
An Efficient multi-level Pre-processing Algorithm for the 

Enhancement of Dermoscopy images in Melanoma 

detection 

D Jeba Derwin1,O JebaSingh2, B Priestly Shan3 

1 Assistant Professor, SRM-TRP Engineering College, Tiruchirapalli, Tamil Nadu, India, d.jebaderwin@gmail.com.  

2Associate professor, Arunachala college of Engineering for women, Kanniyakumari, Tamil Nadu, India, o.jebasingh@rediffmail.com. 

3 Professor, Chandigarh University, Mohali, Punjab, India, priestlyshan@gmail.com.  

Abstract: In this paper, a multi-level algorithm for Pre-processing of dermoscopy images is 

proposed, which helps in improving the quality of the raw images, making it suitable for skin 

lesion detection. This multi-level pre-processing method has a positive impact on automated 

skin lesion segmentation using Regularized Extreme Learning Machine. Raw images are 

subjected to de-noising, illumination correction, contrast enhancement, sharpening, 

reflection removal and virtual shaving before the skin lesion segmentation. The NLM filter 

with lowest BRISQUE score exhibits better de-noising of dermoscopy images. To suppress  

uneven illumination, gamma correction is subjected to the de-noised image. RICE algorithm 

is used for contrast enhancement, produces enhanced images with better structural 

preservation and negligible loss of information. Unsharp Masking for sharpening exhibits low 

BRISQUE scores for better sharpening of fine details in an image. Output images produced 

by the phase-congruency based method in virtual shaving shows high similarity with ground-

truth images as the hair is removed completely from the input images. Obtained scores at 

each stage of pre-processing framework shows that, the performance is superior compared 

to all the existing methods, both qualitatively and quantitatively, in terms of uniform contrast, 

preservation of information content, removal of undesired information and elimination of 

artifacts in melanoma images. Output of proposed system is assessed qualitatively and 

quantitatively with and without pre-processing of dermoscopy images. From the overall 

evaluation results it is found that, the segmentation of skin lesion is more efficient using 

Regularized Extreme Learning Machine if the multi-level pre-processing steps are used in 

proper sequence. 

Keywords: Non-Local Means Filter, Robust Image Contrast Enhancement, Unsharp 

masking, Dermoscopy, Phase congruency 

 

1. INTRODUCTION 

 

Melanoma is the most common deadliest skin cancer, with 91,000 new cases 

annually in US and causes more than 9000 deaths [1]. Globally, skin cancer is one of the 

life-threatening disease in western countries. In Europe, more than 100,000 new melanoma 

cases, with 22,000 deaths are reported yearly [2]. The statistics are all more alarming that, 

unlike other types of cancer melanoma has been steadily increasing over the past decades. 

Consequently, early detection of melanoma is a significant challenge in the diagnosis and 

treatment of skin cancer. Over recent years, a high-resolution dermoscopy skin imaging 

technique is used to visualize the deep skin structures. Although, dermoscopy images are of 

mailto:d.jebaderwin@gmail.com
mailto:o.jebasingh@rediffmail.com
mailto:priestlyshan@gmail.com


high-resolution the visualization of images is still subjective due to poor contrast, skin tone 

variations, non-uniform illumination and artifacts [3] . A small amount of noise is present in 

the dermoscopy images may get amplified during sharpening and contrast enhancement. 

The amplified noise may adversely affect the performance of edge-based segmentation 

algorithms used to extract the borders of the skin lesions. Hence, de-noising is a vital step in 

the automated analysis of dermoscopy images.   

Mostly, skin lesions are darker than the background. However, due to uneven 

illumination, some portions of the image may appear darker than the background. Those 

darker regions may get falsely segmented along with the lesions. Therefore, contrast 

enhancement and sharpening are indispensable in the automated analysis of dermoscopy 

images.  Specular reflection is another concern that may deteriorate the visual quality of 

melanoma images. Hence, reflection removal is needed to eliminate the background 

reflections in input images.  Hairs are present in dermoscopy images. The hairs being dark, 

they may get falsely segmented along with the lesion, if intensity-based segmentation 

methods are adopted. Hairs need to be removed prior to the segmentation of lesions. The 

process of removing hairs from dermoscopy images is usually termed as virtual shaving.  

In this paper, a new six-stage pre-processing algorithm is introduced to improve the 

segmentation accuracy of skin lesion in dermoscopy images. For de-noising the input image, 

the Non-Local Means (NLM) filter is employed. It ensures the preserving of detail information 

of an image. Likewise, gamma correction is applied at the second stage so that a uniform 

illumination is achieved. An algorithm termed as Robust Image Contrast Enhancement 

(RICE) is employed for contrast enhancement. This method helps in avoiding the over 

contrast enhancement. For sharpening, Unsharp Masking technique is implied to sharpen 

the edge pixels. For reflection removal, a transmittance estimation-based strategy is 

adopted. As a result, the undesired information is removed thereby improving the visual 

quality. Under virtual shaving, a phase congruency-based method is adopted for removing 

the hairs without losing the image content. The implemented technique in each stage 

performs efficiently such that a quality image is achieved at the pre-processed output for 

melanoma segmentation.The output of proposed system is evaluated subjectively with 

ground truth images and objectively using quality metrics like Disc Similarity Index (DSI), 

Jacquard Index (JI) and Total Segmentation Coefficient (TSC). The output results reveal, the 

multi-level pre-processing algorithm outperforms in the segmentation of skin lesion using 

Regularized Extreme Learning Machine (RELM). 

2. LITERATURE SURVEY 



To enhance the dermoscopy image, Madhan kumar et al.[4]presented a pre-

processing technique in two-steps to remove the noise, fine hairs and air bubbles. 

Accordingly, the contrast of an input image is enhanced by Histogram Equalization and the 

reduction of impulsive noise, hair structures and air bubbles is achieved by applying the 

median filter. Although it preserves the edges, the fine image details are lost when the 

window size of the filter is increased above 3X3. Furthermore, Jaworek et al. [5] proposed a 

novel method to reduce the border irregularity in dermoscopy images. The authors 

highlighted a two-step pre-processing algorithm includes Black frame removal, Hair 

detection and In painting. Initially, each row of an image is scanned in four directions and the 

rows with 50% of black pixel are removed in the input image. Next, the Black top-hat 

transform is applied to remove the dark thick hairs from black frame removal image. Here, 

the Black top-hat transform has failed to detect the local structures such as dots or globules 

in Melanoma images. Moreover, Restrepo et al. [6] introduced a contrast enhancement 

technique based on the most discriminant projection of the color map in skin lesion images. 

This method overcomes the non-uniform illumination and color correction problems while 

detecting the Melanoma. Since, the color projection is calculated for all directions, it 

increases the complexity of the algorithm. In addition, a five-step pre-processing framework 

is proposed by Mishraet al. [7] includes: Elimination of lighting effects, color correction, 

contrast enhancement, image smoothing and hair removal to improve the visual quality of 

the image. Here, the authors highlighted the problems in skin lesion detection like poor 

contrast, skin tone variation, artifacts and non-uniform illumination on dermoscopy images. 

