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Abstract
Coronavirus has an impact on millions of lives and has been added to the important pandemics that continue to affect with its
variants. Since it is transmitted through the respiratory tract, it has had significant effects on public health and social relations.
Isolating people who are COVID positive can minimize the transmission, therefore several exams are proposed to detect
the virus such as reverse transcription-polymerase chain reaction (RT-PCR), chest X-Ray, and computed tomography (CT).
However, these methods suffer from either a low detection rate or high radiation dosage, along with being expensive. In this
study, deep neural network–based model capable of detecting coronavirus from only coughing sound, which is fast, remotely
operable and has no harmful side effects, has been proposed. The proposed multi-branch model takes Mel Frequency
Cepstral Coefficients (MFCC), Spectrogram, and Chromagram as inputs and is abbreviated as MSCCov19Net. The system is
trained on publicly available crowdsourced datasets, and tested on two unseen (used only for testing) clinical and non-clinical
datasets. Experimental outcomes represent that the proposed system outperforms the 6 popular deep learning architectures
on four datasets by representing a better generalization ability. The proposed system has reached an accuracy of 61.5 % in
Virufy and 90.4 % in NoCoCoDa for unseen test datasets.

Keywords Coronavirus · Coughing · Deep learning · Ensemble learning · Telehealth

1 Introduction

Up to date, there have been 524,878,064 confirmed cases
of COVID-19 (COronaVIrus Disease 2019), including
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6,283,119 deaths, reported by World Health Organization
(WHO) [1], and cases are still increasing worldwide.
Therefore, rapid and self testing tools for COVID-19 are
more important than ever before not only to confirm cases,
but also to prevent the spread by taking precautionary steps
such as quarantine, self isolation amongst the others.

The main COVID-19 diagnostic tool is presently the RT-
PCR test (i.e. the swab test), yet this is an expensive and
invasive test, and most of the time it requires to take the
patient to a test centre, which might not be feasible in many
cases because of the severity of the case, moving ability of
the patient etc.

Due to the aforementioned reasons, there have been
several attempts to develop rapid, portable and self-
applicable COVID-19 diagnostic tools. However, this is a
challenging task, since the COVID-19 virus has intertwined
symptoms with influenza or other respiratory diseases and
cannot be distinguished easily, especially in winter season
(when influenza or respiratory diseases circulate more). The
primary symptoms of COVID-19 are loss of smell, loss
of taste, continuous cough, fever and high temperature [2].
Vaccine, wearing mask and social distancing are the primary
measures taken for the controlling the spread of this disease
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[3]. Hence, the clinicians/physician are in urgent need of
novel tools to diagnose/confirm COVID-19 cases.

For this reason, machine learning–based methods have
recently received a great attention for COVID-19 diagnosis.
Amongst them, analysis of coughing audio signal has a
tremendous importance, as COVID-19 is predominantly
manifest as coughing, and it has unique characteristics
belonging to COVID-19 [2, 4, 5].

In this manuscript, we come up with a deep learning–
based COVID-19 diagnostic/confirmation tool that utilizes
coughing audio signal. Our aim is to increase the detection
accuracy so that the transmission of the virus can be
diminished by taking necessary steps. The proposed method
utilizes multi-branch Neural Networks by combining the
features that are extracted from different domains of the
coughing audio signal. Technical details of each part of the
proposed approach are presented in Section 3 and validated
on several datasets (see Sections 4.1 and 5) against state-
of-the-art deep learning–based architectures explained in
Section 5.1.

