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Abstract Objects In functional stereotactic neurosurgery,
one of the cornerstones upon which the success and the oper-
ating time depends is an accurate targeting. The subthalamic
nucleus (STN) is the usual target involved when applying
deep brain stimulation for Parkinson’s disease (PD). Unfor-
tunately, STN is usually not clearly visible in common medi-
cal imaging modalities, which justifies the use of atlas-based
segmentation techniques to infer the STN location. Materi-
als and methods Eight bilaterally implanted PD patients were
included in this study. A three-dimensional T1-weighted se-
quence and inversion recovery T2-weighted coronal slices
were acquired pre-operatively. We propose a methodology
for the construction of a ground truth of the STN location
and a scheme that allows both, to perform a comparison be-
tween different non-rigid registration algorithms and to eval-
uate their usability to locate the STN automatically. Results
The intra-expert variability in identifying the STN location is
1.06 =0.61 mm while the best non-rigid registration method
gives an error of 1.80£0.62 mm. On the other hand, statistical
tests show that an affine registration with only 12 degrees of
freedom is not enough for this application. Conclusions Us-
ing our validation—evaluation scheme, we demonstrate that
automatic STN localization is possible and accurate with
non-rigid registration algorithms.
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Introduction

From the late 1960s, with the introduction of levodopa, med-
ications have dominated the treatment of Parkinson’s dis-
ease (PD). Unluckily, medical treatment has significant short-
comings. Benefits go down with time. Many patients suffer
from wearing-off, a decrease of the medical effect follow-
ing each dose. After some years patients often become less
tolerant to the drug. Many of them develop drug-induced
effects, like severe rigidity and tremor (off periods) and severe
dyskinesias, involuntary twisting and writhing movements
(on periods). These problems with medical therapy and the
increase of basal ganglia circuitry knowledge have led to
the development of surgical-based techniques. We can dis-
tinguish two types of approaches: lesion-based techniques
and deep brain stimulation (DBS). The first ones consist in
the surgical destruction of a small amount of brain tissue in
some regions (specific parts of some basal ganglia). Amongst
the lesion-based, thalamotomy and pallidotomy have shown
good performance in treating tremor in one side of the body
(the opposite side to the lesion side) and reducing dyskine-
sias, but they cannot be applied bilaterally because bilateral
lesion may produce severe undesirable and permanent effects
on speech, behavior or cognition. DBS can be performed
safely on both sides of the brain and, contrary to lesion-based
techniques, DBS is reversible. DBS involves implantation of
an electrode deep inside the brain. This electrode delivers
electric current to specific brain cells shutting down Parkin-
sonian symptoms. After hundreds of surgical interventions
the subthalamic nucleus (STN) has turned out to be the most
effective target for DBS.

A typical DBS procedure starts with the placement of the
stereotactic head frame, fixed to the patient’s skull, that will
be used as a coordinate reference. Next an imaging study
is done in order to select the target to stimulate and to plan
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Fig. 1 Post-operative validation
problems

(a) Post-operative MR T1 image.

the trajectories for introducing the electrodes. Usually two
kinds of images are taken to be able to visualize different
tissues, MR T1-weighted and MR T2-weighted images. In
our state-of-the-art protocol, the selection of the STN tar-
get is performed on a coronal T2-weighted image acquired
perpendicularly to the anterior commisune—posterior com-
misune (AC-PC) axis and crossing the anterior limit of the
red nucleus. STN target selection depends on each institu-
tion. Common methods are the use of stereotactic atlases of
the brain [1,2] and the use of visible surrounding anatomi-
cal landmarks [3]. Then the target coordinates are reported
to the T1-weighted image where trajectories are planned.
Once, in the operating room, the head frame is fixed to the
operating table, a small hole is drilled into the patient’s skull
according to pre-operative trajectories. Because of the diffi-
culty to see the STN directly from medical images, the pre-
operative target is only an estimation of the real location.
The electrode’s location has to be adjusted intra-operatively
using electrophysiological recordings and from stimulation
tests.

