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Abstract—In recent years, deep learning (DL) techniques
have provided state-of-the-art performance on different medical
imaging tasks. However, the availability of good quality annotated
medical data is very challenging due to involved time constraints
and the availability of expert annotators, e.g., radiologists. In
addition, DL is data-hungry and their training requires extensive
computational resources. Another problem with DL is their
black-box nature and lack of transparency on its inner working
which inhibits causal understanding and reasoning. In this paper,
we jointly address these challenges by proposing a hybrid model,
which uses a Bayesian convolutional neural network (BCNN) for
uncertainty quantification, and an active learning approach for
annotating the unlabelled data. The BCNN is used as a feature
descriptor and these features are then used for training a model,
in an active learning setting. We evaluate the proposed framework
for diabetic retinopathy classification problem and have achieved
state-of-the-art performance in terms of different metrics.

I. INTRODUCTION

Recent advancements in machine learning (ML) techniques,
in particular, deep learning (DL) based methods have achieved
state-of-the-art performance in many complex medical imag-
ing tasks such as image classification [1], segmentation [2],
annotation [3|], and retrieval [4]. However, to learn a better
representation of the underlying distribution of data, DL
requires large-scale training data. However, the availability of
large amount of clinical data is a real challenge due to various
ethical, monetary and privacy constraints. In addition, the an-
notation of medical data is a very costly, and time-consuming,
task. This motivates the development of DL approaches that
can learn from limited medical data or that can incorporate
both annotated and unannotated data.

Another issue plaguing DL is that even when trained on
large-scale (training) datasets, DL is a black-box method that
lack underlying mechanistic understanding and has inherent
issues that make it uncertain about the predictions made. In
DL-empowered healthcare, a few key challenges are noticeable
that make quantification of uncertainty difficult. Bengoli et
al. [5] described three such challenges that include; (i) lack
of well-understood laws for clinical data, unlike the physical
world which is supported by well-defined mathematical laws;
(i) absence of causal co-relation between the inputs and
outputs of the DL model (the absence of a causal relationship

limits the conclusion that is drawn from a DL model); (iii)
imperfections that are embedded in the data which makes a
DL model uncertain of its prediction. Moreover, real-world
data also contain missing elements that demand specialized
methods for data imputation and uncertainty quantification.
To overcome these challenges, a model should be carefully
developed by considering the efficiency challenges and uncer-
tainty, especially for clinical applications. In this regard, CNNs
with Bayesian inference are more useful and reliable rather
than using deterministic CNNs which lack the quantification
of uncertainty.

Diabetic retinopathy (DR) is a neuropathic complication
arising from damage to the retinal optic nerve that can lead
to blindness. DR deteriorates (due to neurodegenrative and
microvasculopathic factors [|6]) over time if left untreated and
therefore, early detection is of utmost importance to avoid
irreversible damage to vision. There are many diseases that are
associated with DR such as retinal vascular closure, abnormal
vessel growth, and diabetic macular edema. Each disease has
its own unique pathophysiology that is crucial for the diagnosis
and prognosis, the resulting complexity means increased risk
of inaccurate diagnosis and treatment (possibly due to human
error or fatigue). These complications can lead to undesired
circumstances and can cause visual damage. On the other
hand, an automatic DR detection and classification system
can assist the clinicians in their routine clinical work by
predicting and locating the possible disease which at the same
time decreases the risk of human error that may arise due to
misinterpretation, fatigue, and tiredness.

In this paper, we provide a unified framework for simulta-
neously addressing the problems of uncertainty quantification,
training with limited labeled data and leveraging unlabelled
data. The following are the specific contributions of this paper.

1) We propose a hybrid model that consists of two key

components: (i) a Bayesian CNN descriptor module
to address the uncertainty problem and (ii) an active
learning (AL) module to train the model with unlabelled
data.

2) We integrate and evaluate two AL approaches (pool-

based sampling and query by committee) for training
the model in an AL environment.



3) We extensively evaluate the proposed hybrid model for
the DR classification task with uncertainty quantification
using different performance metrics and as well as for
the task of uncertainty quantification.

Organization of the paper: A brief background of related
terminologies is presented in Section An overview of
related work focused on DR classification is presented in
Section A detailed explanation of our proposed method-
ology is presented in Section [[V] The dataset description and
implementation details are discussed in Section [V} A detailed
analysis of results and some future research issues are provided
in Section Finally, the paper is concluded in Section [VII]

II. METHODS
A. Bayesian Inference

Deducing model parameters or properties about a probabil-
ity distribution from data is referred to as inference. Bayesian
inference uses Bayes’ theorem to update the probability dis-
tribution upon the availability of new data. The classical
Bayes rule comprises three components: (i) prior distribution
(also known as beliefs), (ii) posterior distribution, and (iii)
likelihood. The prior distribution is typically assumed as a
normal distribution (with some mean and standard deviation)
or as a Gaussian process.

Deep neural network (DNN) is a linear combination of
weights and bias vectors followed by a non linear operation,
e.g., ReLU, tanh, or sigmoid as activation function applied
on linear output vector. At each epoch, the loss function e.g.,
cross-entropy loss in case of multi-class classification is opti-
mized by backpropagating the loss through the neural network
using an optimizer, (e.g., SGD or Adam). Applying the Bayes
rule on the weights and biases of a neural network allows us to
update them over a distribution rather than a single real number
(as done in conventional DL model training). The Bayesian
inference estimates the posterior distribution by examining
all the possible outcomes of each new training instance. An
example is described below for further explanation.

