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Abstract Objective Automated, objective and fast mea-
surement of the image quality of single retinal fundus

photos to allow a stable and reliable medical evaluation.

Methods The proposed technique maps diagnosis-relevant
criteria inspired by diagnosis procedures based on the

advise of an eye expert to quantitative and objective
features related to image quality. Independent from seg-
mentation methods it combines global clustering with

local sharpness and texture features for classification.

Results On a test dataset of 301 retinal fundus images

we evaluated our method on a given gold standard by
human observers and compared it to a state of the art
approach. An area under the ROC curve of 95.3% com-

pared to 87.2% outperformed the state of the art ap-
proach. A significant p-value of 0.019 emphasizes the
statistical difference of both approaches.

Conclusions The combination of local and global im-

age statistics models the defined quality criteria and
automatically produces reliable and objective results in
determining the image quality of retinal fundus photos.
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1 Introduction

1.1 Motivation

Medical images are a very important basis for diagnosis
and patient treatment. In particular in ophthalmology
photos of the eye background are used by medical ex-

perts to diagnose and document diseases like glaucoma
or diabetic retinopathy. In addition the images are com-
monly further evaluated by automatic software tools to

support the diagnosis [1–3].

Sufficient image quality is essential to ensure a re-
liable diagnosis and a valid automated processing. Be-
cause of the operating personnel’s varying level of expe-

rience, different types of cameras or the individual prop-
erties of the acquired eye the quality of images highly
varies. Photos of poor quality should not be further

used for diagnosis. A reacquisition would be necessary.
However, in many cases like in reading centers in Ger-
many and the USA [4], the image acquisition is time

and location independent from its medical assessment.
A reacquisition of the images will be time consuming
and expensive. Thus a sufficient image quality has to

be assured already during the acquisition procedure.

Unfortunately the rating of image quality is sub-

jective and application dependent. It is an individual
decision at which point the image quality becomes too
bad for a stable diagnosis. There is a strong need to ob-

jectify image quality during the acquisition. This would
help to ensure an overall sufficient quality level for the
acquired image data that is essential for a stable and

reliable diagnosis.
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1.2 State of the art

In literature, the main purpose for automated qual-

ity assessment in common images is to compare orig-
inal images to their compressed versions for quality
loss quantification, so called reference approaches. Es-

kicioglu et al. [5] provide an overview of basic quality
metrics for this problem, such as average difference or
normalized cross-correlation. Several works in that field
develop extended approaches [6] e.g. driven by the hu-

man eye’s function of finding structures [7].

In the field of medical imaging those reference ap-

proaches used for common images are not feasible as
comparable reference images are rarely available. De-
spite of the importance of this problem it is still a

widely neglected field of research especially with regard
to ophthalmic fundus imaging. To the authors’ knowl-
edge there are only five relevant publications dealing

with retinal image quality assessment: (i) Segmentation
based approaches detect anatomical structures, while it
is assumed that the segmentation will fail on low quality

images due to the bad recognizability. Fleming et al. [8]
measure the quality by evaluating the vessel tree in the
region around the macula (point of sharpest vision in

the retina). In addition, anatomical criteria related to
the optic nerve head (exit of the optic nerve out of
the retina) and the macula describe an image forma-

tion that is required to achieve good quality images.
Giancardo et al. [9] measure the densities of vessels for
different regions in the image. The vessel densities and

a 5-bin-histogram of each color channel are used as fea-
tures for classification. (ii) Histogram based approaches
use information gained by image statistics to identify

low quality photos. Lalonde et al. [10] evaluate the his-
togram of an input image’s gradient magnitude image
and local histogram information of its gray values. Ref-

erence histograms are calculated out of images show-
ing good quality and compared with the input image’s
histograms for classification. Lee et al. [11] compute a

quality index by convolving the intensity histogram of
the input image with the template intensity histogram
from good retinal images. Image Structure Clustering

(ISC) [12] characterizes the image quality by the dis-
tribution of image intensities itself and the ability to
cluster the image into the contained anatomical struc-

tures. Five clusters are calculated from the input image
using a bank of filters to transform the pixels into the
gauge coordinate system that is defined at each point

by the direction of its gradients.