2 Related works

RT-PCR tests are used to validate COVID-19 infection. One
other diagnostic tool for COVID-19 is medical imaging
systems such as chest X-ray and CT. Furthermore, these
approaches validate misclassifications resulting from RT-
PCR tests. However, these are even more expensive tools
and cannot be used on some vulnerable patient groups
(such as pregnant) due to the radiation emitted. The need
for computerized analysis for fast and accurate diagnosis
comes to the fore during this pandemic. Several works using
automatic deep learning algorithms on CT scans [6–10]
and machine learning algorithms on cough sounds [11–
22] are proposed in literature. The works on CT scans
[6–10] provide information about the degree of severity
of the individual’s lung damage. In a recent survey [23],
numerous studies and open source datasets on CT have
been examined. According to [23], it is reported that
open cough-based COVID-19 datasets are few and their
sizes are small. In [11], the authors combined handcrafted
features with Visual Geometry Group (VGG) features and
reached an Area Under the Curve (AUC) of 0.82 using only
86 cough samples. Feeding MFCC spectrograms as input
to Convolutional Neural Network (CNN) architecture, an
accuracy of 92.85 % was reported on 543 cough sounds (of
which 70 of them was COVID-19) in the work of [12]. In
[13], an ensemble of CNN classifiers is employed and an
AUC of 0.77 is reached on 1502 recordings. Using CNN-
based deep learning model, an AUC of 0.71 is reached
on 1486 samples fusing voice, coughing and breathing
information in [14]. On a dataset of 1273 samples, the

work of [15] employed cough-specific CNN, pre-trained
Residual Network (ResNet) model, gender-specific pre-
trained ResNet model achieving an AUC of 0.62, 0.70
and 0.71, respectively. In [16], using MFCC features as
input and Support Vector Machine (SVM) as classifier
with the advantage of the speech enhancement technique,
accuracies of 74.1 % and 85.7 % are reached on two separate
datasets. However, the highest value of 0.5144 was reached
as AUC value on cough sounds. Using MFCC as input
to ensemble CNN model based on ResNet50, the authors
in [17] achieved an AUC of 0.97 on their private dataset
consisting of 5320 subjects. Employing an architecture
like LeNet-1, an accuracy rate of 97.5 % is reached on a
small test set of 18 samples in [18]. In [19], an AUC of
0.846 is reached on 517 samples using breath and cough
information. However, using only cough recordings of 53
subjects, an AUC of 0.57 is achieved employing ResNet-
based model. In [20], using cough sounds of 76 post-
COVID-19 and 40 healthy subjects an accuracy of 67 %
is obtained utilizing VGG19 CNN model. In [21], an AUC
of 0.771 is reached on a total of 2883 cough sounds using
MFCC and extra features such as the presence of respiratory
diseases, fever, and muscle pain. A detailed comparison of
the related works is given in Table 1. When we consider
the studies using crowdsourced data in the literature, we
found that the CNN-based study with the largest number of
publicly available samples is [21]. Therefore, we used the
work of [21] as the baseline comparison and referred to it as
the Baseline Model throughout the manuscript. We noticed
from the existing studies that the proposed deep learning
models are not validated whether they are generalizable or
not with testing unseen datasets.

3 Proposedmodels

In this paper, we develop four alternative deep learning–
based COVID-19 detection models, namely MFCC-
based, Spectrogram-based, Chromagram-based and ensem-
ble MSCCov19Net models after deep investigations, analy-
sis and trials. We ultimately test and compare their perfor-
mances through successive experiments.

3.1 MFCC-basedmodel

MFCCs are well-known hand-crafted attributes that have
been observed to be one of the most useful features in
the area of audio signal processing [24–26]. They are
extracted from mel-frequency cepstrum (MFC), which can
be defined as a short-term characterization of the power
spectrum of an audio waveform, founded on a direct cosine
transform of a log power. For this work, we extract 39
MFC coefficients from a coughing audio signal. To extract
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Table 1 A detailed comparison of the related works on cough-based (top part) and image-based (bottom part) approaches for COVID-19 detection