Let’s assume we have a labeled dataset, D = {xn,yn},
where z,, denotes samples and ¥, are their corresponding
labels. The Bayes rule for estimating posterior distribution
over the network latent parameters w can be mathematically
defined as:

p(D|w) x p(w)
p(D) ’

where, p(w) is prior, p(D]w) is the likelihood and p(w|D)
is the posterior. The posterior distribution p(w|D) is approx-
imated by minimizing the Kullback-Liebler (KL) divergence
between the prior and variational distribution g(w|®) [7], [8].

p(w|D) = (1)

0" = arg min K L[g(w|0)[|p(w)] - Eq,,, [log p(D[w)]  (2)

Equation [2]is a cost function which is known as variational
free energy, which is an expected lower bound on the (log)
model evidence, and it is solved as an optimization problem
when we parameterize the weights w over a parameter 6 for

q(w|6). By assuming (conjugate) Gaussian prior and posterior
(known as Laplace approximation) which is fully factorized
such as to approximate the posterior by minimizing the KL-
divergence loss is known as mean-field variational inference.

B. The Problem of Uncertainty in DL

Uncertainty in a DL model can be defined as how much a
model is unsure about its prediction [9]]. Uncertainty quantifies
the entropy or surprise of the model on unseen data and it can
be classified into two categories, (i) aleatoric uncertainty and
(ii) epistemic uncertainty [10]]. Aleatoric uncertainty is due to
the noisy or unclean data and it is inherently present in the
data. On the other hand, epistemic uncertainty, also known
as model uncertainty is the amount of uncertainty in the DL
model. Aleatoric uncertainty is modeled by assuming a prior
over the set of weights given the training data and epistemic
uncertainty is modeled by placing a distribution over the output
of the model.

C. Active Learning

The AL framework is built on the hypothesis articulated
in [11] that if the learning algorithm is allowed to choose
the data from which it learns, it will perform better with less
training. AL-based model (also known as the learner) query
the label of only that sample on which it find it difficult to
classify. The difficulty is quantified using a query function aka
query strategy. Learner selects that sample from a large-scaled
unlabelled dataset, queries its label, and the unlabelled data is
augmented into already known data for training.

There are three different scenarios which are used to query
the unlabelled instance, which are: (i) membership query
synthesis; (ii) stream-based selective sampling; and (iii) pool-
based sampling. In membership query synthesis, the model
tries to construct the new data samples based on some un-
derlying distribution. In stream-based selective sampling, it
is assumed that acquiring a label for each data instance of
unlabelled data is free. The learner must decide which instance
it needs to query. We have used the pool-based sampling
and query-by-committee in our proposed model, which are
described below.

1) Pool-Based Sampling: The most commonly used and
intuitive framework of pool-based query strategy is uncertainty
sampling [12]. Uncertainty sampling uses different mathe-
matical functions to measure the uncertainty, named as, least
confident sampling, margin sampling, and entropy sampling.
In the first method, the learner only queries that instance for
which it is least confident for assigning it a label. For example,
in a multi-class classification problem, for any sample data,
let’s assume x, and the associated label y, and € represents
the weights of trained model, the uncertainty sampling can be
mathematically defined as:

xio = argénax(l - P(y/|aj))7 3)
where, for a multi-class classification problem y, =

arg max, 1 —pg(y|r), as explained in [[11]. The least confident
sampling can be understood by an example. Suppose, you have



two instances to classify and each instance can have three
possible labels. So the class probabilities for first instance
are [0.3, 0.4, 0.3] and for second instance are [0.4,0.45, 0.15].
Selecting the most likely labels for these two instances would
give the values of 0.4 and 0.45 and subtracting these proba-
bility values from 1 and then taking the maximum value from
the result will query for the first instance.

The second method for uncertainty sampling is the margin
sampling which incorporates the posterior of the second most
likely label, and thus it solves the shortcoming of the least
confident sampling, which only gives the single most likely
label. The margin sampling can be mathematically defined as:

Ty = arg minpg(y1|$) - pg(y2|x) S
x

Again taking same example of classification as in least confi-
dent sampling, the margin sampling does the following thing.
The difference between the first and the second most likely
label for the first instance is 0.1 and for the second instance
is 0.05. Therefore, the learner will select the second instance
as it has the smaller margin value.

The last method is the entropy sampling [11]] which uses
the entropy as query strategy function. Entropy sampling can
be defined mathematically as:

c
zy = argmax — Y _ po(ys|x) log(pe(y:|x)), S

r i=1
where c represents the total number of classes. Quoting the
similar example, the entropy values for the first instance is
1.57 and for the second instance is 1.46. So the learner will
choose the first instance on which it has the maximum value

of entropy.