1.3 Contribution

Most of the state of the art methods focus either on

segmentation methods, that can be error-prone, or on
histogram information, that misses the structural infor-
mation of relevant components. As an exception ISC in-

corporates the promising idea of assessing the structural
recognizability of anatomical components but mainly
uses local gradient information of a non-objective gold

standard. We seize the idea but present a new method
that introduces a combination of global and local struc-
tural characteristics as a non-reference approach and

waives error-prone segmentation. In contrast to the sta-
te of the art it is driven by four criteria inspired by
diagnosis procedures based on the advise of an eye ex-

pert. By judging an image according to these criteria
quality assessment becomes a more objective task and
enables the building of an objective gold standard (fig-

ure 1). The criteria are designed for the application on
optic nerve head centered fundus images of 22.5◦ field
of view. Anatomical components like the fovea are not

visible and will not be considered in the following:

– Structural criteria
1. Optic disk structure

Can we recognize and differentiate the structure

of the optic disk?
2. Vessel structure

Can we recognize and differentiate the fine struc-

ture of the vessels?
– Generic criteria

3. Homogeneous illumination

Is the illumination and brightness approximately
equal in all parts of the image?

4. Bright and high-contrast background

Is the eye’s background bright enough and of
sufficient contrast?

The structural criteria are covered by an unsupervised
clustering and a sharpness metric. Like in ISC the
clustering groups the anatomical structures into clus-

ters. ISC uses a bank of complex filters for a gauge co-
ordinate transformation. Therefore, it mainly focuses
on gradient and thus local information. In contrast, we

gain global information using a more basic operation
by applying k-means-clustering directly on the pixel in-
tensities. We also utilize cluster sizes to express the size

of relevant components. Another advantage of this ba-
sic operation is the possibility to compute inter-cluster-
differences for the description of the recognizability and

dissimilarity of these anatomical structures. Like ISC
we incorporate local gradient information, but we gain
it separately as the sharpness metric measures the clear-

ness of separation between the components.
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Fig. 1 Example for retinal fundus images of excellent (upper row, all criteria fulfilled), average (middle row, two criteria fulfilled) and

insufficient (lower row, no criteria fulfilled) quality. The images of excellent quality show clearly the optic disk (bright circular spot in
the middle where the optic nerve exits the eye, also known as “blind spot”), the vessel tree (exiting into the eye at the optic disk),
a high-contrast background and an overall homogeneous illumination. The rating is based on the majority decision of three human
evaluators using the criteria defined in section 1.3. Excellent and average quality will be considered to be sufficient for further use

and referred as good quality. The average quality images show the problem of judging quality at the class border. Insufficient quality
indicates a reacquisition and will be included in the set of bad quality images in the following.

As a major improvement we introduce theHaralick
texture metrics [13] into the field of retinal quality to
describe the generic criteria. Beside the sharpness of the

image the Haralick metrics evaluate the homogeneity
and the contrast.

Summarizing, the clustering describes the recogniz-

ability, dissimilarity and contrast of relevant structures.
The sharpness metric evaluates the separation between
components. The Haralick features measure common

image sharpness, homogeneity and generic contrast.
Thus we combine global and local information which
is not yet present in this form in the state of the art.

2 Methods

Our algorithm models the criteria defined above to mea-

sure the image quality that is relevant for a reliable

assessment of fundus images. The method consists of
a clustering, a sharpness metric and Haralick texture
features.

We combine all features in one final vector. For all
computations only the green channel was considered as

it shows the best contrast.

2.1 Clustering

As we want to assure sufficient recognizability and dif-
ferentiation of anatomical structures (e.g. optic disk,
vessels) we identify these components by applying a k-

means-clustering of the input image I of size n×m with
k clusters Ci with i ∈ {1, . . . , k}. The gray values gxy
with x ∈ {1, . . . , n} and y ∈ {1, . . . ,m} are grouped in

clusters without further preprocessing.
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(a) Input image (b) Clustering result (proposed method) (c) Clustering result (ISC)

Fig. 2 Clustering examples: Good (first row) and bad (second row) quality images (a) and clustering results for the proposed method

(b) and ISC as state of the art (c) coded as gray values. For good quality images the clustering images show the characteristic anatomical
structures. In the case of bad quality they are not recognizable.