Work Year Dataset # of samples Method Accuracy

Brown et al. [11] 2020 COVID-19 Sounds 86 Handcrafted + VGG AUC 0.82

Imran et al. [12] 2020 Own dataset 543 CNN Acc 92.85

Mohammed et al. [13] 2021 Virufy, Coswara 1502 Ensemble CNN AUC 0.77

Xia et al. [14] 2021 COVID-19 Sounds 1486 CNN AUC 0.71

Mallol-Ragolta et al. [15] 2021 DICOVA Challenge 1273 ResNet AUC 0.71

Dash et al. [16] 2021 Coswara, COVID-19 Sounds 200 MFCC + SVM Acc 85.70

Laguarta et al. [17] 2020 MIT Open Voice 5320 MFCC + ResNet50 AUC 0.97

Soltanian et al. [18] 2022 Virufy 18 LeNet-1 Acc 97.50

Coppock et al. [19] 2021 COVID-19 Sounds 517 ResNet AUC 0.85

Suppakitjanusant et al. [20] 2021 Own dataset 116 VGG19 Acc 67.00

Chaudhari et al. [21] 2020 Virufy 2883 MFCC + Extra features AUC 0.77

Akgun et al. [22] 2021 Cambridge data 779 MFCC + MobileNet Acc 86.42

Kiziloluk et al. [6] 2022 COVID-19 3829 CNN Acc 98.11

Amyar et al. [7] 2020 HBCC COVID-19 1369 Multi-task deep learning Acc 94.67

CT segmentation

Covid-CT-dataset

Wang et al. [8] 2021 Own dataset 1065 Modified Inception Acc 89.50

Narin et al. [9] 2021 Covid-chestxray-dataset 3141 ResNet Acc 96.10

ChestX-ray8

Ilhan et al. [10] 2021 ChestX-ray8 1125 Decision and feature Acc 90.84

Covid-chestxray-dataset 1478 level fusion Acc 90.50

Actualmed COVID-19 Dataset 1591 Acc 90.70

The highest accuracy (Acc) and area under the curve (AUC) scores are taken from the corresponding papers respectively

the MFC coefficients, we use Python-librosa audio signal
processing package [27]. More precisely, the coughing
audio waveform is first resampled to 22.5 KHz, then the
feature extraction function is applied to the signal by
using a hop length of 23 ms, window length of 93 ms,
and a Hann window type. The output MFCC features are
then averaged along the time-axis and converted into 1D 39
coefficients.

For this model, we create a small Multi Layer Perception
(MLP) network (as it can be seen in Fig. 1), which consists
of 4 fully connected (FC) layers and a single output layer.
Each FC layer contains 1024, 2048, 512 and 512 nodes
respectively with Rectified Linear Unit (ReLu) activation
functions and dropout layers. The last dense layer is a single
node with Sigmoid activation that gives the probability of
the covidness of the given cough signal.

3.2 Spectrogram-basedmodel

Spectrogram is a visual illustration of the range of fre-
quencies of a given waveform while it changes with time.
To put it another way, it can be thought as a 2D sig-
nal that shows the relation between time and frequency.

Recently, spectrograms have been used as input to many
CNN architectures to achieve various ultimate goals, includ-
ing speech recognition [28, 29], speaker verification [30,
31] and speech enhancement [32, 33]. Inspired by the pre-
vious motivational works, we propose to use spectrograms
to extract meaningful information from cough audio sig-
nals. Spectrograms are extracted via librosa library by using
the previously obtained MFC coefficients, then rescaled to
128 × 40 and normalized to [0, 1] before inputted to the
proposed network.

As Spectograms are 2D signals, we create a small Con-
volutional Deep Neural Network (CDNN) architecture (as it
can be observed in Fig. 2), which is inspired by the seminal
VGG network [34–36]. The network contains 3 convolu-
tional layers, a flatten layer, and 3 FC layers and a single
output layer for classification. The convolutional layers
contain composite functions that consists of a convolution
function with 32, 64, and 64 filter sizes respectively, a ReLu
activation layer, a max pooling layer of 2 × 2 filter size with
stride 2 and a Batch Normalization layer. The FC layers, on
the other hand, contain 256, 64 and 64 nodes respectively
with ReLu activation functions and dropout layers. The last
dense layer is also a single node with Sigmoid function. The
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Fig. 1 The complete architecture of the MFCC-based model

spectrogram images are rescaled to 128 × 40 to feed the
network.

3.3 Chromagram-basedmodel

Chromagram which can also be expressed as Harmonic
Pitch Class Profile, contains the energy distribution of an
audio wave along the pitches [37]. Chroma-based features
are highly used on audio signals to analyze meaningfully
categorizable pitches [38–40]. For this work, we extract 12-
element 1D features (via librosa) from each coughing audio
signal and use them as input to feed the proposed network.