2) Query-by-Committee: In a query-by-committee (QBC)
setting, a “committee” of two or more classifiers is formed.
Each committee member is assigned a subset of currently
available training data. After being trained on training data,
each member maintains its own hypothesis. Each committee
member votes on the label of a candidate example after being
trained on the data available to it and that instance is selected
for querying the label on which the committee members
disagree. The main objective of QBC approach is to minimize
the version space, which is defined as, the set of hypotheses
that are consistent with the currently available data. That also
means that all hypotheses of different models agree on the
labeled data points but they disagree on some unlabelled data
points and these points lie in the uncertain region. In this way,
the QBC approach query the candidate sample in the most
uncertain region.

The measurement of disagreement in committee based sam-
pling can be computed using vote entropy sampling [|11]] which
can be mathematically defined as:

Vi), V)

VE = - ——log —4, 6

Ty p = arg max Z o los—7 (6)

where, V (y;) is the number of votes obtained by the label y;
and C' denotes the size of committee.

III. RELATED WORK

DR is one of the co-morbidity associated with diabetic
patients that can cause blindness. In the literature, significant
research has focused on DR classification. The state of the
art in DR classification mainly relies on DL-based decision
support systems. In this section, we present the overview
of the related literature. We start by first discussing the
development of grading systems in DR, then we discuss the
DR classification problem using DL, then we discuss risk
assessment of other diseases associated with DR, and finally,
we discuss the use of AL-based methods for leveraging the
limited annotated data for supervised classification task.

A. Multi-level DR Research

DR is generally classified into four or five different grading
levels based on the disease severity. Wilkinson et al. [13]]
proposed five classes of DR, while Yun et al. [[14] proposed
four classes of DR. In five class schema, DR is divided into
five classes based on the severity of the disease which are (i) no
DR, (ii) mild, (iii) moderate, (iv) severe, and (v) proliferative.

In the four class schema, the normal or no DR class is
merged with mild DR class with the other classes being
moderate, severe, and proliferative, respectively.

B. DR Classification

In the literature, different approaches for DR classification
has been presented that mainly rely on ML-based techniques.
For instance, Roychowdhury et al. [[I5] used the classical
ML algorithms like KNN, SVM, and GMMs to perform
binary classification, i.e., DR or No DR. In [16]], authors have
analyzed the DR classification problem using probabilistic
neural networks (PNNs), support vector machine (SVM),
and Bayes classifier. In addition to traditional ML-based
approaches, DL-based methods have also been proposed for
DR classification. For instance, Gulshan et al. proposed a DL-
based DR classification algorithm that uses the Inception-V3
model pre-trained on ImageNet [[17]]. Yang et al. [18]] proposed
a two-stage DR classification algorithm that performs two
tasks, DR classification and lesions localization in the retinal
fundus images. A method named machine learning bagging
ensemble classifier (ML-BEC) is proposed in [[19], which
extracts different features (e.g., features related blood vessels,
optic nerve, neural tissue, disk size, and thickness, etc.) for
DR classification using-stochastic ML model. The use of
a simple neural network, backpropagation neural network,
and convolutional neural network for the DR classification is
presented in [20]. The use of VGG19 for the DR classification
is presented in [21]], the authors also used the combination of
Gaussian mixture models, dimensionality reduction techniques
like principal component analysis (PCA), and singular value
decomposition techniques (SVD) for performing the DR clas-
sification task. In a similar study, Gadekallu et al. proposed
the use of deterministic CNNs and transitional ML models
for DR classification along with different data pre-processing
and dimensionality reduction techniques [22]. In [23], au-
thors evaluated different DL models like AlexNet, VGGNet,



GoogleNet, SqueezeNet, and ResNet with transfer learning for
multi-class DR classification. Chetoui et al. [24] proposed to
use EfficientNet-B7 DL model for DR classification.

C. Bayesian DL in DR Classification

In the literature, various studies have investigated the use
of Bayesian models for estimating model uncertainty that is
trained for the task of DR classification. For instance, Hani et
al. investigated the use of the Gaussian Bayes classifier and v-
fold cross-validation (VFCF) for DR classification [25]. Sedai
et al. [26] proposed a method that exploits different layers
of retinal images pixel by pixel for quantifying uncertainty
in DR images by using the Bayesian DL approaches. Filos
et al. [27] proposed a systematic comparison of Bayesian DL
benchmarks like ensemble model, ensemble dropout, Monte-
Carlo dropout, and mean-field variational inference for the DR
classification task. They re-formulated the multi-class classifi-
cation problem to a binary classification problem. Ranganath et
al. [28]] proposed a method for selecting informed weight prior
comprising two stages, i.e., firstly, they find the maximum
likelihood estimate of weights by using DNN and then setting
up the weight prior for using empirical Bayes.

D. Active Learning for Medical Data Analysis

Although AL is not a new technique but still it works
considerably better than semi-supervised learning in most real-
world problems for handling unlabelled data. Wang et al. [29]
proposed a cost-effective method for image classification by
training a DL model in the AL setting. Gal et al. [30] proposed
a technique that uses the combination of Bayesian DL and
AL by designing a special acquisition function, also known
as the query strategy. They evaluated the proposed method for
skin cancer diagnosis. Haut et al. [31]] used the hyperspectral
image classification using a DL model in an AL setting and
trained the model on limited labeled samples to achieve a good
classification performance for labeling large unannotated data.