The cluster centers are initialized with mean values
of the k structures (e.g. vessels) in 10 images manu-
ally segmented by one person. The images showed good

quality and were considered by three human evaluators
to fulfill all quality criteria. In each image represen-
tative pixels for each cluster were identified and their

intensities averaged for each cluster over all 10 images.
In good quality images each anatomical structure

has an expected size where significant variations refer

to bad recognizability and thus bad quality. We assess
the structure size by using the normalized cluster sizes
ci as features, where # denotes the cardinal number.

ci =
#{gxy|gxy ∈ Ci}

n ·m
(1)

The clearer we can recognize certain structures and
differentiate between them the higher their inter-clus-

ter-contrast. We use inter-cluster-differences as essen-
tial features to express this structural contrast. They
are generated by computing the difference dij between

the mean value mi of a certain cluster Ci and all other
clusters’ mean values mj .

dij = mi −mj , i ∈ {1, . . . , k}, j ∈ {1, . . . , k}, i > j (2)

Thus the cluster sizes ci and the inter-cluster-dif-
ferences dij evaluate the structural recognizability and

dissimilarity of relevant image components like e.g. the
optic disk. For bad quality images the clustering will
consequently fail resulting in abnormal cluster sizes and

low inter-cluster-differences (figure 2).

2.2 Sharpness

Our clustering (section 2.1) measures the differentiation
of relevant structures globally. It does not cover local
properties at the structures’ borders where a clear and

sharp edge is important for good quality as it will sepa-
rate the components (e.g. optic disk, vessels) from each
other more clearly. Therefore we incorporate a sharp-

ness metric that evaluates the edge strength in the im-
age. High gradients identifying sharp edges we calculate
the gradient magnitude image G of the input image I

by combining the derivative Ix in x-direction and the
derivative Iy in y-direction using the Euclidean norm.

G =
√
I2x + I2y with Ix =

∂I

∂x
, Iy =

∂I

∂y
(3)

The gray values exy in the gradient magnitude image G
are normalized to the range [0; 1] by a minimum max-

imum scaling. We use the normalized number of pixels
identifying strong edges s1 and the average strength of
strong edges s2 to express the image sharpness. Strong

edges have to lie above a threshold α ∈ [0; 1], that was
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empirically set to twice the mean gray value in G.

s1 =
#{exy|exy ≥ α}

n ·m
(4)

s2 =

n∑
i=1

m∑
j=1

vij

#{exy|exy ≥ α}
, vij =

{
0 eij < α

eij eij ≥ α
(5)

α =

2
n∑

i=1

m∑
j=1

eij

n ·m
(6)

Thus both features s1 and s2 indicate how clearly the
structures (e.g. optic disk, vessels) are separated from

each other.

2.3 Haralick

To incorporate generic image quality statistics we com-
pute three Haralick metrics [13] that are well known as
texture metrics. We are using entropy h1 as description

for common image sharpness, energy h2 as description
for image homogeneity and contrast h3. They are based
on so called co-occurrence matrices which contain the

relative frequencies P (i, j, r) counting the neighborhood
of each gray value to each other gray value in direction
r ∈ {0◦, 45◦, 90◦, 135◦}.

P (i, j, 0◦) = #{(a, x) ∈ [1, . . . , n], (b, y) ∈ [1, . . . ,m] |
gab = i, gxy = j, a− x = 0, |b− y| = 1}

(7)

P (i, j, 45◦) = #{(a, x) ∈ [1, . . . , n], (b, y) ∈ [1, . . . ,m] |
gab = i, gxy = j, (a− x = 1, b− y = −1)∨

(a− x = −1, b− y = 1)}
(8)

P (i, j, 90◦) = #{(a, x) ∈ [1, . . . , n], (b, y) ∈ [1, . . . ,m] |
gab = i, gxy = j, |a− x| = 1, b− y = 0}

(9)

P (i, j, 135◦) = #{(a, x) ∈ [1, . . . , n], (b, y) ∈ [1, . . . ,m] |
gab = i, gxy = j, (a− x = 1, b− y = 1)∨

(a− x = −1, b− y = −1)}
(10)

Each matrix entry is normalized by the total number
of neighbored pixel pairs in its certain direction Nr.

p(i, j, r) =
P (i, j, r)

Nr
(11)

Based on the four co-occurrence matrices entropy hr
1,

energy hr
2 and contrast hr

3 are calculated for each direc-
tion r.

hr
1 = −

m·n∑
i=1

m·n∑
j=1

p(i, j, r)log(p(i, j, r)) (12)

hr
2 =

m·n∑
i=1

m·n∑
j=1

p(i, j, r)
2

(13)

hr
3 =

m·n−1∑
l=0

l2{
m·n∑
i=1

m·n∑
j=1

|i−j|=l

p(i, j, r)} (14)

The final Haralick features h1, h2 and h3 are generated

by computing the mean of all directions.

h1 =
1

4

∑
r

hr
1 (15)

h2 =
1

4

∑
r

hr
2 (16)

h3 =
1

4

∑
r

hr
3 (17)

Thus, texture statistics are used to calculate generic
quality features, entropy h1 for common image sharp-
ness, energy h2 for image homogeneity and contrast h3.