For this model, we use a similar MLP architecture to
MFCC-based model. The model consists of 4 FC layers
and a single output layer. Each FC layer contains 1024,
2048, 512 and 512 nodes respectively with ReLu activation
functions and dropout layers. The last dense layer is a single
node with Sigmoid function. The utilized model can be seen
in Fig. 3.

3.4 Ensemble MSCCov19Net model

We finally propose a multi-branch CNN architecture called
MSCCov19Net to detect COVID-19 from a given coughing
audio signal only. The proposed architecture combines
previously explained neural features extracted from diverse

domains: MFCC features, Spectrogram images and Chroma
features (Chromagram) of the coughing audio signal.

The overall architecture of the proposed ensembled neural
network can be seen in Fig. 4. The proposed MSCCov19Net
network consists of three branches, and each branch extracts
distinct and informative neural features from aforemen-
tioned sources, then these neural features are concatenated
and sent to the classification network.

The first branch extract neural features F 1
n ∈ R

C′
1 , where

C′
1 = 256 from MFCC, using 2-layers of dense nodes. The

first dense layer consists of 512 nodes with ReLU activation
operation and a Dropout layer. The second dense layer, on
the other hand, contains 256 nodes with ReLU activation
function and a Dropout layer. Dropout layers are used to
mitigate overfitting.

The second branch extracts neural features F 2
n ∈ R

C′
2 ,

where C′
2 = 256, from spectrogram images of size 128×40.

The network contains 3-layers of composite functions, a
flatten layer, a dense layer of 256 nodes and a Dropout
layer. Each composite function consists of a convolutional
layer with 32, 64, and 64 filter sizes respectively, a ReLu
activation layer, a max pooling layer of 2 × 2 filter size with
stride 2 and a Batch Normalization layer.

The architecture of the third branch to extract neural
features of size F 3

n ∈ R
C′

3 , where C′
3 = 256, from Chroma-

based features is similar to the MFCC branch. The model

Convolution: 32 Nodes
Average Pooling: 2x2
Batch Normalization

Activation

Convolution: 64 Nodes
Average Pooling: 2x2
Batch Normalization

Activation

Convolution: 64 Nodes
Average Pooling: 2x2
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Dropout
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Activation
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Input Output
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Dense Layer
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Dense Layer
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Activation Dropout

Fig. 2 The complete architecture of the spectrogram-based approach
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Fig. 3 The complete architecture of the chromagram-based approach

consists of 2-layers of dense nodes with 512 and 256 nodes
respectively. Each layer also contains a ReLU activation
function and a Dropout layer.

Finally, extracted neural features are combined to create
a composite neural feature vector as follows:

F =
[
F 1

n ; F 2
n ; F 3

n

]
, (1)

where [; ] depicts the concatenation operation, F 1
n ∈

R
256, F 2

n ∈ R
256 and F 3

n ∈ R
256 are the extracted

neural features from MFCCs, Spectrogram images and
Chroma-based features respectively, and F is the composite
neural feature vector of size 768 × 1. The extracted
composite neural feature vector F ∈ R

768 is then sent
to the classification network which is a shallow network
consisting of fully connected layers. More precisely, it
contains 2-layers of dense neural blocks of which 64 filters
with ReLU activations and Dropout layers. The last node
is a single unit neural block with Sigmoid function, which
gives the probability of being COVID-19 positive for a
given coughing audio signal.

4 Experimental setup

4.1 Datasets

Aiming to train and validate the proposed methods, we
employ several publicly available datasets: Coughvid [41],
Coswara [42], Virufy [21] and NoCoCoDa [43].

