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Abstract
This manuscript is devoted to investigate the mathematical model of fractional-order dynamical system of the recent disease 
caused by Corona virus. The said disease is known as Corona virus infectious disease (COVID-19). Here we analyze the 
modified SEIR pandemic fractional order model under nonsingular kernel type derivative introduced by Atangana, Baleanu 
and Caputo ( ABC ) to investigate the transmission dynamics. For the validity of the proposed model, we establish some quali-
tative results about existence and uniqueness of solution by using fixed point approach. Further for numerical interpretation 
and simulations, we utilize Adams-Bashforth method. For numerical investigations, we use some available clinical data of 
the Wuhan city of China, where the infection initially had been identified. The disease free and pandemic equilibrium points 
are computed to verify the stability analysis. Also we testify the proposed model through the available data of Pakistan. We 
also compare the simulated data with the reported real data to demonstrate validity of the numerical scheme and our analysis.

Keywords  Non-integer order Adams-Bashforth technique · Approximate solution · COVID-19 model

1  Introduction

COVID-19 which is a threatful and terrible disease has been 
identified initially in Wuhan city of China in December 
2019. The said infection transmitted in all over the world in 
coming few months. The spreading of this little and quickly 
transmissible virus in the recent time is due to corona virus 

[1, 2]. In 2020, the disease of COVID-19 is the world big 
threat that affected nearly all countries and continents around 
the globe. By the data given by the worldo-meter [3] and 
WHO [4, 5] shows that nearly 150 million cases of infec-
tion occurred while more than five million of population has 
been died. In the past history of the said virus, it is started in 
1965 by the Tyrrell and Bynoe for identification of a virus 
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due to B814 [6]. Such types of viruses had been identified 
in human organs of embryonic tracheal organ moves taken 
from the respiration vain of an aged person [7].

Most of scientists, scholars and politicians are trying to sta-
bilize and control the transmission of the pandemic, because 
the aforesaid disease has killed millions of people around the 
world in last 2 years. One of the factors of transmitting the said 
pandemic so rapidly is the migration of infectious population 
from one place to another. Therefore, locally and globally, some 
precautionary measures have been implemented. Most of the 
countries have stopped their air traffic and avoid unnecessary 
traveling [8]. They also banned crowds and lockdown in the 
cities to minimize the loss of human lives. In this scenario, the 
researchers and policies makers are searching to discover a cure 
or vaccine for the mention disease to stabilize and control it in 
the coming days. In preparation of vaccine some countries have 
got succession and now vaccines are available.

To properly controlled this pandemic, it is important to know 
much about the transmission, symptoms and features of this dis-
ease. Implementation of a proper method against the disease out 
breaking which is the big type of challenge faced by the human 
population in past history. Therefore, scientists and researchers 
are trying continuously to model this disease mathematically. 
In the past, different mathematical models have been developed 
for infectious diseases, for instance (see the references [9–15]). 
Recently, a lot of research work has been published in the form 
of mathematical models. For reference, we give for instance 
some published work as [1, 2, 16–22].

Most of mathematical models which have been investigated 
in the past were either the system of differential, difference and 
integration equation having natural or discrete-order. But after 
fractional calculus has got attention in last few decades, frac-
tional order differential equations (FDEs) applied in excessive 
numbers to model various real-world problems. FDEs have 
many applications in various fields of engineering and medi-
cal laboratories like physics, business, controlling phenomena, 
accounting and in biological problems. Therefore, the scientists 
and researchers increasingly have used FDEs to formulate the 
real-globe phenomena. Because of the extra degree of choices 
in fractional derivative which is not present in traditional order 
operator. Further traditional order derivatives of integer order 
are not generalized as compared to fractional order which is 
generalized. Hence fractional order derivative is non-locale in 
nature and preserves the memory properties which makes it 
better. Further fractional order derivative of a function produces 
accumulation of the function which include the corresponding 
integer order counter part as a special case. Further geometri-
cally it gives spectrum of the function and hence produce the 
whole density of the function on whom it applies. This is con-
sider the best one, in the conditions where the coming states of 
models not only related to the present state but may also depend 
on the past timing of each quantity. For some significance appli-
cations see [23–26]. Due to these properties FDEs not only 

formulate the problems containing the non-Gaussian nature but 
can also describe the dynamics for the non-Markovian condi-
tions also. As the natural order derivative and its constituting 
equations do not give knowledge lying between any of the two 
consecutive different natural numbers. Therefore, FDEs have 
been introduced to overcome these limitations. Fractional dif-
ferential operators have many applications in different areas 
of mathematical and physical sciences. Liouville, Euler, Rei-
mann and Fourier established some definitions for fractional 
order derivative during. After that the area has given much 
more attention. Modern calculus has a lot of applications in 
the area of mathematical modeling where hereditary character-
istic and memorization properties have been studied very easily. 
Integer order derivative is rarely used to study such behaviors. 
Non-integer order derivative is the generalization of the natu-
ral order derivative having extra degree of freedom as com-
pared the natural order derivative (see [23–30]). Keeping these 
properties scholars and researchers have taken much interest to 
study FDEs from different aspects. In the definition of arbitrary 
order operators, theirs lie a definite integration which predicts 
physically the area under the function curve or spectrum to 
generalize it. Integer order differentiation is a specific class of 
the non-integer order derivative. Although, sufficient contribu-
tions have been made by the researchers to analyze the solu-
tion of various problems (see [31–37]). Remarkably, arbitrary 
order operators have been formulated in different mathematical 
forms. Fractional differential operators can be classified in two 
major classes. One is devoted to singular kernel type fractional 
order differential operators like Reimann-Liouville, Caputo, etc. 
While the other class is devoted to non-singular type opera-
tor where exponential or Mittag-Leffler function play the role 
of kernel. One of the famous operator of fractional derivative 
with Mittag-Leffler type kernel is known as ABC introduced 
by Atangana, Baleanu and Caputo [38] in 2016. This operator 
replaced the singular kernel by non-singular one [39–41]. But 
this classification has own merits and de-merits. But researchers 
increasingly used these operators to investigate various real-
world problems.