2.4 Feature Composition

The k cluster sizes ci, the inter-cluster-differences dij ,
the two sharpness metrics s1, s2 and the Haralick fea-
tures h1, h2 and h3 are combined in one final feature

vector. After evaluating the classification performance,
we chose k = 5 for the clustering detecting two op-
tic disk regions (cup and rim), two background regions

(brighter and darker background) and the vessels. The
gained 20-dimensional feature vector is directly used for
classification.

3 Materials and Results

3.1 Materials

Our evaluation data set consisted of 301 retinal color

fundus photos acquired with a Kowa non-myd camera.
The images are optic disk centered and have a size of
1600× 1212 pixels with a field of view (FOV) of 22.5◦.

The data set contained the 10 images used for the ini-
tialization of the clustering. Three human observers in-
cluding one eye expert evaluated the data set. Each

observer decided on the quality for each image using
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the criteria defined in section 2. An image was consid-

ered good, and thus sufficient for a reliable diagnosis
fulfilling at least two criteria and bad otherwise. The
inter-observer-correlation indicated by Fleiss’ κ results

into κ = 0.58. For each image the label classified by the
majority of the three observers was defined as an over-
all quality gold standard. In this manner the data set

was divided into 236 good and 65 bad fundus photos.

3.1.1 Experimental Setup

We evaluated the proposed method by testing all fea-
ture subsets and their possible
combinations. The result of the combination of all fea-

tures was compared to Image Structure Clustering (ISC).
ISC is like the proposed method a non-segmentation
based approach. It will be also referred as state of the

art in the following.
In our implementation of ISC we applied two modifi-

cations divergent from [12]. (i) For speed improvements

we halved the image size of each input image using sub-
sampling. This seems valid, since in [12] the authors
applied a resampling as well to gain an unique field of

view out of two types of image sizes and fields of view.
(ii) We initialized the mean vectors of each of the five
clusters with the same manually segmented data used

for the initialization of our clustering (section 2.1). For
each pixel of each pre-segmented cluster the filter bank
respond was calculated. The resulting vectors were av-

erage over all 10 images.
In each of our experiments we performed a 10-fold-

cross-validation. Images were chosen randomly for each

of the 10 subsets. Each image appeared exactly once in
the experiment. Five subsets consisted of 6 bad and 24
good images, four subsets of 7 bad and 23 good images

and one subset of 7 bad and 24 good images. Each sub-
set was used for testing exactly once and the remaining
folds for training the classifier.

3.1.2 Classifier Setup

We used a Support Vector Machine (SVM) with a radial
basis function k(u,v) = exp(−γ · |u− v|2) as classifier
in all experiments. The variance γ of the radial basis

kernel and the penalty factor C were calculated using
a grid search strategy in order to find the best param-
eter set for each method. For each parameter exists a

particular value range that is applied in a certain step
width. During a cross-validation process the parameter
combination resulting into the lowest classification er-

ror is chosen for the evaluation. The parameters for ISC
and for our proposed method and its feature subsets
were applied on a libSVM [14] implementation during

the whole evaluation.

3.2 Results

For quantifying the performance of the proposed meth-

od we calculated the area under the ROC curve (AUC),
the p-value related to ISC and the p-value related to
the final feature combination of Haralick, clustering and

sharpness features. For computing the accuracy our
probabilistic SVM used 50.0% as classification thresh-
old. The sensitivity for classifying bad images at a speci-

ficity of 80.0% is given, since the bad images have to be
identified to enable a reacquisition on the fly. The cho-
sen threshold seems to be a sufficient value for detect-

ing good images, since accepted bad images implicate
higher costs. The results were computed for each feature
combination of the proposed method. The performance

of all features in every combination were compared to
ISC as state of the art for non-segmentation based ap-
proaches (table 1).

The Haralick features reach the highest performance

of the isolated features on our data set (90.7% sensitiv-
ity, 89.7% accuracy, 92.7% AUC) which increases by
incorporating the clustering (93.9% sensitivity, 90.4%

accuracy, 94.0% AUC) and the sharpness metric (95.4%
sensitivity, 91.0% accuracy, 94.0% AUC). The high-
est classification performance is achieved by the final

combination of Haralick features, sharpness metric and
clustering (75.4% sensitivity, 91.7% accuracy, 94.8%
AUC). The increase of the AUC of the Haralick fea-

tures according to the growing number of additional
feature types can be visualized by consulting the ROC
curves of all feature subsets (figure 3a). The Haral-

ick features show the highest p-value of 0.368 among
the isolated feature groups compared to the final com-
bination of all feature groups. The p-value increases in

combination with clustering or sharpness features up to
0.368.