IV. METHODOLOGY
A. The Proposed Model

Our proposed hybrid model has two main components,
i.e., Bayesian CNN module and active learning module, as
shown in Figure [T} We use Bayesian CNN module as feature
descriptor by extracting the output of a parametric layer. The
active learning module picks an image X; from the unlabelled
data and puts a request to the trained Bayesian CNN module
for its label y;, uncertainty u;, and Z; as its respective feature
vector. If the uncertainty is less than the threshold value of
T (details are in Section [V-E), the label is forwarded to the
active learning module (details are described in Section [V).

B. Problem Formulation

We assumed that we have both labeled and unlabelled
samples of retinal images for training our supervised learning
model. Therefore, we divide the whole dataset into three dis-
joint parts (with no overlapping), i.e., training, validation, and
testing sets. Suppose the dataset D, = {X;,y;} where i =

(without classification layer)
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Fig. 1: An illustration of the proposed hybrid model that has two components, i.e.,
Bayesian CNN module as a feature descriptor and active learning module. Image X ;
is the queried image, Z; is the Bayesian feature vector, T is the threshold value of
uncertainty, and y; is the predicted label.

1,2,3,..., N represents the training dataset, Dy = {X;,y;}
where 5 = 1,2,3,...,M represents the validation dataset,
and Dy = {Xg,yr} where k = 1,2,3,...,.S represents the
test dataset respectively. We further divide the Dy into two
categories, named as limited labelled dataset V; and large
pool of unlabelled dataset V7;, respectively, which are used for
training the active learning model. The Bayesian CNN model
is represented by Mrp and AL model is represented by M 4y,
respectively. After training Mpp, we extracted feature vectors
Zy, as test data for AL, Zy, as limited labeled data, and
Zy,, as a large pool of unlabelled data from trained feature
descriptor Mpp. These features are then used to train and
evaluate M 4;. An unlabelled sample Vi; is queried by M 4y,.
Our main objective is to optimize M 47 in such a way that
it leverages the unlabelled data by getting a label from Mgp
on which it is confident so that M 45 achieves an increase
in performance after adding unlabelled data points into the
training.

In our proposed hybrid model, we integrate the two AL
approaches of pool-based sampling and query-by-committee
sampling (described in the previous section). The algorithm for
pool-based sampling and query-by-committee sampling can be
seen in Algorithm [I] and Algorithm [2] respectively.

V. DATA AND EXPERIMENTS

A. Data Description

We used APTOS2019 [32] dataset which contains 3662
high-resolution color retinal images annotated into five classes
(i.e., 1805, 370, 999, 193, and 295 samples for No DR,
Mild DR, Moderate DR, Severe DR, and Proliferative DR,
respectively). These high-resolution images contain surround-
ing black patches around the corner of the images. We have
carefully analyzed the dimensions of these images and cropped
them according to their field of view (FOV), an example of
this cropping is shown in Figure 2] After cropping the images,
we have resized all images to the square size of 224 x 224 x 3.

The original dataset was not large enough to train a gen-
eralized DL model. We enlarged the size of the dataset up to
4x the original dataset . We used different data augmentation



techniques for binary and multi-class classification to augment
the training sets (the details are in the later sections).

Algorithm 1 Pool-Based Sampling

Input: Limited Labeled Data Zy,, unlabelled Pool Data
Features Zv,,, Test Data Features Zp,., Number of Queries
@, Query instances i, and Number of Epochs F
Output: Predicted Label on Test Data
Zp
: for e € F do
Train Mppg Using Zvy,
end for
q=0
while Zy;, is not empty or q < @) do
Select i € Zv,
Query ¢ samples using Mppg
Assign class label to i samples using Mrp
Zy, < Zv, UZVU,L
Retrain Mpps Using Zv,
Increment g by 1
end while
: for X € ZDT do
y = argmax Mpps(X)
: end for

Features
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Algorithm 2 Query-By-Committee Sampling
Input: Limited Labeled Data Zy,, unlabelled Pool Data
Features Zvy,,, Test Data Features Zp,., Number of Queries
@, Number of Epochs F, Committee Members M
Output: Predicted Label on Test
Zp,

1: for m € M do

2. foreec E do
3 Select j disjoint samples V Z;
4 Train MQBCm Using Zj
5 end for
6: end for
7
8
9

Data

: =0
: while Zy;, is not empty or ¢ < () do
. Select k € Zy,
10:  Perform Consensus
11:  Assign class label to k& samples using Mrp
12: ZVk, — Zv,c U ZVUk
13:  Retrain Mgpc,, Using Zv;,
14: end while
15: for X € Zp,. do
16:  for m € M do
1 Ym = Mgpc,, (X)
18:  end for
1 M
190 y=argmax ;... Ym
20: end for

1) Data Description for Binary Classification: For binary
classification experimental evaluation, we have simplified the
multi-class classification problem to the binary class classi-
fication problem, i.e., class 0/1 classification where class O

ID=1

ID=2 1D=3

Fig. 2: Images of different dimensions in original data set (from ID=1 to ID=3) are
centre-cropped to produce the dimensions of 224 x 224.

represents instances of No DR (NDR) and class 1 represents
those having DR, a similar formulation was also followed in
[15[, [27]], [33[]. Keeping this class merging in mind and to
avoid biased training, we assign the class weight of 1 to NDR
and class weight of 4 to DR. The class merged dataset was
then divided into Dy, Dy, and Dy with the sizes of 9076,
1181, and 1212, respectively.