To treat FDEs under various operators for their numerical solu-
tion, optimization and numerical analysis, the traditional techniques 
have been extended for these purposes. For instance decomposition 
and homotopy perturbation techniques have been previously used 
to investigate various problems of FDEs (see [42–44]). For numeri-
cal solution mostly, RKM methods have been applied to various 
fractional order models. Here, in our work, the fractional Adams 
Bash-forth method is used for numerical simulation as applied in 
[45, 46]. This technique is an easy bi-step method which is more 
powerful than Taylor series, Euler method, and RKM techniques. 
Moreover, it is rapidly convergent and stable.

The investigation of epidemiological models of infected dis-
ease have gained great attention from research point of view. 
Several scholars have investigated the solution existence and 
uniqueness of many fractional order models [47–50]. For the 
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description of the mathematical formulation of COVID-19, 
and to observe that how this disease impacts the susceptible, 
infected and quarantined people have been investigated. Some 
of the researchers have focused on the mathematical perspec-
tive of COVID-19. For knowing the dynamics structure and 
physical behavior of the outbreak of COVID-19, Mathematical 
models are playing important roles. In the problem presented 
in [51, 52] contains the susceptible people Sp(t), exposed popu-
lation Ep(t), infectious density Ip(t), asymptotically infectious 
people Ap(t), humans recovery population Rp(t), reservoir M(t) 
and the their interactions have been modeled as

The detail of parameters applied in the problem (1), with full 
explanation is provided in Table 1.

Here authors have established some global, local stabil-
ity by computing basic reproductive numbers. Also using 
simple integral transform method, they have presented 
some numerical results.

Motivated from the aforesaid literature and work pub-
lished in the corresponding area, we consider Model (1) 
under the ABC fractional order derivative as

(1)

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Dt(Sp(t)) = np − Spmp − bpSp(Ip + �Ap) − bwMSp ,

Dt(Ep(t)) = (Ip + �Ap)bpSp + bwSpM − �pEp(1 − �p) − �pEp�
�
p
− Epmp ,

Dt(Ip(t)) = �pEp(1 − �p) − Ip(�p + mp),

Dt(Ap(t)) = �p�
�
p
Ep − (� �

p
+ mp)Ap ,

Dt(Rp(t)) = �pIp + � �
p
Ap − mp�p ,

Dt(M(t)) = �Ip + �Ap − �M,

Sp(0) = S0, Ep(0) = E0, Ip(0) = I0, Ap(0) = A0, Rp(0) = A0, M(0) = M0.

(2)

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

ABCD
r
t
(Sp(t)) = np − mpSp − bpSp(Ip + 𝜅Ap) − bwSpM,

ABCD
r
t
(Ep(t)) = (Ip + 𝜅Ap)bpSp + bwSpM − 𝜔pEp(1 − 𝛿p) − 𝛿p𝜔

�
p
Ep − mpEp ,

ABCD
r
t
(Ip(t)) = 𝜔pEp(1 − 𝛿p) − Ip(𝛾p + mp),

ABCD
r
t
(Ap(t)) = 𝛿p𝜔

�
p
Ep − (𝛾 �

p
+ mp)Ap ,

ABCD
r
t
(Rp(t)) = 𝛾pIp + 𝛾 �

p
Ap − mp𝛾p ,

ABCD
r
t
(M(t)) = 𝜀Ip + 𝜎Ap − 𝜗M,

Sp(0) = S0, Ep(0) = E0, Ip(0) = I0, Ap(0) = A0, Rp(0) = A0,

M(0) = M0, 0 < r ≤ 1.

We establish some appropriate results for existence theory 
of solution via fixed point approach. Further, we attempt on 
stability results for the suggested model. Some sensitivity 
results about the parameters of the model are also discussed. 
Further, numerical technique of Adams-Bashforth method 
is used to handle this model (2) for the approximate solution 
and numerical simulations. Further we testify the numerical 
interpretation by two sets of data one of Wuhan city reported 
and other one is reported in about Pakistan. Further we also 
compared our simulated data and real data in case of infected 
cases to see the validity of the numerical scheme.

Here we remark some limitations of using mathematical 
models to understand the mechanism of infections disease or 
other real-world problems. For instance, models that establish 
for addressing forecasts are usually designed to produce either 
short-term or long-term forecasts. Some times models designed 
for long-term forecasting often do not produce good short-term 
forecasts and vice versa. Also, the associated factors, assump-
tions and structure, required for the one purpose often make the 
model less suitable for the other. To construct an appropriate 
model is a crucial job, because it is often the only link between 
the model and the model user. Also in majority cases to verify 
the model by real data, we often have no access to the afore 
data or information. In short we say that models are abstrac-
tions of reality, because, real-world systems are complex and 
composed of many interrelated components. For a modeler it 
is impossible or tedious to include all the comments (see detail 
in [57]). On the other hand for simulations, different numerical 
schemes are using to deal mathematical models. The concerned 
schemes have some short comings. For instance often numeri-
cal scheme is stable that we are using but on the other hands it 
will suffer from convergency. In same fashion it is not necessary 
that a scheme we use is convergent then it must also be stable. 
Here we use Adams-Bashforth method to simulate our results. 
The advantage of the proposed method is that it uses only one 
additional function evaluation per step and produces preserve 
high-order accuracy. But the limitation of the said method is the 
necessity of using another method to start.

2 � Method, feasibility and stability analysis

Here in this part, we have to find feasibility and stability 
analysis of the proposed model. We first here re-collect some 
required results, definitions from [39, 40].

Definition 2.1  ABC fractional operator for a function Ψ(t) 
and Ψ(t) ∈ H

1
(0, �) is formulated as:

(3)ABC�
r
0
Ψ(t) =

ABC(r)

1−r
∫

t

0

d

dz
Ψ(z)�r

[
−r

1−r

(
t − z

)r]
dz.