Comparing the data to ISC on our data set the final
feature combination of the proposed method reaches a
higher sensitivity than ISC (96.9% vs. 78.5%), a higher

accuracy (91.7% vs. 86.7%) and a higher AUC (95.3%
vs. 87.2%) (figure 3b). The isolated feature groups’ AUC
and the AUC of the combination of the sharpness met-

ric and clustering do not significantly differ from ISC
as their p-values lie above 0.05. The sharpness metric
is an exception due to its worse curve and bad per-

formance. The Haralick features having the strongest
impact on the proposed method show a shrinking p-
value by adding the other feature groups. Adding the

sharpness metric to the Haralick features yields to a
statistically different p-value of 0.037. The significantly
lowest p-value of 0.019 is gained by using all three fea-

ture groups together.
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Table 1 Evaluation results for classifying bad images. All possible feature combinations of the proposed method have been applied
and compared to the state of the art approach Image Structure Clustering (ISC). Sensitivity at a specificity of 80.0%, accuracy at a

classification threshold of 50.0%, area under the ROC curve (AUC) and p-value compared to ISC and compared to the combination of
all features of the proposed method (HCS) are listed. The classification performance of the Haralick features (highest performance of
isolated feature groups) grows with the number of combined features. In the same way shrinks the p-value relative to ISC and grows

relative to the final combination of the proposed method’s features (HCS). The proposed method’s final feature combination (HCS)
outperforms ISC gaining a higher sensitivity, accuracy and AUC.

Features Sensitivity (%)
(Specificity of 80%)

Accuracy (%)
(Threshold of 50%)

AUC (%) p-value
(ISC)

p-value
(HCS)

ISC
(state of the art)

78.5 86.7 87.2 - 0.019

Sharpness 46.2 79.4 60.9 0.000 0.000
Clustering 89.2 86.3 90.7 0.376 0.138
Haralick 90.7 89.7 92.7 0.141 0.368

Clustering+Sharpness 87.7 86.4 89.3 0.597 0.067
Haralick+Clustering 93.9 90.4 94.0 0.058 0.641
Haralick+Sharpness 95.4 91.0 94.8 0.031 0.843

Haralick+Clustering+Sharpness 96.9 91.7 95.3 0.019 -

(a) (b)

Fig. 3 Plots of ROC curves (finding bad images) for comparing the feature subsets of the proposed method to each other (a) and for
comparing the proposed method with the state of the art Image Structure Clustering (ISC) (b). (a): For the isolated feature groups
the Haralick features show the largest area under the ROC curve (AUC) and an increasing AUC in combination with growing types
of information. (b): The proposed method shows a larger AUC compared to ISC indicating a higher classification performance.

We calculated Fleiss’ κ by using the human ob-

servers’ classification results and adding the automated
methods’ results as a fourth observer’s results. The ini-
tial inter-observer-correlation (κ = 0.58) is increased

for assuming the proposed method to be a fourth ob-
server (κ = 0.60) and decreased for assuming ISC to be
a fourth observer (κ = −0.26).

We measured the computation time per image for
each feature group. The average computation time is
0.8 seconds for the sharpness metrics, 2.2 seconds for

the clustering-features and 2.4 seconds for the Haralick
features on an Intel Core 2 Duo Quad Q9550 system
with 2.4 GHz and 3 GB RAM. No parallel processing

was applied which results in a total computation time

of 5.4 seconds. We compared this runtime to our im-

plementation of the ISC-Algorithm as described in sec-
tion 3.1.1 which takes 12.5 seconds in average running
on the same machine without parallel processing. For

both methods we evaluated only the computation time
for generating the features. The classification step was
omitted, since it has a comparable runtime for both ap-

proaches processing the same feature vector dimension.