Coughvid is a crowdsourced dataset that contains 20,072
audio data. 1010 labeled COVID-19, 8562 labeled healthy,
1742 labeled symptomatic and 8758 of them have not been
labeled. Some of the files in the Coughvid dataset include
non-cough sounds and environmental noise. In order to
have clean data for training, 651 COVID-19-labeled files
and 660 healthy-labeled audio files were manually selected.
Symptomatic labeled and unlabeled files were excluded
from this study. Coswara dataset contains data from 1503
patients. Each with the following: deep breathing, shallow
breathing, heavy cough, shallow cough, counting from
zero to twenty slow and fast, vowel phonation for letters
“a”, “e” and “o”. For this paper, we used heavy and
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Dropout

A

A
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Dropout
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Fig. 4 The complete architecture of the proposed MSCCov19Net network
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shallow cough sounds. For experiments, “positive asymp”,
“positive mild” and “positive moderate” labeled data were
used for COVID-19 class while the remaining for healthy
class. Virufy is a clinical dataset. It contains data that
is acquired in the clinical environment from 16 patients.
Seven of them labeled positive and 9 of them labeled
negative for COVID-19 which is validated using PCR
test results. NoCoCoDa is a non-clinical dataset. There
are 73 annotated cough events obtained from 10 patients.
This dataset contains only COVID-19 positive reflex cough
sounds. The cough segments are annotated from online
media interviews and background noise such as talking or
music is present on some of the records. In this study, the
original recordings were used without any pre-processing
step in order to alleviate the present noise. The types of
sound files in the Coughvid database are .webm and .ogg,
in the Coswara database are .wav, in the Virufy database are
.mp3, and in the NoCoCoDa database are .wav format. We
converted all the files to .wav format without applying noise
reduction to the sounds.

For training purposes, the Coswara and Coughvid
datasets are combined, and divided into training-validation-
test groups by using 80%-10%-10% split ratio. The Virufy
and NoCoCoDa dataset, on the other hand, are only used
for inference to cross-validate the proposed model. In other
words, none of the data from Virufy and NoCoCoDa is used
in the training step but in testing step.

We extract cough segments using the provided code
presented in the Coswara/Coughvid dataset in order to carry
out data extraction. Total number of extracted segments are
2960/370/370 respectively for training/validation/testing.

4.2 Implementation details and training procedure

The proposed deep learning model is implemented using
Tensorflow 2.3.0 Python library. A binary cross-entropy
loss function and a Stochastic Gradient Descent (SGD)
optimizer are utilized for training purposes. We use an
adaptive learning rate strategy by starting at 0.1 that is
divided by 10 at every 100 epochs with a batch size of 8.
The network is trained 1000 epochs.

In order to have the optimum performance from the
proposed model, we use the combination of the following
hyper-parameters:

• Optimizers: Adadelta, Adam, Adamax, RMSprop, SGD
• Activation Functions: ReLU, Sigmoid, Softmax, Soft-

plus, Tanh
• Dropout Rate: 0.0, 0.3, 0.5, 0.8, 0.9

Optimal hyper-parameters described above (optimizer,
activation function, dropout rate, etc.) are chosen via grid
search strategy.

In order to avoid overfitting and provide a better general-
ization, we use data augmentation before, and regularization
during the training phase. Data augmentation is conducted
through “Pitch Shifting” and “Noise Addition” by applying
them to cough audio signals on the training dataset, and reg-
ularization is conducted via a composite element LR on the
classification network, which is defined as,

LR = λ1L1 + λ2L2 (2)

where λ1 and λ2 are the weighting coefficients and set to
0.01 empirically.

5 Experimental results

Aiming to evaluate the proposed approaches quantitatively,
we present accuracy (Acc) scores along with the Area Under
the Curve (AUC) scores on Coswara/Coughvid, Virufy
and NoCoCoDa test sets with the model trained only on
Coswara/Coughvid dataset.