Table 1   Parameters description given in the model (1)

Notation Parameters description

nP Birth rate
mp Infection death rate
bp rate of transmission
bw Disease transmission coefficient
�
p
, �′

p
 signified incubation period

�
p
, � ′

p
 rate of recovered of Ip, Ap 

ε, σ Influence rate of virus from Ip and Ap to M
δp, density of Asymptotic infectious population
κ Multiplicity of transmissibility
𝜗 Eliminating rate of virus from M
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If we change �r

[
−r

1−r

(
t − z

)r]
 to �1 = exp

[
−r

1−r

(
t − z

)]
, in 

(3), then we will obtain the Caputo-Fabrizo (CF) operator 
of fractional orders. Further, it is to be noted that

 ABC(r) is called normalized mapping as ABC(0) = ABC(1) = 1 . 
Also �r represents specific mapping known as Mittag-Lef-
fler which is the general form of the exponential mapping 
[28–30].

Definition 2.2  Consider Ψ ∈ L[0,T], then the fractional 
order integration in the sense of ABC is as follows:

Lemma 2.3  ([54]) If Y(t) → 0 as t = 0, then the solution for 
0 < r < 1 of the problem

is given by

Note: For existence of solution, closed norm space is 
defined by:

 where Z = C[0,T] under the norm:

 The Krasnosilkii’s theorem of fixed point theory is applied 
for the main result.

Theorem 2.4  [55] Consider A be any convexed subset of 
Y and consider that F,G are two different operators in the 
integral equations with

1.	 Gw + Fw ∈A for all w ∈A;
2.	 F is contracted operator;
3.	 G is compact and continuous operator.

Then equation Fw + Gw = w in operator form, has one or 
more than one solution.
Lemma 2.5  The solution of the proposed problem (2) is 
bounded in the region of feasibility given by

ABC
�

r[constant] = 0.

(4)ABC�
r
0
Ψ(t) =

1−r

ABC(r)
Ψ(t) +

r

ABC(r)Γ(r)
∫

t

0
(t − z)r−1Ψ(z)dz.

ABC�
r
0
Ψ(t) = Y(t), t ∈ [0, T],

Ψ(0) = Ψ0

Ψ(t) = Ψ0 +
(1 − r)

ABC(r)
Y(t) +

r

Γ(r)ABC(r)∫

t

0

(t − z)r−1Y(z)dz.

� = � = C([0, T] × R6,R),

‖�‖ = ‖Ψ‖ = sup
t∈[0,T]

�
�Sp(t)� + �Ep(t)� + �Ip(t)� + �Ap(t)� + �Rp(t)� + �M(t)�

�
.

Ψ =

{
(Sp(t),Ep(t), Ip(t),Ap(t),Rp(t),M(t)) ∈ �

6
+
∶ 0 ≤ N(t) ≤

np

mp

}
.

Proof  Let consider

 By adding all the equations of (2) we get as

Solving Eq. (5), we get

or

 hence proved.

Next we find the disease free and the pandemic equilibrium 
points by setting all the equation of system (2) equal zero as

or

Theorem 2.6  The basic reproductive number is computed 
as

Proof  For this we take the four equations of model (2) as

We define F and V as follows

and

Np = Sp(t) + Ep(t) + Ip(t) + Ap(t) + Rp(t) +M(t).

(5)ll
ABCdr(Np)

dtr
≤ np − mpNp.

Np ≤
np

mp

− C exp(−mpt),

Np(t) ≤
np

mp

,

ABCD
r
t
(Sp(t)) = 0,

ABCD
r
t
(Ep(t)) = 0,

ABCD
r
t
(Ip(t)) = 0,

ABCD
r
t
(Ap(t)) = 0,

ABCD
r
t
(Rp(t)) = 0,

ABCD
r
t
(M(t)) = 0,

E0(
np

mp

, 0, 0, 0, 0, 0).

R0 =
�p�

�
p
(mp + �p)(��bpnp + np�bw) + (1 − �p)�p(�

�
p
+ mp)(�bpnp + np�bw)

�mp(mp + �p)(�
�
p
+ mp)(�p(�

�
p
− �p) + mp + wp)

ABCdr (Np )

dtr
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(Ip + �Ap)bpSp + bwSpM − �pEp(1 − �p) − �p�
�
p
Ep − mpEp

�pEp(1 − �p) − Ip(�p + mp)

�p�
�
p
Ep − (� �

p
+ mp)Ap

�Ip + �Ap − �M

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

F =

⎛
⎜
⎜
⎜
⎝

(Ip + �Ap)bpSp + bwSpM

0

0

0

⎞
⎟
⎟
⎟
⎠
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Next, taking the Jacobian of F and V w.r.t, and putting the 
value of E0, we get

and

Then the dominant eigen value of FV−1 = �(FV−1) is 
called basic reproduction number R0 and hence equal to

Hence proved

Theorem 2.7  E0 is locally asymptotically stable if R0 < 1.

Proof  The derivation of the theorem can be obtained by tak-
ing Jacobian of  the system (2)  and putt ing 
E0 = (

np

mp

, 0, 0, 0, 0, 0) , one has

In the above matrix, two of the eigen values on the main 
diagonal are negative, while the rest of the eigen values can 
be computed by characteristic equation as

Here

V =

⎛
⎜
⎜
⎜
⎜
⎝

�pEp(1 − �p) + �p�
�
p
Ep + mpEp

�pEp(1 − �p) − Ip(�p + mp)

�p�
�
p
Ep − (� �

p
+ mp)Ap

�Ip + �Ap − �M

⎞
⎟
⎟
⎟
⎟
⎠

.

F =

⎛
⎜
⎜
⎜
⎜
⎝

0
bpnp

mp

�bpnp

mp

bwnp

mp

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

V =

⎛
⎜
⎜
⎜
⎜
⎝

�p�
�
p
+ �p(1 − �p) + mp 0 0 0

�p(�p − 1) mp + �p 0 0

−�p�
�
p

0 � �
p
+ mp 0

0 −�p −� �

⎞
⎟
⎟
⎟
⎟
⎠

.