As we dispose of the post-operative images for all the
patients involved in this study, it is easy to imagine a straight-
forward way to assess STN location: the final coordinates of
the electrodes. Unfortunately, post-operative MR images do
not provide accurate localization of the electrode’s tip due
to the artifacts generated in the images by the electrode it-
self, as can be seen in Fig. 1a. The DBS lead is composed
of an insulated wire with four platinum iridium contact elec-
trodes on its tip, each contact measuring 1.5mm in length
separated by 1.5 or 0.5 mm (see Fig. 1b). Ideally, one contact
should be located within the STN or two contacts should be
surrounding it. It is very difficult to assert that certain con-
tact is within the target or in the closest neighborhood. The
use of micro-electrode recordings allows to guess that we
are more or less within the STN, but it is a very small struc-
ture. Therefore, these possibilities do not provide enough
accuracy.

The goal of the study reported in this paper is to voice
the possibility to automatically locate the STN using exist-
ing registration techniques and to compare their performance
and usability. Knowing the location of the STN for all our
patients’ database, a patient is chosen as atlas and each indi-
vidual patient mapped back to the atlas using the registration
methods considered in this study to obtain an estimation of
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(b) DBS lead.

the STN, which is compared to the real location given by the
expert.

Material and methods
Data

For each patient of our 34 bilaterally implanted Parkinso-
nian patients’ database, two kinds of images were taken pre-
operatively: a 3D T1-weighted magnetization-prepared rapid
acquisition gradient echo (MPRAGE) MRI sequence (Sie-
mens Vision®, 1.5T; Erlangen, Germany) TR 9.7ms, TE
4ms, number of slices/slice thickness: 164/1.40 mm, FOV
280 x 280, matrix 256 x 256, pixel size 1.09 x 1.09 mm?Z, and
few coronal slices (due to the time taken for this kind of imag-
ing sequence) of an inversion recovery (IR) T2-weighted, TR
2,560 ms, TE 4 ms,number of slices/slice thickness: 7/3 mm,
FOV 300 x 300, matrix 512 x 512, pixel size 0.59 x 0.59
mm. Taking profit from the fact that in some rare cases the
STN is visible in MR T2-weighted images, a reference can
be constructed and used as a ground truth. To do this neu-
rosurgeon experts have been asked to select patients with
clearly visible STN in MR T2-weighted images amongst our
patients’ database. After exhaustive inspection eight patients
were selected (16 STNs).

Reference construction and validation scheme

An experimented neurosurgeon with wide experience in PD
surgery and targeting has been asked to click the target point
(two STN) for each selected T2 series. This process has been
repeated five times for each patient at different days to avoid
that the expert be influenced by previous targeting choices.
With this data we were able to compute a statistical mean
target point coordinates which we call the real targets (see
Fig. 2).

Amongst the eight selected subjects, the one with the most
clearly visible STN has been selected as a reference subject,
both for the right and left sides. Intra-expert variability sta-
tistics can also be extracted. Using these data we can con-
sider our reference subjects as an atlas. Then, by non-rigidly
registering the atlas with the patient image, we obtain an
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Fig. 3 Validation scheme. Target estimation

estimation of the STN position in the patient. The procedure
is as follows. The first step is to report the MR T2 coordinates
to MR T1 coordinates, for each patient, to obtain the location
of the real targets in the T1 domain. To do this a rigid regis-
tration between the two modalities (six degrees of freedom:
translation and rotation) has been performed [4] as shown in
Fig. 2. The next step consists in applying each of the reg-
istration algorithms under study to get an estimation of the
position of the STN. This estimation is obtained by register-
ing the MR T1-weighted image of the atlas with the MR T1-
weighted image of the patient under study. In this work four
methods were considered (see AC-PC atlas-based target-
ing and automatic registration algorithms). Finally, repeating
this for the seven datasets (14 STNs) involved (leaving out
the references), Euclidean distances from estimated to real
targets (seen as the mean target point given by the expert)
for each STN are calculated and statistics are extracted to
evaluate the performance of the different methods. This

REAL
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evaluation—validation procedure is shown as a block diagram
in Fig. 3.