Furthermore, Cherepkova et al. [8] proposed an enhancement and color 

correction for original dermoscopy images. In this article, enhancement is achieved in six-

steps including: Retinex, Spatio Temporal Retinex-inspired Envelope with stochastic 

sampling, Automatic White Balance (AWB), contrast enhancement, automatic enhancement 

and histogram equalization.The authors reported an improved sensitivity and accuracy with 

an average of 4 to 8% and 3 to 5% respectively. Due to over exposure in visual adjustment, 

fine image details are lost with partly corrected color. Although, AWB provides a good color 

correction, some deviations in visual quality occurs due to the errors in temperature 

estimation. Also, a two-phase pre-processing algorithm for dermoscopy image enhancement 

is proposed by Jayalakshmi etal. [9]. Accordingly, a median filter is applied to remove the 

artifact and K-means clustering is used to eliminate the outlier pixels. The presented result 

shows an accuracy of 92.8% with sensitivity of 93% and specificity of 90% on Danderm 

database. 

Furthermore, a three-step framework was proposed to improve the contrast of 

the dermoscopy images in [10]. Initially, a Median filter is employed to reduce noise in the 



raw input images. Next, the morphological operators such as erosion and dilation are 

implemented to remove the artifacts like hairs in the filtered image. Finally, intensity value 

mapping is applied to enhance the contrast. Through median filtering, a 5X5 window is used 

to remove the image details of 2 pixel wide. Pankaj at al. [11] introduced a reformed contrast 

enhancement technique using Krill Herd (KH) optimization. Here, a new reformed histogram 

is obtained with peaks cut off. The global histogram equalization helps in the enhancement 

of medical images like X-ray, MRI and CT scan. In this approach, the efficiency is tested 

through the metrices like SSIM, EPI, DE and REC. Jeevakala et al. [12] discussed a 

sharpening enhancement technique for MR images. Laplacian Pyramid and singular value 

decomposition is implemented to decompose the multi-scale images into coarse and 

difference sub-bands. Here, the weighted sum of singular matrix and its Global Histogram 

Equalization increases the contrast in multi-scale images. 

Though lot of literatures are enumerated in pre-processing of dermoscopy 

images, some limitations are identified as follows:  

➢ Normally, Median filters are used for de-noising in dermoscopy images. In such 

methods, when the filter size is increased above 3X3, fine details of the image are 

lost. 

➢ The black-hat transform implemented for hair removal is unable to remove local 

structures like dots and globules. 

➢ Automatic White Balance (AWB) causes over exposure in visual adjustment, leads to 

loss of fine image content. 

➢ The over enhancement and multiple illumination artifacts are found in Contrast 

Limited Adaptive Histogram Equalization (CLAHE), Contextual and Variational 

Contrast enhancement algorithm (CVC) and Layered Difference Representation 

(LDR) algorithms. 

➢ Moreover, in existing methods the hairs are removed using median filters leads to 

loss of image information.  

 Inorder to overcome the above issues and enhance the spatial quality for skin lesion 

segmentation in dermoscopy images a pre-processing module comprising of de-noising, 

illumination correction, contrast enhancement, sharpening, reflection removal and hair 

removal are introduced in this work. Under de-noising phase, the NLM filter with suitable 

DoS value is chosen to preserve the fine details of dermoscopic images. Also, in the contrast 

enhancement phase, the RICE algorithm is introduced to avoid the non-uniform 

enhancement by maintaining a mean brightness. In addition, the reflection removal is 

proposed to remove undesired information by separating the background image layer from 

the reflection layer of the dermoscopy image to be analyzed. Thus, by optimizing the SP and 



RCP values in reflection removal process the visual quality of the image is also preserved. 

Moreover, a phase congruency method with ideal threshold value preserves the image 

content in virtual shaving of hairs. The rest of the paper is organized as follows: Section III 

explains the pipeline of dermoscopy pre-processing method in detail. Section IV describes 

the results and discussion. Finally, section V draws the conclusion. 

 

3. METHODOLOGY 

 In this paper, a pre-processing methodology is introduced for dermoscopy images 

which can improve the visual quality of digital images in order to achieve an accurate 

segmentation. The schematic representation of the flow of work is depicted in Fig. 1. 
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Fig. 1 Schematic representation of flow of work 

3.1 De-noising: 

In the proposed method, NLM filter is used to perform the objective of de-noising [13]. 

Therefore, for estimating the denoised pixel value Y(m,n) of an input image pixel X(m,n), a 

windowing technique is applied on each 3 X 3 block of input dermoscopy images. Hence, 

Y(m,n) is computed as the weighted sum of the pixel values inside a block with radius R1 as: 

𝑌(𝑚, 𝑛) = ∑ ∑ 𝑊[𝑋(𝑚, 𝑛), 𝑋(𝑚 + 𝑖, 𝑛 + 𝑗)] 𝑋(𝑚 + 𝑖, 𝑛 + 𝑗)+ 𝑅1
 𝑗= −𝑅1

+𝑅1
𝑖= −𝑅1

, {
1 ≤ 𝑚 ≤ 𝑀
1 ≤ 𝑛 ≤ 𝑁

}   (1) 

where, M and N indicates the number of rows and columns in the input image. The  

weights W(m,n) are based on the similarity of neighborhood pixels m and n. The similarity is 

then estimated as: 

𝑊[𝑋(𝑚, 𝑛), 𝑋(𝑚 + 𝑖, 𝑛 + 𝑗)] = 𝒆

−⌊∑ ℎ𝑔[𝑋(𝑚+𝑝,𝑛+𝑝)−𝑋((𝑚+𝑖)+𝑝,(𝑛+𝑗)+𝑝)]2+𝑅2
𝑝= −𝑅2

⌋

𝜉2               (2) 



the variable, ‘hg’ is a normalizing constant. It penalizes the grey level difference of the pixels 

within the similarity-block, which are away from its center. Now equation (2) is subjected to a 

normalization process,  

0 ≤  𝑊[𝑋(𝑚, 𝑛), 𝑋(𝑚 + 𝑖, 𝑛 + 𝑗)]  ≤  1   &  

∑ ∑ 𝑊[𝑋(𝑚, 𝑛), 𝑋(𝑚 + 𝑖, 𝑛 + 𝑗)]  = 1
+ 𝑅1
𝑗=− 𝑅1

+𝑅1
𝑖=−𝑅1

             (3) 

After normalization of the weights, the weight corresponding to the pixels, which are closely 

similar to the pixel to be denoised will get penalized more. Towards rectifying this inadvertent 

problem, the weight corresponding to the self-similarity is replaced by the highest value of 

weight just below it. Therefore, the weight W[X(m,n), X(m+i,n+j)] at i = 0 and j = 0 is 

expressed as: 

𝑚𝑎𝑥(𝑊[𝑋(𝑚, 𝑛), 𝑋(𝑚 + 𝑖, 𝑛 + 𝑗)]) ∀ 𝑖 ≠  0 &  

𝑗 ≠  0, −𝑅1  ≤  𝑖 ≤  +𝑅1, −𝑅1  ≤  𝑗 ≤  +𝑅1 (4) 

The variable, ‘ξ’ is an arbitrarily-defined operational parameter of the NLM filter, called as 

‘decay control parameter’. It is otherwise called as ‘Degree of Smoothing (DoS). To 

adaptively fix the value of DoS (ξ) of NLM filter, the strength of noise is estimated in the input 

image. In this paper, the value of DoS is linearly proportional to the Standard Deviation (SD) 

of noise in the input image. This can be done as: 

ξ = βσ̂n                            (5) 

where, ‘σ̂n’ indicates the SD of zero mean additive Gaussian noise.  