2) Data Description for Multi-Class Classification: For
multi-class classification, the data augmentation techniques
like vertical flip and random brightness up to a range of
20% are applied. To avoid the class imbalance problem,
classes with less number of samples are augmented more,
i.e., oversampling less samples class. To incorporate the class
imbalance further, we compute class weights for the i*" class

using Eq. [7]

|Dr,

et )

where D represents training data, y; are total instances of

a any class ¢, and C' denotes the total number of classes in

the dataset. The dataset for multi-class classification has also

been divided into D7, Dy, and Dt having 8940, 1915, and
1920, respectively.

B. Model Architecture

1) Model Architecture for Binary Classification: We used
a VGG-like CNN architecture, as proposed by [27] with some
modifications. We used the Monte-Carlo (MC) drop out (a
method for realizing Bayesian inference) after each parametric
layer in BCNN and a simple drop out after each block in CNN.
We use an initial number of base filters to be 64 and increased
the filter size as shown in Figure [3]

2) Model Architecture for Multi-Class Classification: The
model architecture for multi-class classification is the same as
shown in Figure [3]except some modification that are described
as follows. The initial filter size is set to be 32 and these filters
are increased in the multiple of 2 in every block. In multi-class
model, the Batch Normalization, and the Dropout layers are
used simultaneously in every block. Also, LeakyReLU (which
helps in minimizing the diminishing gradients effect) is used
instead of simple ReLU. The number of neurons in FC1, FC2,
and FC3 are set to be 2048, 512, and 128, respectively. Finally,
the sigmoid layer is replaced with the Softmax layer having 5
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Fig. 3: Diagram of CNN. Dropout layer is added after each convolutional layer, whereas feature map shows the output of each block after applying max-pooling where dropout is
applied after each convolutional layer in the block.Also, FC1, FC2, FC3, and Sigmoid layer has 1024, 256, 64, and 1 neurons respectively.

neurons in it (i.e., five number of classes). We have performed
all of our experiments using TensorFlow 2.0. along with Keras
as its APL

C. Training Feature Descriptor Module

1) Details for Binary Classification: We trained both mod-
els (i.e., CNN and BCNN) on the dataset for 15 epochs, at
learning rate of 0.0001, batch size of 128, and the MC dropout
rate of 0.10 using Adam optimizer. For BCNN model, the
dropout is applied in both training and testing time (to realize
the Bayesian inference), along with the Lo regularization of
0.0001 in each weighted layer to reduce the over-fitting.

2) Details for Multi-Class Classification: In multi-class
classifications, the batch size is set to be 64 and the number of
epochs are set to be 80. Learning rate, Ly regularization value
and the optimizer are the same as used in binary classification.
For training our models, we used the dropout rate of 0.5 for
CNN and 0.20 for BCNN, respectively.

D. Implementation Details for Active Learning Module

Once the feature descriptor model i.e. Mpp is trained, we
extracted the features, i.e., Z, Zv, and, Zy,, from the last
convolution layer of each model. The reason for selecting
the last convolutional layer is to get the large-sized features
which can be used for training the Mppg or Mgpc in
active learning settings. For pool-based sampling, we initially
trained Mppgs with 100 samples. For query-by-committee,
we initially selected three committee members, and each
committee member is initially trained on 100 disjoint samples.

1) Training AL Model for Binary Classification: We ex-
tracted the features from the last convolutional layer which
had the output of 7 x 7 x 512 taken out from the Mpp. For
pool-based sampling, 10 number of samples from Zy;, are
returned by the Mppgs. Mpp returns the most likely label
along with the uncertainty (in measure of entropy). These
samples are augmented with Zv, and the M ppg is retrained.
We have queried a total of 50 times from the Mppg and
500 newly labeled samples into the Zy, . Similarly, for the
query-by-committee approach, these 10 newly labeled samples
are added to each known training dataset Zy, for all three

Mgpc, and the models are retrained. Also, in the query-by-
committee approach, the only difference in the experiments is
that after training all three committee members, the prediction
(for testing purpose) is done by taking the average of class
probabilities and picking the most likely label.

2) Training AL Model for Multi-class Classification: For
multi-class classification, we also extracted the feature vec-
tors having the dimension of 10 x 10 x 256 from the last
convolutional layer of Mpp. For Mpps and Mgpc, the
initial number of training data samples are kept to 100 and
300, respectively. The 300 samples for the query-by-committee
approach are distributed to three committee members with a
size of 100 samples. 16 samples from Zy;, are augmented
to Zy, after querying these models. A total of 1200 samples
are queried in training both Mpps and Mgpc models. We
use standard categorical cross-entropy loss and focal loss [34].
Focal loss was introduced by the Facebook Al research group
and was initially proposed for dense object detection purpose.
Focal loss is mathematically defined for the cross-entropy
loss in Eq. [8] where « is the weighting factor and ~ is the
modulating factor. We selected these values to be 4 and 2 «
= 4 worked best for our case (as suggested by [34]).