(6)R0 =
�p�

�
p
(mp+�p)(��bpnp+np�bw)+(1−�p)�p(�

�
p
+mp)(�bpnp+np�bw)

�mp(mp+�p)(�
�
p
+mp)(�p(�

�
p
−�p)+mp+wp)

.

J =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−mp 0
−bpnp

mp

−�bpnp

mp
0

−bwnp

mp

0 −mp − �p�
�
p
− (1 − �p)�p

bpnp

mp

�bpnp

mp
0

bwnp

mp

0 (1 − �p)�p −mp − �p 0 0 0

0 �p�
�
p

0 −mp − � �
p

0 0

0 0 �p � �
p

−mp 0

0 0 � � 0 −�

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(7)Λ4 + b1Λ
3 + b2Λ

2 + b3Λ + b4 = 0.

where R0 = R1 + R2 as follows

 and

 In the above characteristic equation, the terms which are 
underlines are less than R0, also b4 is positive if R0 < 1. Fur-
ther if R1 < 1 and R2 < 1, then b3 will be positive. Hence all 
the coefficients are positive being the conditions for Routh-
Hurwitz criteria [53]. Hence E0 is locally asymptotically 
stable.

Next we have to find the pandemic equilibrium point as

 and

Here

 satisfying the given equation

Here

b1 = � �
p
+ � + �p�

�
p
+ (1 − �p)�p + 3mp + �p,

b2 = (mp + �p)(�p�
�
p
+ (1 − �p)�p + mp) − bp(1 − �p)�p

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

+ (mp + �p)(�p(�
�
p
− �p) + mp − �p) − �bp�p�

�
p

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

+ �(� �
p
+ mp) + (mp + �p)(mp + � �

p
) + �(�p(�

�
p
− �p) + mp + �p) + �(mp + �p),

b3 = �(�p�
�
p
+ (1 − �p)�p + mp)[(�

�
p
+ mp)(1 − R1) + (mp + �p)(1 − R2)]

+ (mp + �p) (�(�
�
p
+ mp) − (�bp�p�

�
p
))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

+bp�p�p(�
�
p
+ mp)

+ (� �
p
+ mp)((�p + mp)�p(�

�
p
− �p) + mp + �p) − bp�p,

b4 = �(�p + mp)(�
�
p
+ mp)(� + �p�

�
p
+ (1 − �p)�p + mp)(1 − R0),

R1 =
�p�

�
p
(��bpnp + np�bw)

�mp(�
�
p
+ mp)(�p(�

�
p
− �p) + mp + wp)

R2 =
(1 − �p)�p(�p + mp)(�bpnp + np�bw)

�mp(�p + mp)(�p(�
�
p
− �p) + mp + wp)

.

E∗ = (S∗
P
,E∗

P
, I∗

P
,A∗

P
,R∗

P
,M∗)

S∗
p
=

np

Λ+mp

,

E∗
p
=

ΛS∗
p

�p�
�
p
−�p�p+mp+�p

,

I∗
p
=

E∗
P
(1−�p)�p

�p+mp

,

A∗
P
=

E∗
p
�p�

�
p

� �
p
+mp

,

R∗
P
=

A∗
p
� �
p
+I∗

p
�p

+mp

,

M∗ =
A∗
p
�+I∗

p
�

�
.

Λ =
bp(�npA

∗
p
+ mpI

∗
p
)

mp(S
∗
p
+ E∗

p
+ I∗

p
+ A∗

p
+ R∗

p
)
+

bpM
∗

mp

,

P(Λ∗) = a1(Λ
∗)2 + a2(Λ

∗) = 0.
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 As a1 > 0,a2 ≥ 0 if R0 < 1, then Λ∗ =
−a2

a1
≤ 0 . Hence no 

pandemic equilibrium will lie if R0 ≤ 1. This implies that the 
endemic equilibrium exists and stable if R0 > 1.

3 � Existence, uniqueness of solution 
and numerical simulations

It is natural to ask whether a dynamical system that we 
are investigating exists or not in reality. Fixed point theory 
answer this question. We examine our considered problem 
(2) for existence results about the solution. Regarding this, 
we write the right sides of our problem (2) as:

To symbolize the system (2) by using (8) as follows

By applying integral in sense of ABC and by using lemma 
2.3 we get

where,

Using (9) and define operators F,G by using (10) as

a1 = �(mp + �p)(mp + � �
p
)(�p(�

�

p
− �p) + mp + �p)

a2 = �mp(mp + �p)(mp + � �
p
)(�p(�

�

p
− �p) + mp + �p)(1 − R0)

(8)

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

F1(t, Sp ,Ep , Ip ,Ap ,Rp ,M) = np − Spmp − bpSp(Ip + �Ap) − SpMbw ,

F2(t, Sp ,Ep , Ip ,Ap ,Rp ,M) = (Ip + �Ap)bpSp + bwSpM − (1 − �p)�pEp − Ep�p�
�
p
− Epmp ,

F3(t, Sp ,Ep , Ip ,Ap ,Rp ,M) = (1 − �p)�pEp − (�p + mp)Ip ,

F4(t, Sp ,Ep , Ip ,Ap ,Rp ,M) = �p�
�
p
Ep − (� �

p
+ mp)Ap ,

F5(t, Sp ,Ep , Ip ,Ap ,Rp ,M) = �pIp + � �
p
Ap − mp�p ,

F6(t, Sp ,Ep , Ip ,Ap ,Rp ,M) = �Ip + �Ap − �M,

Sp(0) = S0, Ep(0) = E0, Ip(0) = I0, Ap(0) = A0, Rp(0) = A0, M(0) = M0.

(9)
ABC�

r
+0
Y(t) = Ω(t,Y(t)), t ∈ [0, 𝜏], 0 < r ≤ 1,

Y(0) = Y0.