AC-PC atlas-based targeting and automatic registration
algorithms

To face up to image registration the following methods have
been tested:

Atlas-based (AC—PC) targeting AC—PC referential together
with brain atlases is one of the methods used to target the
STN in medical environment, mainly when STN is not clearly
visible in MR T2-weighted images which is the usual case.
Neurosurgeons have to locate the anterior and posterior com-
missures (AC—PC points). Then, using a stereotaxic atlas and
taking the midcommissural point (MCP) as the origin, we can
estimate that the STNs are located at coordinates (following
Schaltenbrand—Wahren [1]): anteroposterior (AP) —3 mm,
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Table 1 Expert targeting variability. All the STNs and references

Mean + SD All STNs (mm) Left STN reference (mm) Right STN reference
Paired 1.67 +0.98 1.64 +0.88 1.18 £0.52
Centroid 1.06 +0.61 1.10 £0.32 0.75 +£0.38
MCP Distance 13.47 +£1.37 12.38 £ 0.61 13.63 +0.54

lateral (LAT) 12 mm (left side and right side) and vertical
(VERT) —4 mm.

Affine registration We used an independent implementation
based on the work of Maes et al. [4]. The 12 degrees of
freedom (translation, rotation, scaling and shearing) are opti-
mized in order to maximize the mutual information between
the images to be registered [5,6] using a multiscale approach
and a two-step optimization. First a global search using ge-
netic algorithms [7] and next a local optimization using the
steepest descent method [8]. Affine registration is also used as
a pre-alignment step for non-rigid transformations described
below.

Demons algorithm 1t is an intensity-based algorithm pro-
posed by Thirion [9,10] and based on the concept of opti-
cal flow. The problem of image matching is approached as
a diffusion process, in which object boundaries in the refer-
ence image F' are viewed as semipermeable membranes. The
other (so-called floating) image G is considered as a deform-
able grid and diffuses through these interfaces, driven by the
action of effectors situated within the membranes. In the case
of voxel-by-voxel intensity similarity, the instantaneous dis-
placement vector for each voxel is

—
- ___ &=-NHVS
=——= ,
IV P2+ (g = )?

where f and g are the intensity images of F and G, respec-
tively. The deformation algorithm is applied by iterating in a
hierarchical coarse-to-fine multiscale way. The smoothness
of the displacement field is imposed by smoothing with a
Gaussian filter of standard deviation o (elasticity parame-
ter) chosen empirically [11]. In our case, parameter o has
been chosen by exhaustive search, between 0.6 and 2.0 mm
by steps of 0.2 mm, minimizing the distance between the
estimated STNs and the real targets. Finally, o of 1 mm has
been chosen.

B-splines algorithm 1t is a mutual information-based free-
form deformation algorithm whose displacement field is mod-
eled as a linear combination of B-splines lying in a regular
grid (uniformly spaced control points) similar to the method
proposed by Rueckert et al. [12]. The deformation that max-
imizes the mutual information between the two images in-
volved is computed at each grid point placed on the floating
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image. The transformation is propagated to the rest of the im-
age using the standard B-spline expansion with cubic splines:

d(x) =Y k) (x — k),

keZ

where c (k) are the B-spline coefficients, B3(x) = B0 x O x
B° x BO(x), and B a rectangular pulse. To speed up the opti-
mization process, the algorithm has been implemented using
the communication utilities for distributed memory architec-
tures using the MPICH implementation of the message pass-
ing interface (MPI) [13]. The good interpolation properties
and the suitability for multiscale processing of the B-splines
are well known [14], and its deformability can be controlled
by changing the spacing between the control points of the
grid which we have set at 12 mm.

Results
Target selection and surgeon variability

Two main statistics can be extracted from the data given by
the expert: intra-surgeon variability and the mean target point
coordinates for each STN which will be used as a real target
coordinates.