FL = —Oé(] — pt)’y log(pt) (8)

We trained our models in such a way that standard categori-
cal cross-entropy loss is applied in training Mppg and Mgpc
and stored the weights of these models respectively. Then we
change the loss function and used the pre-trained weights. We
did this to focus more on the examples that are being added
in the training data Zy, after querying from Zy,, .

E. Uncertainty Quantification (UQ)

The Mont-Carlo (MC) dropout method is a way of impl-
menting the Bayesian inference from CNNs while dropout is
also enabled at inference time. MC samples are the number
of feed-forward passes for a single image. After applying MC
iterations, the most likely label is obtained by averaging the
class probabilities. This method (known as MC-dropout) is
applied in our proposed approach.
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Fig. 4: The depiction of models (i.e., CNN and BCNN) performance in terms of (a) accuracy and (b) loss.

1) UQ for Binary Classification: We assume that the pre-
dictive entropy value greater than or equal to 0.5 represents
high uncertainty and low confidence while entropy less than
0.5 is assumed to represent low uncertainty and high confi-
dence value (a similar assumption is made in [27])).

2) UQ for Multi-class Classification: We start by assuming
the case when our model Mrp is giving equal probabilities to
all classes which gave the entropy value of 2.32. Like in binary
class classification, we set the threshold value of 1.276 which
is 55% of the maximum threshold value. Varying amount of
Monte-Carlo samples are selected and the results are reported
in Section

VI. RESULTS AND DISCUSSIONS

In this section, we present our results for both binary and
multi-class classification. Moreover, a detailed comparison
with state of the art methods is also presented in this section.

A. Results for Binary Classification

1) Training Feature Descriptor: In CNN, aka simple or
deterministic CNN, the dropout layers are disabled at the
time of inference, whereas in the Bayesian CNN, the dropout
is enabled at the inference time. The learning curves for
training CNN and BCNN are shown in Figure 4] Figure 4(a)]is
representing the training accuracy and Figure is depicting
the training loss over the number of epochs. It can be observed
from the figures that accuracy is increasing while the loss is
decreasing over the increase in number of epochs. The learning
curves are sort of similar in behavior as the same model
parameters are being trained on the same data. As explained
earlier, the key difference is in the inference time. In training
the feature descriptor, the key idea is to take out a feature
vector that can be a faithful representative of the true posterior
distribution, which is achieved in Bayesian CNN instead of
simple CNN.

The classification performance report for simple CNN and
Bayesian CNN on validation data for binary classification task
is given in the Table [I}

TABLE I: Comparison of CNN and Bayesian CNN Models on validation data for Binary
Classification.

Class 0/ No DR

Accuracy | Precision | Recall | F1-Score
Model | (%) @ | 0 | @
CNN 93 96 90 93
BCNN 94 95 95 94

Class 1/DR

Accuracy | Precision | Recall | F1-Score
Model | %) @ | 0 |
CNN 93 90 96 93
BCNN 94 94 95 94

2) Comparison of Active Learning Methods: In pool-based
sampling model, i.e., Mppg, both the CNN and BCNN
model’s accuracy is increased to a certain level over the
number of queries and when the model is trained enough,
the accuracy over the test data has become stable. The final
accuracy that the model achieved is 94% and 91% after the 50
queries have been reached for CNN and BCNN, respectively
as depicted in Figure [5(a)] The performance of the query-by-
committee model is shown in Figure[5(b)] The initial accuracy
of the three committee members is 54%, 56%, and 59%,
respectively. The final accuracy for both CNN and BCNN
in query-by-committee is around 93%. While comparing the
pool-based sampling and query-by-committee, the CNN model
is achieving higher performance than the BCNN. One reason
for this behavior is the enabling of dropout in both Mpgp
and Mppgs. Suggesting that there is a trade-off between
performance Vs. accurate uncertainty quantification.

3) UQ for Binary Classification: For the uncertainty quan-
tification (UQ), we perform a series of extensive experiments.
We perform these experiments by changing the number of MC
samples. Our experiments show that our model is predicting
the class of No DR and DR with more confidence and the
wrongly classified or the correctly classified samples with
more uncertainty are less in numbers. To reduce the cost of
time and computations, we only reported our results of the
model’s uncertainty up to 50 MC samples. Table [lI] shows
three different MC samples, and the model is tested with a
dropout rate of 0.10, while the dropout is enabled at inference
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Fig. 6: The depiction of models (i.e., CNN and BCNN) performance for multi-class classification in terms of (a) accuracy and (b) loss.

time.

TABLE II: Analysis of Bayesian CNN results on binary classification.

Analysis MC-5 | MC-20 | MC-50
Correctly classified (u <T) 979 978 976
Correctly classified (u >=T) 161 165 163
Wrongly classified (u <T) 13 13 12
Wrongly classified (v >=T) 59 56 61

Table [T shows that UQ has identified those rare cases
which have been misclassified with uncertainty greater than
the threshold value of uncertainty, which is 0.5 in our case,
and those instances which are correctly classified by the model
with the uncertainty greater than the threshold value. This
represents a trade-off between performance versus uncertainty
quantification. In case, if we only consider the true positives
with the uncertainty less than the threshold value, our proposed
framework achieves 81% of the accuracy (94%) which is 13%
less than the deterministic CNN.