3.2 Illumination Correction: 

To suppress the uneven illumination in the denoised image 𝑌, illumination correction is 

implemented in the dermoscopy images. Hence, to suppress the uneven illumination, 

gamma correction is subjected to the illumination component of HSV color space. Initially, 

the denoised input image in RGB color space is converted to the HSV color space. Here, the 

hue component and saturation component are kept intact and the value component alone is 

decomposed using Retinex decomposition. Later, the estimated illumination component is 

subjected to the Gamma correction to suppress the unevenness. Since, the arbitrary 

parameter ‘γ’ controls the effectiveness of the devignetting called as Devignetting Quality 

Parameter (DQP). In this work, the DQP value is varied between 0.25 and 2.5 and the best 

value is selected as 2.0. Then, the new value component is reconstructed from the 

decomposed reflectance component and gamma corrected illumination component. Finally, 



combining the hue, saturation and new value components together an illumination corrected 

image𝑌𝑖, is obtained by converting the resultant image in HSV color space to RGB color 

space. 

 

3.2 Contrast Enhancement: 

To increase the gray level difference between the lesion and background of an 

illumination corrected image 𝑌𝑖, the RICE algorithm is implemented in dermoscopy images. 

Initially, the histogram ℎ𝑖and Equalized histogram ℎ𝑒𝑞 is obtained for the input image. 

Later, by applying sigmoid transfer mapping function 𝑇𝑠𝑖𝑔(. ), the corresponding histogram 

 ℎ𝑠𝑖𝑔 is obtained which improves the visual quality of the image. Now, the target histogram ℎ̃ 

is estimated as: 

ℎ̃ =
ℎ𝑖+𝛷ℎ𝑒𝑞+𝜓ℎ𝑠𝑖𝑔

1+𝛷+𝜓
          (6) 

Where 𝛷 and ψ are the control parameters, selected based on the saliency preservation. It 

is measured by a Quality assessment Metric of Contrast (QMC) [14] in an image. Finally, the 

contrast enhanced image, 𝑌𝑐 can be reconstructed using histogram matching function 

𝑇ℎ𝑚(. )[15]. 

𝑌𝑐 = 𝑇ℎ𝑚(𝑌𝑖,ℎ̃(𝛷, 𝜓))     (8) 

3.3 Sharpening: 

 The principle of Unsharp Masking is exclusively based on the concept of estimating 

difference between the input image and the Gaussian filtered image [16]. A fraction of the 

high-frequency content is computed by subtracting the Gaussian filtered image from the 

input image. Again it is added back to the input image to get the unsharp masking. 

 To perform the unsharp masking, the Gaussian filter kernel is used to compute 

Gaussian filter mask 𝐻𝐺 is given by, 

𝐻𝐺(𝑥, 𝑦)  =  
1

2𝜋𝜎2 𝑒
−(

𝑥2 + 𝑦2

2𝜎2 )
 , −𝑤 ≤  𝑥 ≤  +𝑤  𝑎𝑛𝑑 − 𝑤 ≤  𝑦 ≤  +𝑤    (9) 

Selecting the dimension of Gaussian mask and its SD is important to make the 

strength of smoothing more sensitive. Therefore, SD is computed from the value of the 

radius of the mask. The SD of Gaussian mask from its radius is computed using the relation 

σ = (w-1)/4. According to this relation, when the radius of the Gaussian masks increases the 

SD also increases proportionally. Therefore, when both SD and dimension of the mask 



increases together, the degree of smoothing also increases significantly. The identity 

convolution mask, ‘H0’ can be calculated as: 

𝐻0(𝑥, 𝑦)  =  {
1 𝑥 =  0 & 𝑦 =  0
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    − 𝑤 ≤  𝑥 ≤  +𝑤  𝑎𝑛𝑑 − 𝑤 ≤  𝑦 ≤  +𝑤     (10) 

 

Finally, the sharpened image𝑌𝑠 is obtained by computing the difference between the 

input image𝑌𝑐and its Gaussian filtered output. 

𝑌𝑠  =  𝑌𝑐 ∗∗ 𝐻0  +  𝜆([𝐻0 − 𝐻𝐺] ∗∗ 𝑌𝑐)   0 ≤  𝜆 ≤  1   (11) 

 The fraction of difference between the input and the Gaussian filtered image merged 

to the input image is a manually selected parameter λ. This parameter is usually called as 

scale and if the value of λ is more the sharper will be the output image. 

3.4 Reflection removal 

It is important to remove the undesired reflections, the reflection removal is 

implemented in the sharpened image. The process of reflection suppression is based on 

enhancing the image quality by separating the reflectance layer from the transmittance layer 

[17]. Based on this observation, an RGB image can be represented as the weighted sum of 

its transmittance layer and reflectance layer as explained in (12). 

 𝑌𝑠 = 𝛤(𝑊, 𝑇) + 𝛤(1 − 𝑊, 𝑘 ∗∗ 𝑅)    (12) 

where, 𝑌𝑠 is the input RGB image. The variable, ‘𝑇’ indicates the transmittance layer and the 

variable ‘𝑅’ indicates the reflectance layer of the input image. The notion ‘𝛤’ indicates 

element-wise multiplication. The notion, ‘∗∗’ denotes the 2D-convolution operation. ‘𝑊’ 

indicates the matrix that weighs the contribution of the transmittance layer at each pixel. ‘𝑘’ 

is the blurring kernel. The weighing matrix, ‘𝑊’ is expressed as: 

𝑊𝑚,𝑛 = 𝑤, ∀𝑚, 𝑛,      1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁            (13) 

To avoid losing the high frequency component during reflectance removal the Laplacian 

based data fidelity is taken in the sharpened image. The optimization problem developed for 

reflection removal image 𝑌𝑟is described as: 

𝑌𝑟 = argmin
𝑇

|| ℒ(𝑇) − ℒ(𝑌𝑠)||
2

2
+  𝜆𝐶(𝑇)     (14)  

where,𝜆is the regularization parameter and if 𝜆value increases more gradients will be 

removed. The term 𝐶(𝑇) invigorates the smoothening of image without disturbing the 

continuity of large structures. 



3.5 Virtual Shaving: 

The process of removing hairs from dermoscopy images is usually termed as virtual 

shaving.  The hairs being dark, they may get falsely segmented along with the lesion. Phase 

Congruency based virtual shaving method is adopted for the removal of hairs.In the first step 

of hair removal, the color image is converted to grayscale.  

Hairs are detected from the grayscale image based on its phase congruency. A 2D- 

Log Gabor Filter (LGF) is used for computing phase congruency of the image [18].The final 

phase congruency model of the image is given by: 

𝜙(𝑚, 𝑛) =
∑ ∑ 𝑤𝑜(𝑚,𝑛)⌊𝐴𝑠𝑜(𝑚,𝑛)𝛥𝜙𝑠𝑜(𝑚,𝑛)−𝑇⌋𝑜𝑠

∑ ∑ 𝐴𝑠𝑜(𝑚,𝑛)+𝑜𝑠 𝜉𝑠
 , 1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁  (15) 

where, 𝑇 is the noise-compensation term,𝑤𝑜represent a weighting function, 𝛥𝜙𝑠𝑜 term 

represents a phase deviation function and the variable, 𝜉𝑠 is a minute value used to avoid 

computational indeterminacy. 