4 Discussion and Conclusions

The proposed criteria inspired by diagnosis procedures
based on the advise of an eye expert help to describe im-

age quality objectively in the application of ophthalmol-
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ogy. The criteria are based on the recognizability and

dissimilarity of certain structures in the eye background
as well as on illumination homogeneity and sharpness.
Our method models these criteria by the use of clus-

tering, sharpness and Haralick features. The clustering
detects certain components and measures how they can
be recognized and differentiated. The sharpness met-

ric calculates the edges’ strength and evaluates how
clearly the components are separated from each other.
The Haralick features entropy, energy, and contrast are

indicators for the generic image quality criteria, sharp-
ness, homogeneity and contrast. The Haralick features
have the strongest impact on the classification results

with an AUC of 92.7%. Their performance is improved
by combining all three feature groups. This is empha-
sized by the p-values related to the final combination of

all features of proposed method. The Haralick features
reach the highest p-value of 0.368 among the isolated
feature groups. The p-value is increased by incorporat-
ing the clustering or the sharpness features. It shows

higher values than the p-value of the combination of
clustering and sharpness without Haralick features. All
feature groups except sharpness and all combinations

are not statistically different from the final combination
of all features of the proposed method. With a resulting
AUC of 95.3% compared to 87.2% the proposed method

outperforms the state of the art ISC and shows a signif-
icant statistical difference (p-value = 0.019). Since ISC
focuses on local gradient information for the structural

clustering, it is not able to implement our required cri-
teria on our data set. We have to state that in [12] ISC
was designed and evaluated on a different gold standard

using different quality criteria and a data set consisting
of a wider FOV. The parameter set for the classifier
found by our grid search strategy is comparable to the

parameters in [12] (same penalty factor). Its clustering
shows more detailed results especially in marking ves-
sels (figure 2).

We presented a method that automatically quantifies
the quality of retinal fundus images and produces re-

liable and stable results. The subjective understanding
of quality could be defined objectively by introducing
quality criteria. Nevertheless it still remains a hard task

to classify an image at the class border, even for hu-
man evaluators and experts. Our method reaches an
accuracy of 91.7% (96.9% sensitivity at a specificity of

80.0% for finding bad images) and an AUC of 95.3% by
modeling our quality criteria. It outpeforms the state
of the art approach ISC (50.8% sensitivity, 96.6% speci-

ficity, 86.7% accuracy, 87.2% AUC) on our data set. The
evaluation is based on a manually pre-classified evalua-
tion set of 301 images using cross-validation. We could

show that the combination of local and global image

statistics produces reliable and robust results in deter-

mining the image quality of retinal fundus photos and
increases the sensitivity. This is important to identify
bad images and to cause a reacquisition on the fly. Since

both methods are designed for assessing the overall im-
age quality, small local distortions like flash artifacts
not affecting the quality significantly will not always be

covered. The average feature computation time of 5.4
seconds per image for non-parallel processing is faster
than comparable approaches. Our automated classifi-

cation reaches the same correlation level as among the
human observers. Thus, the proposed method is closer
to a human decision than other approaches. We assume

that our features model the human perception by im-
plementing our criteria. The method evaluates the rec-
ognizability for diagnosis relevant structures like it is
perceived by experts. It also judges generic image qual-

ity with similar criteria used by the human perception.
This seems not to be the case for ISC.

As a conclusion we can state that we developed a
method to automatically assess retinal fundus image

quality. By introducing relevant criteria the objectiv-
ity of individual human perception for quality could be
improved. But in particular at the class border the dis-

crimination of good and bad images remains a crucial
task. Our method underlies the same restrictions as it is
limited by the the human graded gold standard. Never-

theless, we can substitute an human quality evaluation
by the fast objective measurement presented here to en-
sure a sufficient image quality level in broad screening

applications.
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1. M. D. Abràmoff, M. Niemeijer, M. S. Suttorp-Schulten, M. A.
Viergever, Stephen R. Russell and Bram van Ginneken, Evalua-
tion of a system for automatic detection of diabetic retinopathy

from color fundus photographs in a large population of patients
with diabetes, Diabetes Care, 31 (2), 193–198 (2008)

2. R. Bock, J. Meier, L. G. Nyúl, J. Hornegger and G. Michel-
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9. L. Giancardo, M. D. Abràmoff, E. Chaum, T. P. Karnowski, F.

Meriaudeau and K. W. Tobin Jr, Elliptical local vessel density:
a fast and robust quality metric for retinal images, Engineering
in Medicine and Biology Society, 2008. EMBS 2008. 30th An-

nual International Conference of the IEEE, 3534–3537 (2008)
10. M. Lalonde, L. Gagnony and M.-C. Boucher, Automatic vi-
sual quality assessment in optical fundus images, Proceedings
of Vision Interface (VI 2001), 259–264 (2001)

11. S. C. Lee and Y. Wang, Automatic retinal image quality
assessment and enhancement, Proceedings of SPIE, 3661, 1581–
1590 (1999)
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