Firstly, we discuss the individual performance of each
proposed model. The results on Coswara/Coughvid dataset
are represented in Table 2. It can be concluded that the
quantitative results validate the robustness of the proposed
multi-branch network by obtaining 4.5 % increase on
classification accuracy and 2.9 % increase on AUC score
from the second best approach (MFCC-based). The table
also shows that the Chroma-based model presents the
lowest performance, probably due to environmental noise
(speech and music) in the crowdsourced datasets, in fact
this behaviour (sensitiveness to noise) is reported before
in [44, 45]. On the other hand, the multi-branch model
provided a significant increase in performance thanks
to multiple perspectives and diverse domain knowledge
obtained from 1D and 2D features. As, to the best of
our knowledge, there is currently no approach that uses
Chroma-based features for this task specifically, we re-train
the network with and without Chromagram branch in order
to see the effect of Chroma features on the multi-branch
network MSCCov19Net. It can be also noted from the
table that there is a significant improvement in performance
when Chroma-based features are used on the multi-branch
network MSCCov19Net. Although we do not have a
clear explanation for this particular behaviour, boosted
performance unlike the low performance of its standalone
usage, we believe that using multiple perspectives and
diverse domain knowledge on the multi-branch network
MSCCov19Net mitigates the noise sensitivity of the
Chroma-based features.

To further assess the proposed approach, we make
a cross-validation test on Virufy (clinical and clean)
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Table 2 Comparison of the proposed model with the individual
branches tested on the Coswara/Coughvid dataset (trained on
Coswara/Coughvid)

Method Accuracy AUC

MFCC-based 0.703 0.766

Spectrogram-based 0.500 0.536

Chromagram-based 0.500 0.465

MSCCov19Net w/out Chroma 0.716 0.789

MSCCov19Net 0.748 0.795

dataset. In other words, we train the proposed method on
Coswara/Coughvid dataset and test only on Virufy dataset.

The cross-validated outcomes on Virufy dataset are
represented in Table 3. It can be concluded that, the
quantitative results on the table confirmed the robustness
of the proposed multi-branch method by obtaining 3.4
% increase on classification accuracy of the second best
approach (MFCC-based) and 8.4 % increase on AUC score
from the second best approach (Chromagram-based). Since
the Virufy dataset is obtained in a clinical and controlled
environment, environmental noise is minimum, so we can
speculate that this is the reason why the Chroma channel
has a noticeable higher AUC score than the previous
experiment.

5.1 Performance comparison
with the state-of-the-art architectures

In this part, we compare the performance of MSCCov19Net
with diverse deep CNN architectures: a basic CNN model
[36], ResNet50 [46], EfficientNetB0 [47], MobileNetV2
[48], Xception [49] and the baseline model proposed in [21].

ResNets explore residual operations based on layer
input, in lieu of exploring non-referenced operations as in
traditional CNN layers. EfficientNet uses a scaling approach
that adjusts all sizes of input resolution, depth and width
employing combined coefficients. MobileNetV2 is a 53
layers deep CNN that aims to operate well on mobile
resources. Xception is a 71 layers deep CNN that relies
solely on depth-wise separable convolution layers. The

Table 3 Comparison of the proposed model with the individual
branches tested on the Virufy dataset (trained on Coswara/Coughvid)

Method Accuracy AUC

MFCC-based 0.581 0.627

Spectrogram-based 0.468 0.456

Chromagram-based 0.468 0.648

MSCCov19Net 0.615 0.732

Table 4 Comparison with the state-of-the-art methods tested on the
Coswara/Coughvid datasets (trained on Coswara/Coughvid)

Method Accuracy AUC

Basic CNN [36] 0.616 0.653

EfficientNetB0 [47] 0.562 0.648

MobileNetV2 [48] 0.581 0.626

Xception [49] 0.565 0.633

ResNet50 [46] 0.640 0.691

Baseline Model [21] 0.721 0.770

MSCCov19Net 0.748 0.795

methods used for comparison are trained using similar
hyper-parameter settings as the proposed method.

We train ResNet50, EfficientNetB0, MobileNetV2 and
Xception models using the Adam optimizer with learning
rate of 0.001, binary cross-entropy loss and batch size of
32. Basic CNN architecture consists of three convolution
layers with node sizes of 128, 256, 256 and kernel sizes of 3.
Followed by three FC layers with node sizes of 256 and an
output layer with 1 node. ReLU activation function and 0.5
dropout rate were used on all layers except for the last layer.
In last layer, we used Sigmoid function. For this network,
an SGD optimizer with 0.01 learning rate is used.