By applying threshold on phase congruency model of an image the phase angle 𝛷𝑃is 

estimated as: 

𝛷𝑃(𝑚, 𝑛) = {
1, 𝑖𝑓𝜙(𝑚, 𝑛) < 0
0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁   (16) 

The modified phase angles𝛷𝑁1is theresult of negative phase angles modified in the range 0 

to π is expressed as: 

𝛷𝑁1(𝑚, 𝑛) = 𝛷𝑃(𝑚, 𝑛)(−𝜙(𝑚, 𝑛)) +  𝛷𝑃
′ (𝑚, 𝑛)𝜙(𝑚, 𝑛),    1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁    (17) 

where, the variable 𝛷𝑃
′  is the complement of 𝛷𝑃. Again the phase angles in 𝛷𝑁1 are modified 

such that, the angles greater than 
𝜋

2
 are brought to 0 to 

𝜋

2
 is given by: 

𝛷𝑁2(𝑚, 𝑛)  =  𝛷𝑃2(𝑚, 𝑛)(𝜋 − 𝛷𝑁1(𝑚, 𝑛)) +  𝛷𝑃2
′ (𝑚, 𝑛)𝛷𝑁1(𝑚, 𝑛), 1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁    (18) 

The term 𝛷𝑃2indicate the locations where 𝛷𝑁1is greater than 
𝜋

2
 and variable 𝛷𝑃2

′  is the 

complement of 𝛷𝑃2. 

The modified phase angles are then normalized as: 

𝛷𝑅(𝑚, 𝑛) =  
𝜋

2
−𝛷𝑁2(𝑚,𝑛)

𝜋

2

, 1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁   (19) 



Later, the phase values ‘𝛷𝑅’are converted to binary with a threshold, ‘𝑡’.   

𝛷𝑏(𝑚, 𝑛) = {
1, 𝑖𝑓𝛷𝑅(𝑚, 𝑛) < 𝑡
0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  , 1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁      (20) 

Now the binary phase image 𝛷𝑏 is then dilated with disk-shaped structural element SE. The 

dilation in the binary image makes the objects visible by filling the small holes in it. Hence, 

the dilated phase image 𝛷𝐷 is given by: 

𝛷𝐷 = 𝛷𝑏 ⊕ 𝑆𝐸          (21) 

where, SE is the structural element described as: 𝑆𝐸 = [
0 1 0
1 1 1
0 1 0

]  (22) 

Then, the connected components P are found on the dilated binary phase image 𝛷𝐷. 

Eccentricity is calculated for each of the connected regions. Hairs like structures are elliptical 

structures with eccentricity close to 1.  

𝐻𝑖 = {
1, 𝑖𝑓𝐸𝑖 < 𝑡𝑏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,    1 ≤ 𝑖 ≤ 𝑃   (23) 

The region without hairs are indicated as  𝐻𝑖and the threshold ‘𝑡𝑏’ is arbitrarily selected as 

0.6. The resulted virtual shaving image 𝑌𝑣 for RGB channel without hairs after region filling is 

given by:  

𝑌𝑣𝑅 = Ψ(𝑌𝑟𝑅 , 𝐻𝑖), 𝑌𝑣𝐺 = Ψ(𝑌𝑟𝐺 , 𝐻𝑖)𝑎𝑛𝑑𝑌𝑣𝐵 = Ψ(𝑌𝑟𝐵, 𝐻𝑖), 1 ≤ 𝑖 ≤ 𝑃      (24) 

where, Ψ’ indicates the region filling operator and 𝑌𝑟 is the reflection removed image. 

3.7 Segmentation 

Lesion segmentation means separating the lesion region from the normal skin region. 

It is a crucial step in the analysis of dermoscopy images to identify various global 

morphological features of the lesion. RELM with ridge regression is employed for 

segmentation of skin lesion in the proposed system. Based on the ridge regression model, 

the stable and better regularization can be achieved by adding 1/C to the diagonal elements 

PTP while estimating the output weight ‘β’. 

Thus, the RELM regression becomes  

                                               P+ = (PTP + I/C)-1 PT      (25) 

where ‘I’ is an identity matrix  

Based on the matrix inversion property (25) can be written as 



                                              P+ = PT (PPT + I/C)-1        (26) 

In order to reduce the computation power, (25) & (26) can be selected based on PTP or PPT 

with smaller dimensions. Therefore, the computation complexity of RELM can be estimated 

as follows: 

                                              β = [PTP + I/C] PTT        (27) 

where ‘T’ stands for target estimation and ‘P‘ is the hidden neuron matrix  

Also, (25) &(26) aims at optimizing || Pβ – T ||2   + 1/C || β ||2 shows that smaller output 

weights β plays a vital role in better generalization of RELM. The procedure of RELM is 

given in three steps 

Step 1: - Randomly estimate the hidden neuron parameters, weight ‘w’ and bias ‘b’ 

Step 2: - Estimate the hidden layer matrix ‘P’ using 

                P =[
𝑃1

⋮
𝑃𝑁

] = [
𝑃(𝑥1)

⋮
𝑃(𝑥𝑁)

] = [
𝐺(𝑤1, 𝑏1, 𝑥1) ⋯ 𝐺(𝑤𝐿 , 𝑏𝐿, 𝑥𝐿)

⋮ ⋱ ⋮
𝐺(𝑤1, 𝑏1, 𝑥𝑁) ⋯ 𝐺(𝑤𝐿 , 𝑏𝐿, 𝑥𝑁)

]           (28) 

Step 3: - Calculate the output weight ‘β’ using  

                                              β = H+T      (29) 

where H+ derived from  (25) &  (26) 

Since hidden neuron parameters are randomly chosen, fast learn speed is achieved in 

RELM. Due to randomness nature, ELM and other ANN algorithms have high variance and 

prediction error. In this case, ridge regression is quite beneficial in the reduction of variance 

and prediction error due to smaller value of output weight ‘β’. Also, the over fitting problem is 

addressed with regularization parameter ‘C’ in RELM produces better and consistent 

performance than other segmentation algorithms. 

 

4. RESULTS AND DISCUSSION 

The quality of proposed system is analyzed subjectively and objectively in this 

section. Twelve objective quality metrics are used in this section. They are (1) Blind 

Reference less Image Spatial Quality Evaluator (BRISQUE) (2) Average Gradient of the 

Illumination Component (AGIC) (3) Lightness Order Error (LOE) (4) Sparse Feature Fidelity 

(SFF) (5) Visual Saliency-based Index (VSI) (6) Patch-based Contrast Quality Index (PCQI) 

(7) Over-Contrast measure (OCM) (8) Cumulative Probability of Blur Detection (CPBD) (9) 



Smoothing Parameter (SP) (10) Rate Control Parameter (RCP) (11) Peak Signal to Noise 

Ratio (PSNR) and (12) Structural Similarity Index Metric (SSIM).  

4.1 Image Dataset: 

The dermoscopy images are collected from the data archive of International Skin 

Imaging Collaboration (ISIC) [18]. The archive comprises a total of 900 dermoscopy images. 

The test data of the ISIC Melanoma Challenge 2016 is used in our experiment. The data 

comprises of 379 images. Out of 379 images, 273 images comprises melanoma. A total of 

106 images are of normal lesions. Images with malignant lesions are labeled after 

performing the biopsy. All images comprising benign lesions are labeled after a 

histopathological examination and prolonged longitudinal follow up. Associated ground-truth 

segmentation contoured by the expert dermatologists are also provided in the archive.  