(10)Y(t) = Y0(t) +
(1 − r)

ABC(r)

[
Ω(t,Y(t))

]
+

r

ABC(r)Γ(r) ∫

t

0

(t − z)r−1Ω(z,Y(z))dz,

(11)Y(t) =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

Sp(t)

Ep(t)

Ip(t)

Ap(t)

Rp(t)

M(t)

, Y0(t) =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

S0

E0

I0

A0

R0

M0

, Ω(t,Y(t)) =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

F1(Sp ,Ep , Ip ,Ap ,Rp ,M, t)

F2(t, Sp ,Ep , Ip ,Ap ,Rp ,M)

F3(t, Sp ,Ep , Ip ,Ap ,Rp ,M)

F4(t, Sp ,Ep , Ip ,Ap ,Rp ,M)

F5(t, Sp ,Ep , Ip ,Ap ,Rp ,M)

F6(t, Sp ,Ep , Ip ,Ap ,Rp ,M).

(12)
�(Y) = Y0(t) +

(1−r)

ABC(r)

[
Ω(t,W(t))

]
,

�(Y) =
r

Γ(r)ABC(r)
∫

t

0
(t − z)r−1Ω(Z,Y(z))dz.

Witting the growth condition and Lipschitz condition for 
solution’s existence and uniqueness as given below.

(B1)	� Let we have a constants AΩ,EΩ, as:

(B2)	� Let we have a constants LΩ > 0, as for all Y, Ȳ ∈ � 
as:

Theorem 3.1  Under hypothesis (B1,B2), the problem (10) 
has at least one solution which implies that the proposed 
model (2) has at least one solution if (1−r)

ABC(r)
LΩ < 1.

Proof  The theorem can be proved by using the following 
two steps.

	Step I:	Consider Ȳ ∈ � and � = {Y ∈ � ∶ ‖Y‖ ≤ 𝜎, 𝜎 > 0} 
is convex and close set. Then by F in (12), we obtain

Hence, F is contracted.
	Step-II:	 To show that G is compact relative, it is enough 

to show that G is bounded and equi-continuous. 
Clearly, G is defined on their domain as Ω is defined 
on domain and for any Y ∈ � , we follow

So, from (14) it is clear that G have bounds. Further, for 
equi-continuous let t1 > t2 ∈ [0,τ], we continue as

Equation (15) implies that as t2 → t1 then the right side will 
approaches to zero. As, G is continuous and hence

 Hence as G have bounds and are continuous so

 Thus, G have bounds and equi-continuous operator. Also, 
from theorem of Arzelá-Ascoli, the operator G is relative 

|Ω(t,Y(t))| ≤ AΩ|Y| + EΩ.

|Ω(t,Y) − Ω(t, Ȳ)| ≤ LΩ[|Y| − Ȳ|].

(13)
‖�(Y) − �(Ȳ)‖ =

(1−r)

ABC(r)
max

t∈[0,𝜏]

����
Ω(t,Y(t)) − Ω(t, Ȳ(t))

����
≤

(1−r)

ABC(r)
LΩ‖Y − Ȳ‖.

(14)
‖�(Y)‖ = max

t∈[0,�] ‖
r

ABC(r)Γ(r)
∫

t

0
(t − z)r−1Ω(z,Y(z))dz‖

≤
r

ABC(r)Γ(r)
∫

�

0
(� − z)r−1�Ω(z,Y(z))�dz

≤
�r

ABC(r)Γ(r)
[AΩ� + EΩ].

(15)

|�(Y(t2) −�(Y(t1)| =
r

ABC(r)Γ(r)

||||
∫

t2

0
(t2 − z)r−1Ω(z,Y(z))dz − ∫

t1

0
(t1 − z)r−1Ω(z,Y(z))dz

||||
≤

[AΩ�+EΩ]

ABC(r)Γ(r)
[tr
2
− t

r

1
].

|�(Y(t2) −�(Y(t1)| → 0, as t2 → t1.

‖�(Y(t2) −�(Y(t1)‖ → 0, as t2 → t1.
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compact and hence continuous completely. Thus, from Theo-
rem 3.1, the integration Equation (10) has Als at least one 
solution and therefore the proposed problem has at least one 
solution.

For unique solution we give the given theorem.

Theorem 3.2  By hypothesis (B2), the integral Equation 
(10) has unique solution which yields that the system under 
consideration (2) has unique solution if:

Proof  Consider the mapping � ∶ � → � defined by

Let Y, Ȳ ∈ � , then one can take

where

Hence, T is contracted from (17). So, the integration Equa-
tion (10) has one root. This implies that the problem (2) has 
one solution.

For approximate solution, we continue this part of man-
uscript to the proposed fractional order (2) model in sense 
of ABC operator. The iterative technique are then simulated 
on different fractional orders. For this, we use the arbitrary 
order AB iterative technique [56] to find the numerical 
scheme for the graphical representation of the problem (2). 
For model (8) we develop a numerical scheme as

[
(1 − r)LΩ

ABC(r)
+

𝜏rLΩ

ABC(r)Γ(r)

]
< 1.

(16)

�Y(t) = Y0(t) +

[
Ω(t,Y(t)) − Ω0(t)

]
(1−r)

ABC(r)

+
r

ABC(r)Γ(r)
∫

t

0
(t − z)r−1Ω(z,Y(z))dz, t ∈ [0, �].

(17)

‖�Y − �Ȳ‖ ≤
(1−r)

ABC(r)
max

t∈[0,𝜏]

����
Ω(t,Y(t)) − Ω(t, Ȳ(t))

����
+

r

ABC(r)Γ(r)
max

t∈[0,𝜏]

����
∫

t

0
(t − z)r−1Ω(z,Y(z))dz − ∫

t

0
(t − z)r−1Ω(z, Ȳ(z))dz

����
≤ Υ‖Y − Ȳ‖,

(18)Υ =

[
(1−r)LΩ

ABC(r)
+

�rLΩ

ABC(r)Γ(r)

]
.