We first illustrate the results on Coswara/Coughvid
dataset in Table 4. As it can be inferred from the table,
our approach reaches the highest accuracy and AUC scores
among all other approaches. Furthermore, we show the
receiver operating characteristic curve (ROC) plot in Fig. 5
(left). It can be clearly concluded that the proposed method
has a significant overall increase on both accuracy metrics.

Evaluation scores with the state-of-the-art models on
Virufy test set can be examined in Table 5. Likewise,
the quantitative outcomes on the table confirmed the
robustness of the proposed model by yielding 1.7 % increase
on classification accuracy of the second best approach
(Baseline Model) and 4.2 % and 7.8 % increase on AUC
scores from the second best approach (Basic CNN) and

Table 5 Comparison with the state-of-the-art methods tested on the
Virufy dataset (trained on Coswara/Coughvid)

Method Accuracy AUC

Basic CNN [36] 0.589 0.690

EfficientNetB0 [47] 0.548 0.602

MobileNetV2 [48] 0.581 0.563

Xception [49] 0.605 0.540

ResNet50 [46] 0.524 0.400

Baseline Model [21] 0.598 0.654

MSCCov19Net 0.615 0.732
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Fig. 5 ROC curves (left figure) of each individual approach (in Table 4) trained and tested on Coswara/Coughvid dataset and ROC curves (right
figure) of each individual approach (in Table 5) trained on Coswara/Coughvid dataset and tested on Virufy dataset

the third best approach (Baseline Model), respectively.
Similarly, ROC plots can be seen in Fig. 5 (right).

Moreover, aiming to see the efficiency of the proposed
approach, another unseen test dataset called NoCoCoDa
(non-clinical), is employed. The classification accuracy of
the compared approaches can be observed in Table 6.
The proposed model outperforms the Baseline Model with
a 21.9 % accuracy increase representing superior general-
ization ability. Besides that, the performance of the pro-
posed method is 13.7 % higher in accuracy than the basic
CNN. It can be concluded from Table 6, MSCCov19Net
yields superior and promising results on an unseen
test set considering the previous studies on cough-based
COVID-19 detection. Since NoCoCoDa dataset includes
only COVID-positive reported subjects, the AUC scores
are not reported.

The inference and training time analysis of the proposed
method along with the state-of-the-art approaches are
given in Table 7. Inference time represents the average
classification time for a single cough audio signal. On the
other hand, training time shows the average training time
for a single epoch. It can be concluded that the proposed
method is suitable for remote and real-time operation by

Table 6 Comparison with the state-of-the-art approaches tested on the
NoCoCoDa dataset (trained on Coswara/Coughvid)

Method Accuracy

Basic CNN [36] 0.767

EfficientNetB0 [47] 0.541

MobileNetV2 [48] 0.564

Xception [49] 0.532

ResNet50 [46] 0.507

Baseline Model [21] 0.685

MSCCov19Net 0.904

looking at the inference time information. Experiments were
conducted with i7-7700K 4.20GHz processor, 16GB RAM,
and GTX1060 6GB GPU.

6 Discussion

RT-PCR technique is a baseline indicator for COVID-19
detection using pharyngeal swabs. However, it suffers from
false negative rate, low detection capability and long test
result waiting time [50–53].

While RT-PCR results are negative, results confirming
ground-glass symptoms of COVID-19 have been reported
in CT results [54]. Therefore, in suspected cases, CT
confirmation after RT-PCR is recommended in literature
[51, 52]. Although CT presents high sensitivity than RT-
PCR [51, 55], it is not practical due to radiation damage,
waiting time, and being expensive. Moreover, a patient
who has a positive RT-PCR result may has a normal CT
result before the beginning of indications as reported in
[56]. Lower specificity is one of the main drawbacks of
CT-based studies as reported in [57]. Either RT-PCR or

Table 7 Comparison of the inference time (in milliseconds) and
training time (in seconds) of the proposed method along with the
state-of-the-art approaches

Method Inference
time (ms)

Training
time (sec)

Basic CNN [36] 0.81 2.75

EfficientNetB0 [47] 12.17 32.73

MobileNetV2 [48] 7.49 20.21

Xception [49] 19.32 59.76

ResNet50 [46] 14.47 42.82

Baseline Model [21] 0.63 2.28

MSCCov19Net 0.66 2.46
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CT-based diagnosis requires clinical visit and this situation
results in breaching of isolation and social distance rule.
This situation also applies to COVID-19 detection based on
blood tests obtained by invasive methods, which are used
as clinical data [58, 59]. However, machine learning–based
remote cough sound analysis is a promising candidate for
medical decision support systems for the determination of
COVID-19 minimizing clinical visits.