B. Results for Multi Class Classification

1) Training Feature Descriptor: The learning curves of
the feature descriptor module for multi-class classification are
shown in Figure [§| Both CNN and BCNN are achieving
up to 95% accuracy on training data when trained for 80
epochs. Similar kind of insights can be drawn by observing
these curves (as we observed for binary classification). The
performance of CNN is slightly higher than the BCNN due to
less information blocking in CNN architecture. Classification
report for multi-class classification in terms of accuracy,
precision, recall and Fl-score performed on test data is given
in Table [Vl The confusion matrix for BCNN and CNN are
also given below in Figure [7}

We also reported the ROC curves for the test data for
the BCNN model by applying the dropout rate of 0.30 and
the number of MC iterations to 25 in Figure [8| These ROC
curves and class-wise area under the curve (AUC) show that
the BCNN model is providing good estimation of posterior
distribution, which lacks in simple CNN models.



TABLE III: Comparison of Different Monte-Carlo Samples with the uncertainty quantification results.

Dropout=0.10 MC-5 MC-20 MC-50
Original Label | Predicted Label | Entropy <0.5 | Entropy >= 0.5 | Entropy <0.5 | Entropy >= 0.5 | Entropy <0.5 | Entropy >= 0.5
No DR No DR 422 138 422 142 420 140
No DR DR 10 29 10 25 10 29
DR No DR 3 30 3 31 2 32
DR DR 557 23 556 23 556 23
800

e 02 [ 7 0 1 No DR JREEM 9 7 0 2 700

MildDR4{ 9 | 310 8 0 6 600 MildDR4{ 13 298 17 3 2 000

5 5 500

s s
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Fig. 7: Confusion matrices for multi-class classification.

TABLE IV: Classification Report of CNN and BCNN in terms of accuracy, precision,
recall and F1-score

Class 0/ No DR Class 1/ Mild DR
Model Accuracy Precision | Recall | F1-Score | Precision | Recall | FI-Score
o%e %) (%) (%) (%) (%) (%) (%)
BCNN 92 92 89 91 92 89 91
CNN 92 94 93 94 94 93 94
Class 2/ Moderate DR Class 3/ Severe DR
Model Accuracy Precision | Recall | F1-Score | Precision | Recall | FI-Score
o%e (%) (%) (%) (%) (%) (%) (%)
BCNN 92 87 88 88 81 89 85
CNN 92 93 82 87 82 91 86
Class 4/ Proliferative DR
Model | Accuracy (%) Precision (%) Recall (%) F1-Score (%)
BCNN 92 83 77 80
CNN 92 76 90 82
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Fig. 8: ROC curves for all classes which are showing area under the curve (AUC)
approximately equal to one.

2) Comparison of Active Learning Methods: For multi-
class classification, experiments have been separately per-

formed on CNN and the BCNN. Both CNN and BCNN
models initially achieved the performance of 78% and 69%
when trained on a small number of dataset for 10 epochs.
The results of training a CNN model for pool-based sampling
model Mppg are shown in Fig. and for BCNN are shown
in Figure 0(b)] The final accuracy of the CNN and the BCNN
model are 86% and 85%, respectively.

Similarly, for query-by-committee model Mg pc, the result
of CNN are shown in Figure [[0(a)] and for BCNN are shown
in Figure [TO(b)] Mqpc for the CNN model has a higher value
of accuracy in both cross-entropy and in the focal loss.

The results are showing that the focal loss is performing
better for active learning models, i.e., Mpps and Mgpc.
In comparison with overall performance, the focal loss in
BCNN for Mqgpc is performing best as its learning behavior
is comparatively smooth. As the new data is being added,
all three committee models are learning more from the hard
examples. Also, the focal loss is enforcing the model to not
get over-fitted on the already known data and focusing on the
newly augmented examples by taking them as hard examples
to train.

3) UQ for Multi-class Classification: For the UQ, we use
two different dropout rates of 0.20 and 0.30. As in the binary
class classification, we use different MC samples and reported
the correctly and wrongly classified samples. We set the
threshold value as 7' of 1.276. The sample whose entropy
is less than 7" and whose prediction is the same as the ground
truth label is counted as correctly classified. The UQ results
are reported only on the BCNN model. The results for the two
dropout rates, i.e., 0.20 and 0.30 are shown in Figure [T1(a)]
and in Figure [T1(b)] respectively. The x-axis is showing the
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TABLE V: Comparison of the existing methods and with baseline for DR classification.