(19)

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

ABCD
r
t
(Sp(t)) = F1(Sp(t), t) = np − mpSp − bpSp(Ip + �Ap) − bwSpM,

ABCD
r
t
(Ep(t)) = F2(Ep(t), t) = (Ip + �Ap)bpSp + bwSpM − �pEp(1 − �p) − �p�

�
p
Ep − Epmp ,

ABCD
r
t
(Ip(t)) = F3(Ip(t), t) = �pEp(1 − �p) − Ip(�p + mp),

ABCD
r
t
(Ap(t)) = F4(Ap(t), t) = �p�

�
p
Ep − (� �

p
+ mp)Ap ,

ABCD
r
t
(Rp(t)) = F5(Rp(t), t) = �pIp + � �

p
Ap − mp�p ,

ABCD
r
t
(M(t)) = F6(M(t), t) = �Ip + �Ap − �M,

Sp(0) = S0, Ep(0) = E0, Ip(0) = I0, Ap(0) = A0, Rp(0) = A0, M(0) = M0.

Integrating first equation of (19) in ABC approach, we get

Consider t = ti+ 1 for i = 0,1,2⋯, it follows that

Next, approximating the mapping F1(Sp(t),t) on time 
interval [tq,tq+ 1], by the interpolating expression as 
follows:

 or

Now the integrals Iq− 1,r and Iq,r can be calculated as follow:

and

put tq = qΔ, we get

Sp(t) − Sp(0) =
(1−r)

ABC(r)

[
F1(Sp(t), t)

]
+

r

ABC(r)Γ(r)
∫

t

0
(t − z)r−1F1(Sp(z), z)dz.

Sp(ti+1) − Sp(0) =
(1−r)

ABC(r)

�
F1(Sp(ti), ti)

�

+
r

ABC(r)Γ(r)
∫

ti+1
0

(ti+1 − z)r−1F1(Sp(z), z)dz,

=
(1−r)

ABC(r)

�
F1(Sp(ti), ti)

�

+
r

ABC(r)Γ(r)

i∑

q=0

∫
tq+1
q

(ti+1 − z)r−1F1(Sp(z), z)dz.

F1(Sp(t), t) ≅
F1(Sp(tq), tq)

Δ
(t − tq−1) +

F1(Sp(tq−1), tq−1)

Δ
(t − tq)

(20)

Sp(ti+1) = Sp(0) +
(1−r)

ABC(r)

�
F1(Sp(ti), ti)

�

+
r

ABC(r)Γ(r)

∑i

q=0

�
F1(Sp(tq),tq)

Δ
∫

tq+1
q

(t − tq−1)(ti+1 − t)r−1dt

−
F1(Sp(tq−1),tq−1)

Δ
∫

tq+1
q

(t − tq)(ti+1 − t)r−1dt

�

= Sp(0) +
(1−r)

ABC(r)

�
F1(Sp(ti), ti)

�

+
r

ABC(r)Γ(r)

∑i

q=0

�
F1(Sp(tq),tq)

Δ
Iq−1,r −

F1(Sp(tq−1),tq−1)

Δ
Iq,r

�
.

Iq−1,r = ∫
tq+1
q

(t − tq−1)(ti+1 − t)r−1dt

= −
1

r

[
(tq+1 − tq−1)(ti+1 − tq+1)

r − (tq − tq−1)(ti+1 − tq)
r

]

−
1

r(r−1)

[
(ti+1 − tq+1)

r+1 − (ti+1 − tq)
r+1

]
,

Iq,r = ∫
tq+1
q

(t − tq)(ti+1 − t)r−1dt

= −
1

r

[
(tq+1 − tq)(ti+1 − tq+1)

r

]

−
1

r(r−1)

[
(ti+1 − tq+1)

r+1 − (ti+1 − tq)
r+1

]
,
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and

substitute (21) and (22) in (20), we get

(21)

I
q−1,r = −

Δr+1

r

[
(q + 1 − (q − 1))(i + 1 − (q + 1))r − (q − (q − 1))(i + 1 − q)r

]

−
Δr+1

r(r−1)

[
(i + 1 − (q + 1))r+1 − (i + 1 − q)r+1

]
,

=
Δr+1

r(r−1)

[
− 2(r + 1)(i − q)r + (r + 1)(i + 1 − q)r − (i − q)r+1 + (i + 1 − q)r+1

]
,

=
Δr+1

r(r−1)

[
(i − q)r(−2(r + 1) − (i − q)) + (i + 1 − q)r(r + 1 + i + 1 − q)

]
,

=
Δr+1

r(r−1)

[
(i + 1 − q)r(i − q + 2 + r) − (i − q)r(i − q + 2 + 2r)

]
,

(22)

I
q,r = −

Δr+1

r

[
(q + 1 − q)(i + 1 − (q + 1))r

]
−

Δr+1

r(r−1)

[
(i + 1 − (q + 1))r+1 − (i + 1 − q)r+1

]
,

=
Δr+1

r(r−1)

[
− (r + 1)(i − q)r − (i − q)r+1 + (i + 1 − q)r+1

]
,

=
Δr+1

r(r−1)

[
(i − q)r(−(r + 1) − (i − q)) + (i + 1 − q)r+1

]
,

=
Δr+1

r(r−1)

[
(i + 1 − q)r+1 − (i − q)r(i − q + 1 + r)

]
,

Similarly, the proposed method can be used for the remain-
ing five equations of (19) to form general algorithms as

Sp(ti+1) = Sp(0) +
(1−r)

ABC(r)

�
F1(Sp(ti), ti)

�

+
r

ABC(r)

i∑

q=0

�
F1(Sp(tq),tq)

Γ(r+2)
Δr

�
(i + 1 − q)r(i − q + 2 + r)

−(i − q)r(i − q + 2 + 2r)

�

−
F1(Sp(tq−1),tq−1)

Γ(r+2)
Δr[(i + 1 − q)r+1 − (i − q)r(i − q + 1 + r)]

�
.

Ep(ti+1) = Ep(0) +
(1−r)

ABC(r)

�
F2(Ep(ti), ti)

�

+
r

ABC(r)

i∑

q=0

�
F2 (Ep (tq ),tq )

Γ(r+2)
Δr

�
(i + 1 − q)r(i − q + 2 + r)

−(i − q)r(i − q + 2 + 2r)

�

−
F2 (Ep (tq−1 ),tq−1 )

Γ(r+2)
Δr[(i + 1 − q)r+1 − (i − q)r(i − q + 1 + r)]

�
.