In order to evaluate the repeatability of the neurosurgeon
targeting, we have proceeded in different manners. First we
have computed, for each STN, the Euclidean distance be-
tween each couple of neurosurgeon’s clicks (5 clicks per
STN, 10 distances per STN, 160 distances for the 8 selected
patients from the database) and we obtain the mean and stan-
dard deviation (SD) (using the unbiased estimator) of the
so-called paired variability. The same information can be ex-
tracted computing the centroid for each STN cloud of points
and calculating its Euclidean distances to each of these points.
This gives the mean and unbiased SD of the so-called cen-
troid variability. We also compute the mean distances from
the targeted points to the MCP. These quantities allow us to
get an idea of the surgeon variability and its accuracy when
clicking over the pre-operative target and can be seen in the
second column of Table 1. If we only consider the STNs used
as a reference we obtain the paired and centroid variabilities
as well as the mean distance to the MCP for the left and right
sides showed in the third and fourth columns, respectively,
of Table 1.
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Fig. 4 Reference STN expert
targeting

(a) L-STN Coronal.

(d) R-STN Coronal.

Table 2 Expert variability. Distance to MCP

Target Mean £ SD (mm) Target Mean £ SD (mm)
STN 1 14.92 £ 1.52 STN 9 12.79 £ 0.84
STN 2 13.66 £ 1.69 STN 10 14.01 £0.29
STN 3 13.25£0.26 STN 11 12.38 £ 0.61
STN 4 1435+ 0.34 STN 12 11.89 £0.91
STN 5 14.69 £ 0.68 STN 13 14.31 £ 1.67
STN 6 13.63 £0.54 STN 14 13.88 £0.79
STN 7 11.72 £0.84 STN 15 14.68 £ 0.83
STN 8 11.32 £0.40 STN 16 14.02 £ 0.46

Table 3 Mean STN coordinates referred to the MCP

Coordinates Mean £+ SD (mm)
AP —3.29+1.36
LAT +12.57 £1.39
VERT —3.16 +£0.89

In Table 2, we show the expert variability referred to the
distances to the MCP for each STN targeted, following the
procedure described in Sect. Reference construction and val-
idation scheme.

In Fig. 4, the points targeted by the expert for the left (Figs.
4a—c) and right (Figs. 4d—f) STNs chosen as a reference can
be seen. For visualization purposes, each point is projected
onto the three orthogonal planes passing through the centroid
and showed using a circle (of radius 1 mm).

We can also decompose these distances in AP, LAT and
VERT coordinates which allows comparing directly the mean
STN location for our database with usual STN coordinates

QX &
-

(b) L-STN Sagital. (¢) L-STN Axial.

(e) R-STN Sagital. (f) R-STN Axial.

from the atlases (e.g. [1,2]). In Table 3 we show the mean
and SD of the coordinates referred to the MCP for the 16
STNs used in this study.

Target estimation and evaluation of the methods

The statistics (mean and unbiased SD) of the errors commit-
ted when applying these algorithms and methods to locate
the STN, as described under AC-PC atlas-based targeting
and automatic registration algorithms, are shown in Table 4.
For the case of AC-PC atlas-based method we decompose
and compute the error in its three coordinates or directions
as well as the error considering only the LAT and the AP
variability (see Table 5).

Table 4 Estimation errors

Methods Mean £+ SD (mm)
Affine 2.65+1.25
Demons 1.97 £ 0.85
B-Splines 1.80 £0.62
AC-PC 1.98 +0.81

Table 5 Atlas-based errors’ decomposition

Components Mean + SD (mm)
AP 0.98 +£0.72
LAT 1.07 £ 0.65
VERT 0.92 £0.64
AP-LAT 1.57 £0.74
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In order to compare the results, statistical tests have been
done. In Fig. 5 a statistical box plot, generated by using an
one-way analysis of variance, for the different methods tested
is shown. A paired #-test of the hypothesis that the errors come
from distributions with equal means has been performed over
each pair of methods at a 5% significance level. The numeri-
cal results of the test (p-values and confidence intervals) are
shown in Table 6. We obtain that the mean errors committed
with B-splines, demons and AC-PC based methods are not
significantly different. However, the results show that affine
registration is significantly different from the other methods
above.

Given the visual results of Fig. 5 and the numerical results
produced by the ¢-test of the equality of means, we perform
an F'-test at a 5% significance level of the hypothesis that the
set of errors generated by each method come from distribu-
tions with equal variance. The results are shown in Table 7.
We can see that only the variance of the errors produced by
the B-splines method is significantly different from the one
produced by affine registration.