4.2 Validation of NLM filter  

 The influence of DoS on the de-noising quality of NLM filter is analyzed 

subjectively and objectively in this section. Under objective evaluation, the BRISQUE score 

is evaluated. The test images are filtered by NLM filter, by varying DoS values from 1 to 15 

and the results of some DoS values are shown in Fig. 2. As the value of the DoS varies for 1 

to 15, the smoothing effect on the images also increases. It is evident from fig. 2 (b-f), when 

the value of DoS increases beyond ten, the images become excessively smoothed. This 

weakens the lesions present in the images. Hence, based on the perceived quality of 

processed images, the range of DoS between 6 and 9 is observed to be suitable for 

dermoscopy images. 

 

             (a)                   (b)                  (c)                    (d)                   (e)                  (f) 

Fig. 2 Output images produced by NLM filter for different values of DoS (a) Test image 

(b) DoS = 3 (c) DoS = 5 (d) DoS = 7 (e) DoS = 9 (f) DoS = 11   

 The variations of BRISQUE score for different values of DoS plotted for three 

test images are depicted in Fig. 3. In this graph, it shows a low BRISQUE score when DoS is 

varied between 8 and 10. As the DoS increases beyond 10, the BRISQUE score also 

increases for all the three images.  



 

Fig. 3 Variation of BRISQUE score against DoS. 

NLM filter is compared qualitatively and quantitatively against two different 

alternatives of de-noising namely, Anisotropic Diffusion Filter (ADF)[19] and Bilateral Filter 

(BF)[20]. In Fig. 4(c) BF excessively smoothens the image that greatly reduces the 

sharpness of the denoised image and thereby fades the boundary of the lesions. Likewise, in 

Fig. 4(b) the image denoised by ADF shows the boundary of lesions are not preserved 

properly with textural artifact. But in Fig. 4(d), the image is properly denoised by NLM filter by 

maintaining the boundary of the lesions than the ADF. The Information loss is also minimal 

when compared to the bilateral filter.  

    

(a)                        (b)       (c)                        (d) 

Fig. 4: Output images produced by different de-noising algorithms (a) test image (b) ADF (c) 

BF (d) NLM. 

The summary of BRISQUE scores obtained for ADF, BF and NLM for 100 images is 

tabulated in Table 1. It is evident that the NLM filter obtains the least value of BRISQUE 

score compared to the other schemes.  

Table 1 BRISQUE scores shown by various de-noising schemes 

Method Image 1 Image 2 Image 3 
Summary on 100 

images 

ADF 48.4356 53.7685 52.5846 51.0745±3.4252 

BF 40.6547 42.3425 43.5926 42.2393±4.3343 

NLM filter 31.2365 34.5476 33.4826 33.1646±2.3256 

 



4.3 Validation of illumination correction 

 The influence of DQP on the quality of devignetted images is analyzed 

subjectively and objectively. For objective analysis, the quality metrics like AGIC, LOE, SFF, 

and VSI are used. Based on this analysis, identifying the suitable range of DQP for 

illumination correction in dermatological photographs is important. The output images 

corresponding to the proposed devignetting scheme for different values of DQP are depicted 

in Fig. 5. It is observed that in Fig. 5(b), when the value of the DQP is less than one, the grey 

levels at the enhanced regions in the input images get compressed or scaled-down. In 

effect, the dynamic range of the processed images gets compressed and it appears to be 

relatively darker than the input images. If the value of the DQP is equal to one, the 

processed image becomes exactly similar to the corresponding input images as shown in 

Fig. 5(c).   

When the value of DQP is above one (DQP=1.5), the darker regions of the input 

images become enhanced slowly and the background illumination becomes uniform. 

However, the vignetting error is not fully corrected, it can be seen in Fig. 5(d). For the value, 

(DQP=2) the dark corners of the dermatological photographs caused by the vignetting error 

become equally enhanced as the bright regions in the photographs is depicted in Fig. 5(e). 

In case, if DQP is greater than 2 (DQP=2.5) an over-enhancement can be noticed in Fig. 

5(f).Therefore, DQP=2 is chosen as the optimized value for illumination correction due to 

uniform brightness throughout the image. 

 

 (a)                  (b)                  (c)                   (d)                  ( e )                  (f) 

Fig. 5 Outputs of the proposed devignetting scheme (a) Test image  (b) DQP = 0.5  

(c) DQP = 1 (d) DQP = 1.5 (e) DQP = 2 (f) DQP = 2.5  

The variations of AGIC, LOE, SFF and VSI with respect to DQP are shown in Fig. 

6(a-d). In Fig. 6(a), the AGIC monotonically decreases as the DQP increases. AGIC 

becomes almost consistent for the values of DQP greater than 2. In Fig. 6(b), the LOE 

continuously decreases when the value of DQP<1 and reaches minimum at a point where 

DQP=1. Afterwards, the LOE increases linearly when the value of DQP is greater than 1. In 

Fig. 6(c) and 6(d), when DQP changes from 0 to 1, both SFF and VSI increases and reaches 

the maximum point at DQP=1. When DQP increases above 1, the SFF and VSI start 

decreasing and above 2.2 the slope of SFF and VSI increases. This analysis of AGIC, LOE, 

SFF and VSI with respect to DQP indicates the optimum value of DQP suitable for the 

dermatological images. 



 

(a)                                                    (b) 

 

                                (c)                                                   (d) 

Fig. 6: Variation of the objective quality metrics with respect to DQP (a) AGIC Vs DQP (b) 

LOE Vs DQP (c) SFF Vs DQP (d) VSI Vs DQP 

The proposed devignetting algorithm is compared both qualitatively and objectively, 

against three different algorithms namely, Gamma Correction (GC)[21], Variation-based 

Fusion (VF)[22] and Sigmoid Transform (ST)[23]. The obtained images by applying different 

devignetting algorithms are depicted in Fig. 7. An ideal devignetting technique should make 

the background illumination uniform throughout the image surface without intolerably scaling 

down or boosting the mean brightness. In the output images of GC algorithm (Fig. 7(b)) the 

background illumination appears to be almost uniform. However, it blurs the structures 

present in the dermoscopy images. The VF algorithm introduces processing-induced color 

artifacts as seen in Fig. 7(c). It produces output images that are unnatural in appearance. 

Output images of the ST in Fig.7(d) look significantly darker than the corresponding input 

images. The background illumination remains as uneven in the dermatological photographs. 

But in Fig. 7(e), an uniform background illumination is noticed throughout the image surface. 

Moreover, the mean brightness is not down-scaled or boosted. The structures present in the 



output images remain sharper, appear natural and does not cause any processing-

introduced color artifacts. With respect to the subjective quality of the devignetted images, 

the proposed devignetting algorithm is superior to ST, VF and GC methods. The qualitative 

evaluation is repeated for hundred test images and it is found that, the proposed algorithm is 

consistently better than its alternatives on all test images.  

 

(a)          (b)                         (c)                     (d)                     (e) 

Fig. 7: Output images of different devignetting schemes for the input image  (a) Input image 

(b) GC (c) VF (d) ST (e) Proposed 

The obtained numerical values of AGIC, LOE, SFF, VSI, and computational time for 

different schemes ST, VF, GC and the proposed algorithm are presented in Table 2-6, 

respectively. As given in Table 2, the minimum value of AGIC indicates that, the background 

illumination in output images of the proposed method is uniform. Furthermore, in Table 3 the 

low values of LOE justify that the output image of the proposed algorithm is natural in 

appearance. In addition, Table 4 shows a highest value of SFF in the proposed algorithm 

indicates that, the color as well as structural distortions is negligible in the output image. 