Ip(ti+1) = Ip(0) +
(1−r)

ABC(r)

�
F3(Ip(ti), ti)

�

+
r

ABC(r)

i∑

q=0

�
F3(Ip(tq),tq)

Γ(r+2)
Δr

�
(i + 1 − q)r(i − q + 2 + r)

−(i − q)r(i − q + 2 + 2r)

�

−
F3(Ip(tq−1),tq−1)

Γ(r+2)
Δr[(i + 1 − q)r+1 − (i − q)r(i − q + 1 + r)]

�
.

Ap(ti+1) = Ap(0) +
(1−r)

ABC(r)

�
F4(Ap(ti), ti)

�

+
r

ABC(r)

i∑

q=0

�
F4 (Ap (tq ),tq )

Γ(r+2)
Δr

�
(i + 1 − q)r(i − q + 2 + r)

−(i − q)r(i − q + 2 + 2r)

�

−
F4 (Ap (tq−1 ),tq−1 )

Γ(r+2)
Δr[(i + 1 − q)r+1 − (i − q)r(i − q + 1 + r)]

�
.

Table 2   Description of the 
parameters given in model (1) 
for Wuhan

Notation Numerical value

nP 0.073
mp 0.00408
bp 0.05
bw 0.000001231
 �

p
, �′

p
 0.1243, 0.005

 �
p
, � ′

p
 0.09871, 0.854302 

ε, σ 0.1243, 0.01
𝜗 0.398
δp, 0.1243
κ 0.02

Fig. 1   Behavior of Suscepti-
ble population Sp(t) at various 
arbitrary order r of the proposed 
system (2) for h = 0.1,bp = 0.05
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Fig. 2   Behavior of Exposed 
individuals Ep(t) at various 
arbitrary order r of the proposed 
system (2) for h = 0.1,bp = 0.05
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Fig. 3   Behavior of total infected 
population Ip(t) at various 
arbitrary order r of the proposed 
system (2) for h = 0.1,bp = 0.05
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Fig. 4   Behavior of asymptoti-
cally infectious population Ap(t) 
at various arbitrary order r of 
the proposed system (2) for h 
= 0.1,bp = 0.05
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Fig. 5   Behavior of recovered 
population Rp(t) at various 
arbitrary order r of the proposed 
system (2) for h = 0.1,bp = 0.05
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Fig. 6   Behavior of reservoir 
population M(t) at various 
arbitrary order r of the proposed 
system (2) for h = 0.1,bp = 0.05
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Fig. 7   Behavior of all popula-
tions at various arbitrary order r 
of the proposed system (2) for h 
= 0.05,bp = 0.5
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Rp(ti+1) = Rp(0) +
(1−r)

ABC(r)

�
F5(Rp(ti), ti)

�

+
r

ABC(r)

i∑

q=0

�
F5 (Rp (tq ),tq )

Γ(r+2)
Δr

�
(i + 1 − q)r(i − q + 2 + r)

−(i − q)r(i − q + 2 + 2r)

�

−
F5 (Rp (tq−1 ),tq−1 )

Γ(r+2)
Δr[(i + 1 − q)r+1 − (i − q)r(i − q + 1 + r)]

�
.

M(ti+1) = M(0) +
(1−r)

ABC(r)

�
F6(M(ti), ti)

�

+
r

ABC(r)

i∑

q=0

�
F6(M(tq),tq)

Γ(r+2)
Δr

�
(i + 1 − q)r(i − q + 2 + r)

−(i − q)r(i − q + 2 + 2r)

�

−
F6(M(tq−1),tq−1)

Γ(r+2)
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Fig. 8   Behavior of all populations at various arbitrary order r of the proposed system (2) for h = 0.01,bp = 0.1
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We apply the above procedure to simulate the proposed 
model in the next section.

4 � Experimental results and discussion

The numerical simulation is obtained from the results using 
data given in Table 2, from [51] with some updating assum-
ing data. Further, the initial data are in million, we have 
taken in percentage as Sp(0) = 8.465518, Ep(0) = 0.2,Ip(0) 

= 0.0002, Ap(0) = 0.0002, Rp(0) = 0.0002, M(0) = 0.055, and 
the values of parameters are given in Table 2.

From Fig. 1, it is observed that increasing rate of trans-
mission will decrease the number of susceptible individuals, 
and in return, it will increase number of infected population. 
In other words isolation and keeping social distance will 
greatly help in controlling the current outbreak for further 
spreading. The decrease of susceptible has been shown on 
different fractional order. The order of derivatives has also 
produced certain impact on the process, initially at smaller 
order the process of decay is faster than the higher order 
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Fig. 9   Comparison between real and simulated data at given different fractional orders for our proposed model
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and vice versa. After 60 days the susceptible population 
decreases and then going towards convergency and stability.

From Fig. 2, we conclude that initially the number of 
exposed individuals is growing up to 50 days for about all 
orders of derivatives. After that the number decreases gradu-
ally, but at this time the decrease occurs differently at different 
order of derivative. It means that exposed population increases 
as the symptoms is recognized initially, when the outbreak of 
pandemic starts. After 40 or 45 days the exposed class begins 
to decay and then become constant or stable

From Fig. 3, we see that at the given data the number of 
infected cases are less than that of susceptible and exposed ones. 
Here up to 50 days the rate of increase is very high and same for 
all about orders of derivatives, but after that as the transmission of 
people from place to place decreases the infection is decreasing. 
The concerned increase and decrease in population are different 
due to different fractional orders. The infection reached to the 
peak value on 50th day and then decays to some certain value 
of 10 infected cases per day, showing stability or convergency.

From Fig. 4, we conclude that initially the asymptotic 
infected population slightly increases up to 50 days, as the 
number of infected individuals at this stage is on peak. After 
that the number decreases gradually or very slowly at different 
orders of derivative. The number of this class after the 100th 
day shows stability and became constant. As decrease and 
increase in this class are very very low or small as compared 
to other classes, therefore it is known as asymptotic class.