Author Year Methods Dataset(s) Results
- Monte-Carlo Dropout AUC = 0.99
- Hybrid Model (multi-class classification)
) - Simple active learning query functions Accuracy = 92%
Ours 2020 Uncertainty quantification APTOS 2019 (multi-class classification )
- Binary and multi-class classification Accuracy = 85%
- Automated method of labeling unlabeled data (BCNN in Active Learning)
AUC = 0.996
- EfficientNet-B7 model APTOS 2019 (for referred DR)
Chetoui at el. [24 2020 | - Binary classification (referred DR/visual-threatening DR) EyePAC 2015 AUC = 0.998
- Gradient-weighted Class Activation Mapping (Grad-CAM) to detect signs of DR (Kaggle) (for visual threatening DR)
Accuracy = not reported
- Data augmentation (horizontal flip/vertical flip) -
Khalifa at el. [23] | 2019 | - AlexNet, ResNet, VGG16/19, SqueezeNet and GoogleNet APTOS 2019 Accuracy = 97.9%
- Transfer learning for DR classification AUC = not reported
- Mean-field variational inference Accuracy = 84%
- Monte-Carlo Dropout (No referral)
Filos et al. [27] | 2019 | - Deep Ensembles Ey(e]'zi‘c 125()]'5
- Uncertainty quantification &8 Accuracy = 91.3%
- Binary class classification only (50% data referred)
- Contrast limited adaptive histogram equalization _
Lam et al. (33| | 2018 | - GoogleNet / AlexNet Ey(el':’:oc 125()"5 Aﬁccc‘f‘ﬁ ;ngoe d
- Transfer learning with ImageNet weights 8 B P
- Monte-Carlo Dropout _
Gal et al. [30] 2017 | - Training of Bayesian CNN model in active learning settings MNIST AUC =0.75
f . IPIC 2016 Accuracy = not reported
- Customized query functions

MC iterations and the y-axis is the log-scale of total number
of samples. It can be seen from both figures that increasing the
dropout rate in BCNN is reducing the performance of correctly
classified samples with uncertainty less than the Threshold
value.

C. Comparison with Existing Methods

We compare our approach with two approaches indepen-
dently. Firstly, we compare the performance of MC dropout
with our baseline paper [27] and extended their approach to
the multi-class classification by training our models with less
number of training data samples. Secondly, we compared our
proposed method of training a hybrid model (Bayesian) in
active learning settings with [30]. As we used classical AL
query strategies like uncertainty sampling and vote-entropy
sampling which are quite intuitive and straightforward query-
ing methods of obtaining the most informative samples. The
overall comparison with the existing methods can be seen in
Table [VI

D. Discussions

We now discuss our analysis and identify some of the
interesting insights and a few points which can be considered
for future work.

In conventional AL approaches, the required label of queried
samples is obtained manually either by asking from an expert
field annotator or its ground truth is already available for
training. We replaced this approach by automating the process
of acquiring the label from a well trained BCNN model.
We only forward those labels on which our annotator model
(which we call feature descriptor) is quite confident (the case
where uncertainty is less than the threshold). Still there is a
risk that a wrongly classified example with more confidence
can mislead the AL models to wrong learning. For now, we
have cross verified our approach by adding only those samples
in AL settings on which our ground truth label is same as the
predicted label and the uncertainty is less than the specified
threshold value.

The threshold used for uncertainty and selection of dropout
parameters is among the important parameters in training and
evaluating the MC dropout approach. There are a lot of hyper-
parameters involved in training and evaluating the complex and
large-sized CNN models. We reported our best results, but still
we believe that further optimization of the hyperparameters
can be performed to achieve more stable results. Furthermore,
in medical imaging, we need to quantify uncertainty and we
need to incorporate further statistical approaches that need
to be investigated. In addition, we would like to note that
MC dropout is not the only way of approximating the true
posterior distribution. There are other methods like variational
inference specifically mean-field variational inference which
approximates the posterior distribution by minimizing the
KL-divergence between the two distribution which can be
investigated for the task of DR classification (especially in
multi-class classification).

The complexity of neural network models is always a
challenging issue and problem-specific neural networks need
to be designed. Most of the DL models for medical image
diagnosing use the phenomenon of transfer learning and use
the pre-trained weights of ImageNet to fine-tune the models.
Recent studies [35] have revealed that techniques like transfer
learning offers limited performance for medical imaging tasks
using the weights of ImageNet. By keeping this in mind,
we designed all of our models as independent of transfer
learning and they are being trained from scratch using their
own randomly initialized weights.

Lastly, we also encourage the interested readers to think
about multi-label classification (i.e., assigning more than one
label at a time to a single sample) using Bayesian CNNs and
investigate the uncertainty quantification for this task. This
approach can help the medical experts to see the possible
transition from one stage to another stage and can help them
to wisely suggest the related therapies.

VII. CONCLUSIONS

In this paper, we have proposed a hybrid model for the
problem of diabetic retinopathy (DR) classification that jointly



handles uncertainty problem and is also able to learn from
unlabelled data. In particular, the proposed framework has
two main components, i.e., the Bayesian convolutional neural
network (BCNN) model having Monte-Carlo drop-out, which
is used as a feature descriptor and an active learning (AL)
component. BCNN reduced the uncertainty of the prediction,
while the AL module enables learning from unlabelled data.
We have performed an extensive evaluation of the proposed
framework under different settings and also, we have com-
pared the performance of BCNN with that of deterministic
CNN. We have evaluated our approach for both binary class
classification and multi-class classification and have achieved
competitive results as compared to the state-of-the-art. Our
BCNN model for binary class classification has achieved an
accuracy of 92% (less confident) and 81% (more confident),
while our multi-class BCNN model has achieved an accuracy
of 92% (more confident). Moreover, our AL results for the
BCNN model for binary class classification are improving
state-of-the-art results with an accuracy of 91% and for the
case of multi-class classification, AL models for both CNN
and BCNN needs to be optimized further in future work.
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