Moreover, the higher value of VSI shown in Table 5 justify that, visual saliency maps of the 

output images are identical to that of the visual saliency maps of the corresponding input 

images. Therefore, the loss of salient information is negligible in the proposed algorithm is 

guaranteed. Finally, in Table 6 it is evident that, the proposed algorithm is computationally 

faster than the other methods. All these results emphasize the dominance of the proposed 

scheme in terms of uniformity in background illumination, information preservation and 

computational speed. 

Table 2: AGIC scorefor different schemes in illumination-correction 

Method Image 1 Image 2 Image 3 Summary of 100 images 

ST 0.5202 0.5012 0.5988 0.5401 ± 0.0517 
VF 0.3880 0.3628 0.4278 0.3929 ± 0.0328 
GC 0.1939 0.1560 0.2964 0.2154 ± 0.0726 

Proposed 0.1828 0.1547 0.2310 0.1895 ± 0.0386 

 

Table 3: LOE score for different schemes in illumination-correction 

Method Image 1 Image 2 Image 3 Summary of 100 images 



ST 1383 1587 1472 1480 ± 102.2758 
VF 637.4233 964.4730 753.8274 785.2412 ± 165.7724 
GC 2498 2478 2476 2484 ± 12.1655 

Proposed 96.1730 377.4392 225.2537 232.9553 ± 140.7912 

 

Table 4: SFF scorefor different schemes in illumination-correction 

Method Image 1 Image 2 Image 3 Summary of 100 images 

ST 0.8900 0.8836 0.8874 0.8870 ± 0.0032 
VF 0.9369 0.9022 0.9249 0.9213 ± 0.0176 
GC 0.8849 0.8693 0.8721 0.8754 ± 0.0083 

Proposed 0.9834 0.9855 0.9661 0.9783 ± 0.0106 

 

Table 5: VSI scorefor different schemes in illumination-correction 

Method Image 1 Image 2 Image 3 
Summary of 100 

images 

ST 0.8282 0.7805 0.8457 0.8181 ± 0.0337 
VF 0.8938 0.8886 0.8815 0.8880 ± 0.0062 
GC 0.8302 0.7782 0.8428 0.8171 ± 0.0342 

Proposed 0.9927 0.9896 0.9886 0.9903 ± 0.0021 

 

Table 6: Computational time for different schemes in illumination-correction 

Method Image 1 Image 2 Image 3 
Summary of 100 

images 

ST 0.108442 0.057055 0.060224 0.0752 ± 0.0288 
VF 108.666069 94.76729 105.5663 102.9999 ± 7.2961 
GC 0.124003 0.096456 0.079563 0.1000 ± 0.0224 

Proposed 2.070523 2.435887 1.575264 2.0272 ± 0.4319 

 

4.4 Validation of RICE algorithm 

Contrast enhancement is done to increase the grey level difference between lesion 

and background. Objective evaluation is done with the help of quality metrics like SFF, VSI, 

PCQI and OCM. The different techniques considered for comparing the performance of 

contrast enhancement are, CLAHE [21], CVC [24] and LDR [25].  

While evaluating the performance of the RICE algorithm a set of low contrast 

dermoscopy images are used. Output images produced by different contrast enhancement 

techniques are depicted in Fig. 8. An ideal enhancement algorithm increases the grey-scale 

difference without changing the mean brightness of the image. In Fig. 8(b) and 8(d), both 

CLAHE and LDR algorithms made a over enhancement in the image. Similarly in Fig. 8(c), 

multiple illumination artifacts are visible at the background region after the enhancement by 



the CVC algorithm. Besides, the proposed RICE algorithm effectively enhances the images 

without affecting the mean brightness of dermoscopy images is shown in Fig. 8(e). Hence, 

based on the subjective analysis, it is concluded that the RICE algorithm can efficiently 

enhance the dermoscopy image. 

 

     (a)                          (b)                        (c)                     (d)                     (e) 

Fig. 8 Output images produced by different contrast enhancement algorithms (a) Test image 

(b) CLAHE (c) CVC (d) LDR (e) RICE 

SFF, VSI, PCQI and OCM values for the output images produced by different 

schemes CLAHE, CVC, LDR and RICE are presented in Table 7-10. A higher value of SFF 

in RICE algorithm reflects in lesser structural distortions present in the output. Likewise, the 

higher value of VSI score in the proposed algorithm indicates that, the visual saliency map of 

the output image is identical to that of the input image. Similarly, the high values of PCQI 

score in RICE algorithm indicate the proper enhancement of dermoscopy images. The low 

value of OCM score in the proposed result indicates negligible noise amplification during 

enhancement. Considering the factors like enhancement in contrast, visual saliency, feature 

preservation and information fidelity together the RICE algorithm offers better performance 

compared to other algorithms.  

Table 7 SFF scores for different schemes in contrast enhancement 

Method Image 1 Image 2 Image 3 Summary of 100 images 

CLAHE 0.5943 0.5473 0.7069 0.6162±0.0820 
CVC 0.9362 0.9438 0.9608 0.9469±0.0126 
LDR 0.9786 0.9479 0.9780 0.9682±0.0176 
RICE 0.9965 0.9964 0.9945 0.9958±0.0011 

 

Table 8 VSI scores for different schemes in contrast enhancement 

Method Image 1 Image 2 Image 3 Summary on 100 images 

CLAHE 0.9191 0.8768 0.9040 0.9000±0.0214 
CVC 0.9566 0.9162 0.9517 0.9415±0.0220 
LDR 0.9790 0.9251 0.9663 0.9568±0.0282 
RICE 0.9958 0.9972 0.9954 0.9961±0.0009 

 

Table 9 PCQI scores for different schemes in contrast enhancement 



Method Image 1 Image 2 Image 3 Summary on 100 images 

CLAHE 0.2680 0.1622 0.2020 0.2107±0.0534 
CVC 1.1603 1.3073 1.1561 1.2079±0.0861 
LDR 1.1445 1.3481 1.1770 1.2232±0.1094 
RICE 2.7586 2.8221 2.8510 2.8106±1.6736 

 

Table 10 OCM scores for different schemes in contrast enhancement 

Method Image 1 Image 2 Image 3 Summary on 100 images 

CLAHE 0.5017 0.1164 0.6459 0.4213±0.2737 
CVC 0.4507 0.0142 0.0301 0.1650±0.2476 
LDR 0.2295 0.0451 0.0481 0.1076±0.1056 
RICE 0.0515 0.0102 0.0513 0.0377±0.0238 

 

4.5 Validation of Unsharp Masking 

The quality of the sharpened image is influenced by the parameter λ in Unsharp 

Masking. This process is carried out by varying the value of λ from 0 to 5 with an interval of 

0.5. It is analyzed subjectively using BRISQUE and CPBD. 

The sharpening effect gets increased when the value of λ increases and it can be 

clearly observed from the images depicted in Fig. 9(b) -9(f). When the value of λ is less than 

1, the sharpening effect is less as illustrated in Fig. 9(e) - Fig. 9(f). In Fig. 9(b) -9(c), it is 

observed that the value of λ increases beyond 2.5, the non-edge fine texture gets amplified 

which may adversely affect the segmentation process. Hence, based on the perceived 

quality of the processed images, the range of the λ between 1.5 and 2.5 is observed to be 

ideal for Unsharp Masking in dermoscopy images.  