Figure 5 shows that the recovery from disease at the 
beginning is low as the numbers of infected and exposed 
are very low. But after some protective actions and pre-
cautionary measures, the number of recovered population 
increases. Here, the recovered population is different for 
different order of derivatives up to 300 days. After that the 
increases that occur in the recovered case are different at 
different fractional order.

Figure 6 demonstrates that the number of reservoir 
population decreases up to 35 days at different fractional 

order. After that the number of this class increases as com-
pared to other classes with the passage of time. This means 
that as no precautionary actions are taken in the society 
more people will be infected but they will be unaware of 
their infection which will become cause or reservoir for 
infection in the future. It means that large number of popu-
lation will be reserved (infection lies in their bodies) but 
with the passage of time it is also controlled.

Furthermore, to check the sensitivity of the fractional 
order model by changing the values of contact rate bp and 
step size h in Fig. 7a–f.

Another set has been given from Fig. 8a–f by taking h 
= 0.01,bp = 0.1.

Here in Fig. 9, we have compared the reported real data 
[58] of infected cases in Wuhan city from 4th January 
2020 to 8th March 2020 for 67 days as [​6,1​2,1​9,2​5,3​1,3​8,4​
4,6​0,8​0,1​31,​131​,25​9,4​67,​688​,77​6,1​776​,14​60,​173​9,1​984​
,21​01,​259​0,2​827​,32​33,​389​2,3​697​,31​51,​338​7,2​653​,29​84,​
247​3,2​022​,18​20,​199​8,1​506​,12​78,​205​1,1​772​,18​91,​399​,89​
4,3​97,​650​,41​5,5​18,​412​,43​9,4​41,​435​,​579​,20​6,1​30,​120​,14​
3,1​46,​102​,46​,45​,20​,31​,26​,11​,18​,27​,29,39,39]

We see that the simulated data has close agreement with 
the plot of the real data. This phenomenon demonstrates the 
efficiency of our numerical results (Fig. 10).

Next we use the second data for Pakistan as in [59]. The 
initial population is Sp(0) = 220, Ep(0) = 120,Ip(0) = 1.30, 
Ap(0) = 0.3, Rp(0) = 1.02, M(0) = 1.055. The parameters val-
ues are given in Table 2 [59] (Table 3).

Hence present comparison between real data and simulated 
data Fig. 11. The confirmed cases in Pakistan per day reported 
in [60] from the 1 March 2021 to 15th of September 2021 for 
200 days as [4,4,5,5,5,5,5,6,15,17,18,19,19,31,51,182,245,33
1,439,485,629,758,856,962,1034,1171,1139,1454,1554,1836,
19972262,2520,2646,2899,3058,3549,3735,3852,3902,4162,
4150,4307,4362,4824,5143,5122,5660,6043,6742,7286,7703
,8479,8925,9438,10103,10586,11058,11747,11996,12380,12
900,13818,14498,14814,15716,16370,17574,18003,20267,2
1587,22037,23268,25609,26003,26230,27054,27904,29266
,30503,31775,32578,34386,34642,36228,37657,38150,3890
0,39690,40358,40880,42687,44777,47607,50234,53300,561
44,59394,63400,57170,60470,75053,78699,83182,79700,84
762,85321,89583,93233,97690,100324,104648,105087,106
142,107733,107270,107607,107460,107784,106023,106775
,106361,108100,108466,103543,95388,95241,95219,94522,
91408,90358,89250,87345,86770,84234,77418,77360,7353
6,60234,57668,53431,53333,52203,51057,50080,40242,292
74,29626,27189,26191,25279,24983,24941,24912,24908,24
935,24827,20597,19230,18253,17573,17548,17555,17588,1
7103,16229,16685,16014,16001,13706,13385,12464,11697
,11542,10378,10446,9940,9356,8739,8555,8585,8500,8553,
8623,8633,8564,8512,8660,8883,6020,6234,6477,6545,529
1,5546,5979,5786,5582,5525]

Table 3   Description of the parameters given in model (1) for Pakistan

Notation Numerical value

nP 0.4673
mp 0.018
bp 0.083
bw 0.000001231
 �

p
, �′

p
 0.1243, 0.005

HCode �
p
, � ′

p
 0.09871, 0.854302 

ε, σ 0.1243, 0.01
𝜗 0.398
δp, 0.1243
κ 0.02
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5 � Concluding remarks

Assigning different experimental values taken from [51, 59] to 
the parameters of (2), we have performed the required simu-
lations as compared to integer order simulation of the system 
(1). We noticed that by increasing rate of protection, cure and 
decrease rate of transmission, the minimization and stabling in 
the numbers of infected individuals can be achieved. By study-
ing such dynamical system, one can know how to control the 
population from being infected and isolation of infected ones 
from transmission (immigration). This will be very easy for 

policy makers and health sector to implement precautionary 
measures. We can predict for future on the basis of basic repro-
ductive number. From epidemiological point of view it will be 
very interesting for medical science researchers to know about 
the history (past), present and future of infection by investigating 
such type of fractional mathematical model for the pandemic. 
This model can be applied to the population where social gather-
ing occurs locally or globally. Further, by using fixed point the-
ory the solution of the considered fractional dynamical system 
has been proved for the existence and uniqueness, while the rate 
of decaying and growth has been shown through global ways. 
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Fig. 10   Behavior of all populations at various arbitrary order r of the proposed system (2) for h = 0.01
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Hence, fractional calculus can be used for comprehensive expla-
nation of various dynamical models. Further, we observe that 
increasing precautionary measures will increase the recovered 
population. The data of Wuhan and Pakistan have been used to 
demonstrate the model. Also we have compared our simulated 
data with some reported real data of Wuhan and Pakistan for 
infected population. We have observed that both simulated and 
real data plots closely agreed. This shows that the established 
results are true and applicable. These types of models usually 
provide interesting indications for future planning and under-
standing the transmission dynamics of the disease.
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