Due to the scarcity of publicly available datasets com-
pared to CT studies [23, 53], COVID-19 detection studies
on cough sounds are less than CT studies even though
the cough is one of the major symptoms. There are
some limitations on COVID-19 determination based on
artificial intelligence techniques. At first, outsourced data
may include noisy and mislabeled samples reducing the
performance of classification models. Secondly, datasets
may be imbalanced providing an insufficient number of
COVID-19 positive samples. At last, environmental factors
may introduce bias when recording cough sounds. Fur-
thermore, once the train, test, and validation sets are not
disjoint the performance of the models may be biased [60].
These challenges make cross-datasets validation necessary
to obtain robust and generalizable results. Therefore, since
crowdsourced datasets include plenty of samples, we cross-
validated the performance of the model using a clinical
(controlled) and non-clinical dataset that has few samples
taking into account the above-mentioned issues.

This study has some limitations due to the available
datasets. Working on noisy data which is collected from
different mobile devices negatively affects the performance
of the proposed model. Furthermore, audio transmission
over VoIP or cellular network is subject to compression,
which can change the quality of the audio. Consequently,
this may also negatively affect the performance of the
proposed method.

In the literature, there are few works on cough-based
COVID-19 detection. Most of them report their results
either on small and controlled datasets or without cross-
validating the performance on different datasets. As a
solution, we employed the commonly used CNN archi-
tectures for comparison by not only training/testing on
Coswara/Coughvid dataset but also cross-validating on the
Virufy and NoCoCoDa datasets. To the best of our knowl-
edge, this is the first model to cross-validate crowdsourced
cough data with clinically validated and non-clinical cough
data and use four separate datasets for the purpose of
COVID-19 detection using cough sounds.

7 Conclusion

In this paper, we have presented a supervised deep
neural network–based cough sound analysis for COVID-19

detection, which provides state-of-the-art performance on
the benchmark datasets in metrics such as Accuracy and
AUC. The proposed multi-branch network MSCCov19Net
has better generalization capability than recent neural
network models. As a future perspective, we intend to
explore the long-term effects of COVID-19 by applying
sound analysis approaches on lung sound data acquired
using electronic stethoscopes/phones. This concept might
follow the social distancing rule during the sample
collection using smart applications or in sheltered cabins.
In fact, most of the time lung sounds are collected from
the back of the patient, which might minimize to receive
saliva droplets that contain the virus by healthcare workers.
Ideally, when a specific and acceptable accuracy is reached,
these algorithms may be helpful in validating the prediction
of RT-PCR tests (as sometimes repeated tests are required
due to the mis-classifications [50]) in a remote and non-
invasive way. Additionally, in recent years, studies on
remote Parkinson’s detection with sound [61] have shown
promising results even using the standard telephone network
[62]. Suppose a sufficiently diverse and labeled voice
dataset can be collected with mobile applications, the
proposed deep learning–based system can be embedded
within a cloud-based infrastructure, allowing for fast and
large-scale screening. Therefore, this system can be trained
to give an idea about the degree of involvement in the lungs
by confirming it with simultaneous CT acquisition, and it
can also reduce the harmful X-ray exposure of individuals.
Since the COVID-19 cough sound literature has just begun
to develop, it will be extremely important to collect follow-
up data of COVID-19 patients for the progression [63] and
grading of the disease in the future in terms of person-
specific disease follow-up. Recently, Internet of Things–
based wireless approaches have been proposed for remote
health data monitoring [64, 65]. Thus, it may be adapted for
rapid detection of other future diseases that may affect the
lungs.
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