAP values correspond to increased COVID-19 

infection risk. B The top 20 COVID-19 demographic predictors, 
without symptoms, are shown here in descending order. All other 
computational and graphic elements (use of dots, color coding, vari-
able score association strength shown by horizontal axis) are identical 
with those used for Fig. 2a and b
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populations, and pro-active program development for non-
English speaking groups.

We have previously published modeling work on this 
topic [2]. The previous model employed a logistic regres-
sion (LR) model and achieved an acceptable AUC of 0.78 
on the validation set. It is important to note that features 
selected as strong predictors can be different across dif-
ferent machine and statistical learning approaches. This 
can be due to factors such as, but not limited to, penali-
zation or regularization methods to reduce overfitting of 
the model. Other factors include how the model, such as 
decision tree-based models like LGBM, estimate infor-
mation gained from all possible splits (using predictor 
values), different hyperparameters (e.g., tree sizes, num-
ber of subsamples, learning rate), etc.

Nevertheless, we computed a comparative logistic 
regression model and report the output of the model (see 
Supplementary Table 2). Variables with a P < 0.25 were 
considered for the final model consistent with the previ-
ous model [2]. This model was trained on 75% of data 
and validated on the remaining 25%. AUC on valida-
tion data was 0.80 slightly outperforming the previous 
logistic regression model (AUC = 0.78). Results from the 
LR and LGBM models are consistent with the previous 
model with respect to symptoms (cough, fever, shortness 
of breath, and myalgia), Hispanic or Latino racial/ethnic 
group, non-English language (specifically Spanish), hav-
ing housing insecurity, age 18 to 29, and Washington-
Montana and Southern California regions being more 
predictive, or “associated,” with a positive COVID-19 
test result. Likewise, having a history of tobacco use, 
higher number of prescription drugs and chronic con-
ditions were more associated with a negative COVID-
19 test — also consistent with the previous model (see 
Supplementary Table 2).

The new LGBM model was notably different from 
the previous LR model regarding age. There was a rela-
tively small impact of being between ages 18 to 29 on 
the prediction of a positive test. The comparative new 
LR model is consistent with the previous model in that 
adults, 40 and older, have greater adjusted odds of con-
tracting COVID-19 when compared to younger patients 
(reference group: ages 17 or younger in this LR model 
vs. 18 to 29 in the previous model). We also observed 
differences in the impact of existing comorbidities (e.g., 
diagnoses of diabetes, HIV/AIDS, dementia, and kidney 
disease) across models. The LGBM and the comparative 
new LR models do indicate some impact of an exist-
ing diagnosis of diabetes and dementia on the increased 
probability of a COVID-19 infection consistent with the 
previous model. Also consistent with the previous model 
is that the LR model shows some impact of having a 
history of kidney disease (OR 1.70; 95% CI 1.07–2.72, 

p = 0.026) on COVID-19 risk. Neither model, unlike the 
previous model, indicates that being immunocompro-
mised (HIV/AIDS diagnosis) increases an individual’s 
risk of an initial infection. Notwithstanding, we suspect 
that comorbidities will be significant predictors of severe 
illness or mortality after a COVID-19 infection.

These results differ from our previous results from the 
early period of the pandemic [2]. The present results did 
not confirm that older, immunocompromised, or Black 
people were at significantly greater risk of COVID-19 
infection in this study population. This difference may 
reflect the change in technique from traditional logistic 
regression to a machine learning algorithm. The previ-
ous LR model was conducted on data available early 
in the pandemic between February 28, 2020, and April 
27, 2020, with data ten times less than current data. 
This more sophisticated technique may have elucidated 
underlying factors that were not immediately apparent 
with logistic regression, because it focused on predic-
tive performance rather than traditional inference about 
individual variables and strict cut-off thresholds based 
on statistical significance. It is also possible that these 
groups are genuinely at higher risk but became under-
represented and under-counted in the larger dataset, and 
thus, their risk levels may have been underestimated.