In Fig. 6, we show the projection of each STN estimation
(in white) onto the reference subject (in red) using the B-

T
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B-splines AC-PC

Estimation Methods

Affine Demons

Fig.S Statistical box plot of the errors committed using different meth-
ods

Table 6 1-test of the hypothesis of equal means

t-test Hypothesis ~ P-value  Confidence interval
Affine vs demons Rejected 0.027 [0.090 1.272]
Affine vs B-splines Rejected 0.047 [0.014 1.688]
Affine vs AC-PC Rejected 0.033 [0.063 1.276]
Demons vs B-splines  — 0.454 [—0.304 0.643]
Demons vs AC-PC - 0.964 [—0.569 0.546]
B-Splines vs AC-PC - 0.563 [—0.841 0.479]
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Table 7 F-test of the hypothesis of equal variance

F-test Hypothesis ~ P-value  Confidence interval
Affine vs demons - 0.173 [0.700 6.792]
Affine vs B-splines Rejected 0.016 [1.317 12.784]
Affine vs AC-PC - 0.130 [0.765 7.427]
Demons vs B-splines  — 0.267 [0.604 5.863]
Demons vs AC-PC - 0.8744 [—2.849 —0.294]
B-splines vs AC-PC - 0.340 [—5.362 —0.553]

splines registration algorithm. Each point is represented by
a circle of 1 mm of radius whose coordinates are projected
onto the reference subject point coordinates (in red) in order
to visualize the points in each view and refer to the reference
subject point. The estimated targets are located very close to
the real target and form tight clouds of points showing that
this kind of automatic estimation is reliable and well suited
for this application.

Conclusions and perspectives

The main conclusion one can extract from the results we
have obtained from this evaluation—validation work is that
automatic STN location is possible and accurate. As we can
see, by simple inspection of the numerical and visual re-
sults, the B-splines method shows the best performance with
the smallest mean error and adjusted (unbiased) SD but is
closely followed by demons and AC—PC methods. The points
project on tight clusters showing the robustness of this kind
of estimation method. The statistical tests have shown that
global affine registration is not enough for our application
and that there are no significant statistical differences, neither
mean nor variance, between the errors committed using the
B-splines, demons or AC-PC referential-based techniques.
Note that only the variance of the B-splines method is sta-
tistically different from the one of the affine registration. Al-
though AC-PC referential-based method shows an accept-
able performance, its estimation needs AC and PC point’s
identification by an expert and does not take into account the
inter-patient variability, which is very important at a single
patient level. The fact that AC-PC shows such a good behav-
ior can be explained because the selected patients follow well
the average brain defined by the atlas. But what about pa-
tients with abnormal anatomy or damaged brains? Although
the choice of the STN of reference can influence the results,
the methods have been tested using six different combina-
tions of STN pairs (left and right references) and the results
were similar. The automatic targeting of the STN can be also
used as a first and fast pre-operative target estimation that
can be refined by the neurosurgeon criterion. The work in
progress includes a study of inter-expert variability that will
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Fig. 6 STN estimation using
B-splines

(a) L-STN Coronal.

(d) R-STN Coronal.

Source: 2272x1704x801
Resolution 100x100x150 pm

Fig. 7 Post-mortem atlas generation

provide a mean to obtain more accurate STN target atlases as
well as a cross-comparison of experts and registration meth-
ods. As our patients’ database increases and more experts as
well as more registration techniques, mainly local ones, are
included in the study, we will be able to establish stronger
assessments and conclusions. An interesting and promising
work we are developing is the construction of a post-mor-
tem brain atlas (see Fig. 7). We dispose of a high resolution
sliced dead Parkinsonian brain where the STN is well defined
and easy to segment. We have also the pre- and post-operative
MR T1- and T2-weighted studies of the same patient when he

(b) L-STN Sagital. (c) L-STN Axial.

(f) R-STN Axial.

was alive. Using rigid registration we can reconstruct the 3D
volume from the pictures of the dead brain and then project
the segmented STN onto the MRI images by using accurate
non-rigid registration algorithms. This will provide an MRI
STN atlas that will be used as the reference in our proposed
scheme. However, the process of bringing the dead brain and
its corresponding alive MRI into enough spatial correlation
is a very difficult task and still an open question.
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