  

           (a)                   (b)                     (c)                 (d)                    (e)                     (f) 

Fig. 9: Output images produced by Unsharp Masking for different values of λ(a) Input image 

(b) λ = 5(c) λ = 2.5  (d) λ = 1 (e) λ = 0.5 (f) λ= 0 

The variations of BRISQUE and CPBD metrics to different values of λ are shown in 

Fig. 10. BRISQUE exhibits an inverted bell-shaped curve for three test images. BRISQUE 

shows, low values when the range of the λ is between 1.5 and 2. The value of the CPBD 

metric increases as the λ increases from 0.5 to 5. The slope of the CPBD starts decreasing 



when the value of the λ is greater than 2. The variations of BRISQUE and CPBD to λ indicate 

that the optimum range of λ is between 1.5 and 2.5.  

 

                                (a)                                                   (b) 

Fig. 10: Variation of BRISQUE and CPBD score for different values of the λ 

(a) BRISQUE Vs λ (b) CPBD Vs λ 

The Unsharp Masking algorithm is compared both qualitatively and quantitatively 

against the Local Laplacian filter [15]. Output images for different sharpening algorithms are 

shown in Fig. 11. From the output of the Local Laplacian filter in Fig. 11(b), it is evident that 

this filter excessively sharpens the images, which results in amplification of non-edge fine 

texture. On the other hand in Fig. 11(c), an ideal sharpening algorithm is able to strengthen 

the lesion without amplifying the non-edge fine texture in the image.  

 

                     (a)   (b)     (c) 

Fig. 11 Input image and results produced by sharpening filters (a) input image  (b) output of  

Local laplacian filter (c) Output of Unsharp Masking  

The values of BRISQUE scores for the output produced by Unsharp Masking and 

Local Laplacian filter for 100 images are presented in Table 11. It can be observed that, 

Unsharp Masking exhibits the lowest values of BRISQUE compared to the Local Laplacian 

filter. Low values of the BRISQUE score shows that the image has sharpened without the 

amplification of non-edge fine textures.  

Table 11: BRISQUE score obtained for Unsharp Masking and Local Laplacian filter 

Method Image 1 Image 2 Image 3 
Summary of 100 

images 



Local laplacian filter 22.7326 26.9124 31.5786 27.0745± 4.4252 

Unsharp masking 5.8528 1.2185 13.7466 6.9393±  6.3343 

 

4.6 Validation of reflection removal 

 The selection of the Smoothing Parameter (SP) and Rate Control Parameter 

(RCP) of the reflection removed images are analyzed subjectively in this section. SP controls 

the degree of smoothening and RCP determines the number of iterations. The small value of 

RCP needs more iterations and results in sharper output image. For this analysis, a range of 

suitable dermatological photographs are identified that possess specular reflection. The 

outputs of the reflection removal algorithm, corresponding to the test image are depicted in 

Fig. 12 - 14.  

The value of SP is varied between 0.01 to 0.04 and for each value of SP, RCP is 

varied between 1.1 to 2 with an interval of 0.1. It is apparent from the output images that, as 

the value of SP increase beyond 0.02, unexpectedly the image gets smoothed heavily with 

cartoon artifact. Moreover, as the value of SP increases the data loss occurs which can be 

inferred from Fig. 14. When the value of SP is less than 0.02, the reflected part of the image 

is also removed without the smoothing effect as presented in Fig. 13. When SP is 0.01, it is 

observed that reflection is not properly removed from the image as shown in Fig. 12. Based 

on the perceived quality of processed images, the ideal value of SP is 0.02 for dermoscopy 

images. From Fig. 12(e), Fig. 13(e) and Fig. 14(e) it can be observed that as the value of 

RCP is less than 1.5, the information contained in the image is lost with visible cartoon 

artifact. When the value of RCP increases above 1.8, reflection from dermoscopy images is 

not efficiently removed as shown in Fig. 12(b),Fig. 13(b) and Fig. 14(b). Thus, based on the 

perceived quality of the resulting images, the range of RCP between 1.5 and 1.7 is observed 

to be ideal for the dermoscopy images. 

 

         (a)                  (b)  (c)                   (d)                    (e) 

Fig. 12: Output images of reflection removal for various values of RCP (SP= 0.01) (a) Input 

Image (b) RCP = 1.9 (c) RCP = 1.7 (d) RCP = 1.5 (e) RCP = 1.3  



 

                   (a)                (b)                      (c)                 (d)                 (e) 

Fig. 13 Output images of reflection removal for various values of RCP (SP= 0.02) (a) Input 

Image (b) RCP = 1.9 (c) RCP = 1.7 (d) RCP = 1.5 (e) RCP = 1.3  

 

 

                            (a)                  (b)                  (c) (d)                (e) 

Fig. 14 Output images of reflection removal for various values of RCP (SP= 0.03) (a) Input 

image (b) RCP = 1.9 (c) RCP = 1.7 (d) RCP = 1.5 (e) RCP = 1.3 

4.7 Validation of phase congruency based virtual shaving 

The influence of the threshold on the subjective quality of the virtually-shaved images 

is analyzed subjectively as well as objectively. The quality assessment is done objectively 

using Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Metric (SSIM). The 

test image and its Ground-Truth (GT) image used for virtual shaving are shown in Fig. 15. 

The value of the threshold is varied from 0.55 to 1. When the value of the threshold is 

between 0.55 and 0.7, almost no hairs are removed from the dermoscopy image as depicted 

in Fig. 16(a). But hairs are completely removed in Fig. 16(b) when the threshold value is 

increased beyond 0.85. However, if the value of the threshold is increased above 0.95, the 

image information content is also lost along with the removed hair is shown in Fig. 16(c). 

Hence, based on the perceived quality of the processed images, the range of threshold 

between 0.85 and 0.9 is observed to be ideal for dermatological photographs. 

 

   

    (a)    (b) 



Fig. 15 Representative test image containing hairs (a) Image (b) GT 

 

                   (a)                         (b)           (c)  

Fig. 16 Outputs images of the phase congruency-based virtual shaving (a) threshold = 0.7 

(b) threshold = 0.85 (c) threshold = 0.95 

The variations of PSNR and SSIM to various values of the threshold are shown in 

Fig. 17. PSNR and SSIM metrics are computed between the virtually-shaved image and the 

ground-truth image. Both PSNR and SSIM remain consistent for threshold values less than 

0.6. But, when threshold increases beyond 0.6, both the parameters exhibit a bell-shaped 

curve. PSNR has its maximum value when the threshold is between 0.75 and 0.85 and 

SSIM reaches its maximum values when the threshold is between 0.75 and 0.9. A higher 

value of PSNR and SSIM justifies that, the output of the virtually-shaved image and ground-

truth image are identical. Hence, it is concluded that, from the variations of PSNR and SSIM 

the optimum range of threshold for virtual shaving of dermoscopy images is between 0.75 

and 0.9.  

 

   (a)                                                     (b) 

Fig. 17: PSNR and SSIM plotted for different values of threshold (a) PSNR versus threshold 

(b) SSIM versus threshold 

4.8 Validation of RELM based Segmentation 

In this section, different segmentation algorithms are applied to the preprocessed 

and without pre-processed dermoscopy images. The performance of different algorithms is 



compared subjectively as well as objectively. The quality metrics like DSI, JI and TSC [27] 

are used for objective comparison. The different segmentation algorithm used are FCM [28], 

Isolate Thresholding method (IT) [29], k-means [30], and RELM.  