An additional explanation for the shifting results is the 
expansion of the window of time over which results were 
counted. The previous work examined data from Febru-
ary to April of 2020 [2], while the present work extended 
the data to October of 2020, encompassing the second and 
early third “waves” of cases occurring between mid-June 
and October. During this later period, state and local public 
health departments instituted substantially more stringent 
transmission-reduction strategies including tight restrictions 
on public gatherings, remote school and work, universal 
masking requirements in public spaces, and “stay-at-home” 
policies. Thus, we may have captured real changes in popula-
tion risk as the pandemic progressed. This may underlie the 
finding that young people between 18 and 29 were at higher 
risk, while older people were no longer at higher risk. As the 
pandemic progressed, older individuals may have been more 
compliant with stringent quarantine and isolation precautions 
due to well-publicized fears of mortality, while younger indi-
viduals were perhaps less cautious, and thus continued to 
become infected. We suspect that differences in results from 
current data reflect varied shifts in phased stay-at-home poli-
cies across the regions. Providence serves over time. Com-
paring results from both models is, nevertheless, encouraging 
as the new model demonstrates a stable and excellent ability 
to discriminate using new data as the previous model.

In the present study, we developed two predictive 
models that either included or excluded symptoms for 
different purposes. Modeling risk of infection without 
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symptoms was done to evaluate static risk for populations 
in the western USA. The intention of this step was to aid 
in planning for disease control and prevention within the 
Providence St. Joseph Health system. In response to this 
model, Providence St. Joseph Health tailored the selec-
tion of sites for COVID testing and vaccination as well 
as engagement with community organizations. We recom-
mend that other large health systems implement models 
of this kind to understand underlying risk factors in their 
patient populations and target infection control responses 
accordingly.

There are a number of strengths to this study. We used 
advanced analytic procedures and tested a variety of mod-
els seeking the optimal solution. We have a very large 
data set (319,599 participants) collected across a single 
hospital system. Our very large data set gave us the statis-
tical power to examine many possible influences on risk 
of infection simultaneously. The use of a single hospital 
system ensures that data collection, variable coding, and 
data extraction was done in a consistent manner, in con-
trast to meta-analyses and reviews which are forced to 
merge data sets which can have real methodological dif-
ferences. Our list of examined variables is long and com-
prehensive, including age, gender, education, employ-
ment, race, ethnicity, religious affiliation, relationship 
status, language, BMI, chronic illness conditions, drug 
use, COVID-19 symptoms, geographic region, and living 
environment. Ours may be the only paper to date which 
has examined all of these variables, in a single hospital 
system, with > 300,000 participants.

There are several limitations to this study. First, models 
were trained based on data that would be available to an 
outpatient clinician (patient medical history, sociodemo-
graphic, self-reportable symptoms, and environmental 
data). While this was intentional in order to make the 
model generalizable to various clinical settings, labora-
tory values such as white blood cell counts (lymphocyte, 
eosinophil, basophil, and neutrophil values) [12] may 
have improved performance of the model that included 
symptoms. Second, the data collection period (Febru-
ary–October 2020) spanned a period of rapidly evolving 
public health guidelines. This may have influenced some 
of the findings. For example, the finding that older age 
was not predictive of a higher risk of COVID-19 infection 
may reflect greater caution and compliance with stay-at-
home orders among older populations. Third, the study 
did not include the largest part of the third wave, from 
October 2020 to March 2021; consequently, we intend to 
update these findings using the same machine learning 
method as the pandemic continues to progress. Fourth, 
we suggest that that the population-level characteristics 
spotlighted by this model (e.g., race, ethnicity, language) 
are not inherent predictors of risk, but rather are proxy 

indicators for living conditions (housing density and abil-
ity to socially isolate) and social structures, such as sys-
temic racism in healthcare and public policy.

5  Conclusions

Our results confirm that the following social and demo-
graphic factors increased the risk of COVID-19 infection 
between February and October of 2020: being Hispanic 
and Latino, being non-English-speaking (and especially 
Spanish speaking), residing in an area that had hous-
ing insecurity, or being from the region of Washington 
and Montana. These findings confirm that social deter-
minants of health were major drivers of infection risk in 
the late part of the pre-vaccine US COVID-19 pandemic. 
Language-appropriate and community-based education is 
needed to mitigate the effects of social factors on infec-
tion risk. Additionally, providers should focus education 
efforts on patients who fall into high-risk categories or 
are frequently in contact with individuals from high-risk 
categories.

Abbreviations AUC : Area under the curve; BMI: Body mass index; 
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ing not at random; PCA: Principal component analysis; RFE: Recur-
sive feature elimination; SHAP:  SHapley Additive exPlanations; 
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boosting model
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