The output of different segmentation algorithms without pre-processing is shown in 

Figure 18. Here, the skin lesion are not segmented accurately because of the existence of 

noise, non-uniform illumination and hairs. The virtually-shaved image with a threshold value 

of 0.85 along with the manually segmented ground-truth and output of different segmentation 

algorithms are depicted in Figure 19. From the output results of FCM, IT and k-means 

(Figure 19(c) – 19(e)) the algorithms failed to segment the skin lesions properly. The output 

of RELM agrees with the manual segmentation and effectively segments the skin lesions 

(Figure 19 (f)). Thus, based on subjective quality, it can be concluded that the RELM 

algorithm is able to segment skin lesions efficiently from the dermoscopy images. 

 

         

               (a)             (b)      (c) 

 

   

                 (d)                                    (e)                                     (f) 

Figure 18: Output images of different segmentation algorithms without pre-processing (a) 

Raw image  (b) ground truth image  (c) FCM (d) IT (e) k-means (f) RELM  

 



  

(a)  (b)                (c)  

 

                 (d)       (e)   (f) 

 Figure 19: Output images of different segmentation algorithms for the Pre-processed image  

(a) virtually shaved image  (b) ground truth image  (c) FCM (d) IT (e) k-means (f) RELM 

 The values of JI, DSI and TSC calculated for 100 dermoscopy images for different 

segmentation algorithms with pre-processing and without pre-processing are tabulated in 

Table 12 - 14 respectively. The skin lesions segmented manually by experts are used as the 

ground-truth for the calculation of different quality metrics. A high value of JI, DSI and TSC 

indicate that the segmented lesions agree with ground-truth. RELM algorithm exhibits the 

highest value for all three metrics. This indicates that the RELM algorithm has produced 

more accurate segmentation results compared to other schemes. Objective evaluation 

results agree with the inferences drawn by the subjective evaluation for the similarity of the 

skin lesions segmented using different algorithms with ground truth. 

Table 12: JI score shown by different segmentation schemes 

Method 
Image 

1 
Image 

2 
Image 

3 
Image 

4 
Image 

5 

Summary of 
100 images 

(Without pre-
processing) 

Summary of 
100 images 
(With pre-

processing) 

FCM 0.8313 0.7666 0.5907 0.7764 0.8928 0.7062±0.1024 0.7295±0.1245 

IT 0.8584 0.7726 0.5964 0.7870 0.8931 0.7112±0.1126 0.7425±0.1336 

k-
means 

0.7787 0.6502 0.0085 0.7388 0.8555 0.4372±0.3878 0.4791±0.4126 

RELM 0.8729 0.9504 0.6972 0.8771 0.9708 0.8971±0.0134 0.9402±0.1297 

 

 

 



Table 13: DSI score shown by different segmentation schemes  

Method 
Image 

1 
Image 

2 
Image 

3 
Image 

4 
Image 

5 

Summary of 
100 images 

(Without pre-
processing) 

Summary of 
100 images 
(With pre-

processing) 

FCM 0.9079 0.8679 0.7427 0.8741 0.9434 0.7865±0.0456 0.8395±0.0862 

IT 0.9238 0.8717 0.7472 0.8808 0.9435 0.7989±0.0812 0.8476±0.0907 

k-
means 

0.8756 0.7880 0.0169 0.8498 0.9221 0.4961±0.3214 0.5602±0.4725 

RELM 0.9322 0.9746 0.8216 0.9345 0.9852 
    
0.8545±0.0462 

    
0.9895±0.0790 

 

Table 14: TSC score shown by different segmentation schemes  

Method 
Image 

1 
Image 

2 
Image 

3 
Image 

4 
Image 

5 

Summary of 
100 images 

(Without pre-
processing) 

Summary of 
100 images 
(With pre-

processing) 

FCM 0.8310 0.7664 0.5909 0.7763 0.8924 0.7012±0.1156 0.7294±0.1242 

IT 0.8581 0.7725 0.5965 0.7869 0.8927 0.7202±0.1004 0.7424±0.1334 

k-
means 

0.7784 0.6500 0.0085 0.7387 0.8551 0.4241±0.3941 0.4790±0.4125 

RELM 0.9984 0.9536 0.7026 0.8857 0.9881 0.9328±0.1361 0.9549±0.1594 

 

RELM algorithm is used to segment the lesions from the preprocessed images. It 

exhibits a JI, DIS and TSC score higher than FCM, IT and k-means, shows that automated 

segmentation of RELM algorithm are more accurate with the manual segmentation of skin 

lesions in dermoscopy images.  

 

5. CONCLUSION 

In this paper, different enhancement techniques are introduced for preprocessing of 

dermoscopy images. Here, the optimization based framework is tested with data archive of 

ISIC(2016). Based on the results obtained with and without pre-processed segmentation, it 

is concluded that the implementation of pre-processing algorithm improves the success rate 

in RGB images. The NLM filter have been found to preserve very fine details by removing 

the noise in skin lesion images. Also, the NLM filter exhibits the lowest BRISQUE score 

compared to anisotropic diffusion filter and bilateral filter. The proposed RICE algorithm for 

contrast enhancement method is found to be superior to the existing methods including 

CLAHE, LDR and CVC with better SFF, VSI, PCQI and OCM scores. The enhancement of 

dermoscopy images is further improved by eliminating the undesired information due to 



reflection using reflection removal method. Also, in our framework virtual shaving is included 

to remove the hairs without any loss of image content with appreciably high PSNR and SSIM 

metrics. The values of quality evaluation metrics like PSNR and SSIM are appreciably high 

for output images produced by phase congruency-based virtual shaving when the value of 

the threshold is in the range of 0.85 - 0.9.  However, the proposed system generates better 

results among all comparable methods in terms of qualitative and quantitative aspects. 

Therefore, the introduced pre-processing framework is more appropriate for low quality 

melanoma images. From the score of quality metrics like Disc Similarity Index, Jacquard 

Index and Total Segmentation Coefficient, it has been concluded that when pre-processing 

steps are used in the proper sequence, segmentation using Regularized Extreme Learning 

Machine is more efficient than other algorithms. 

ABBREVATIONS: 

NLM - Non-Local Means  

RICE - Robust Image Contrast Enhancement 

DSI - Disc Similarity Index  

JI - Jacquard Index  

TSC - Total Segmentation Coefficient  

RELM - Regularized Extreme Learning Machine  

AWB - Automatic White Balance  

CLAHE - Contrast Limited Adaptive Histogram Equalization  

 CVC - Contextual and Variational Contrast enhancement algorithm   

LDR - Layered Difference Representation  

DoS - Degree of Smoothing  

 SD - Standard Deviation  

DQP - Devignetting Quality Parameter  

BRISQUE - Blind Reference less Image Spatial Quality Evaluator  

AGIC -  Average Gradient of the Illumination Component  

LOE -  Lightness Order Error  



SFF - Sparse Feature Fidelity  

 VSI - Visual Saliency-based Index  

 PCQI - Patch-based Contrast Quality Index  

 OCM - Over-Contrast measure  

 CPBD - Cumulative Probability of Blur Detection  

 SP - Smoothing Parameter  

RCP -  Rate Control Parameter  

 PSNR - Peak Signal to Noise Ratio  

SSIM - Structural Similarity Index Metric  
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