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Abstract
Purpose—Surgical simulations require haptic interactions and collaboration in a shared virtual
environment. A software framework for decoupled surgical simulation based on a multi-controller
and multi-viewer model-view-controller (MVC) pattern was developed and tested.

Methods—A software framework for multimodal virtual environments was designed, supporting
both visual interactions and haptic feedback while providing developers with an integration tool
for heterogeneous architectures maintaining high performance, simplicity of implementation, and
straightforward extension. The framework uses decoupled simulation with updates of over 1,000
Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without
performance penalty.

Results—The simulation software framework was implemented and was used to support the
design of virtual reality-based surgery simulation systems. The framework supports the high level
of complexity of such applications and the fast response required for interaction with haptics. The
efficacy of the framework was tested by implementation of a minimally invasive surgery
simulator.

Conclusion—A decoupled simulation approach can be implemented as a framework to handle
simultaneous processes of the system at the various frame rates each process requires. The
framework was successfully used to develop collaborative virtual environments (VEs) involving
geographically distributed users connected through a network, with the results comparable to VEs
for local users.
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Introduction
Over the years, virtual environments (VE) have become increasingly demanding in terms of
realism, complexity and interactivity. For example, a typical VE for surgery now involves
much more than just tool–tissue interaction. Simulations of multiple organs, medical
devices, sutures, coupled fluid flows due to bleeding and modeling of physiological
consequences of surgical procedures are now becoming common [16]. To achieve a certain
degree of realism in such complex surgical interactions, the simulated virtual environments
need to support heterogeneous scenes composed of different states of matter (solids, liquids
and gases); complex geometry and material properties of objects within the scene; dynamic
and real-time interaction between virtual objects and tools physically manipulated by the
user; and multimodal (visual and haptic) rendering of the results to the user. It is clear that it
is not possible to satisfy all the requirements using a single modeling technique. It is
therefore necessary to use heterogeneous techniques, each optimized for one or more of the
tasks.

Shared virtual environments [6], which allow remotely located users to interact within the
VE, bring an additional layer of complexity. For example, a Networked Haptic Surgical
Environment (NHSE) allows multiple users to individually or simultaneously train on
various surgical procedures [12,32]. See an example in (Fig. 15). Such an NHSE consists of
one or more massively parallel high-performance computing platforms simulating highly
accurate anatomical models in scenarios involving complex tool–tissue interactions and
deformations. The clients are connected to the server via Internet link using a high-end PC
or workstation. This allows clients located at disparate geographical locations to run models
of high computational complexity on commodity hardware. In addition, oftentimes,
qualified experts may not be available at the same geographical locations as the trainee, and
the NHSE provides the perfect platform for collaborative training/telementoring. Moreover,
NHSE could be used as a platform for training surgeons for tele-surgery applications [9,33]
and [34].

Hence, the development of a systematic framework that allows the separation of simulation,
visualization and interaction processes is absolutely essential. However, first it is important
to differentiate between software frameworks and software libraries. Within a framework—
unlike in a library—the overall flow of control of the program is dictated by the framework
and not by the caller [25]. Hence, software frameworks contain a considerable amount of
management and utility code in order to support the development of user applications.
According to Pree [24], software frameworks are a combination of frozen spots and hot
spots. Frozen spots define the overall architecture of a software system, i.e., its basic
components and their relationships. These remain unchanged (frozen) at any instance of the
application framework. Hot spots, in turn, represent the parts where the programmers who
use the framework add their own code to include their own project-specific functionality.
Generally, frameworks focus on specific problem domains including artistic drawing [31],
visualization [28], music composition, computer-aided design, compilers for different
programming languages and target machines [1], financial modeling applications [4],
decision support systems [9], media playback and authoring, web applications, middleware,
etc.
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While a variety of software frameworks are currently available for multimodal VEs, most
fail in providing real-time physics-based interactions with scenarios composed of complex
realistic models while, at the same time, allowing haptic interactions. Most frameworks
focus on separating the graphical user interface from the underlying software layers. XVR
[26] or VHD++ [23], for example, support haptics in VR environments where the user can
interact with rigid objects using constraint effects. However, when haptic interaction is
desirable in order to manipulate complex soft deformable bodies, as in simulated surgery,
there is a bottleneck since the computational power is being consumed by costly numerical
processing related to physics-based models and interactions.

Classical software design patterns and models are implemented in state-of-the-art
frameworks. Design patterns are meta-structures for software development which define
templates to build solutions for sets of problems with common characteristics. They are
called “classical” because they are stable standards published in software engineering books
and applied by most programmers. Frameworks combining any number of design patterns
are now available as application templates. Although such frameworks do achieve the goals
of providing higher productivity and shorter time-to-market for the development of the
intended applications, they are hardly perfect and there may be significant problems in
designing, learning and using these frameworks. The problems in design are related to
fitting. As the frameworks are as general as possible to fit the greatest number of possible
applications, they end up not fitting tightly to any application. In practice, this means that
the designer has to end up by modifying their ideas to fit the framework which may lead to
an inadequate solution. On the other hand, as a framework is as specialized as possible to fit
a specific application, it runs the risk of being the application itself, leaving not much of a
room for the programmer to change. Problems in learning a framework arise when the
framework changes the development paradigm substantially. Of course, anything new will
take some time to be apprehended, but the learning curve could be much shorter if a number
of known landmarks and a priori were present. In practice, if developers spend more time
learning the framework than the time they save by using the framework, the framework will
probably not be used.

In addition, in the constantly changing scenario where different interaction techniques
devices and applications become obsolete in quick succession, such classical solutions are
not sufficient. Even in the recent past, this problem was barely noticeable due to strong
hardware limitations. However, the appearance of multiprocessor GPUs and multiple core
CPUs have ushered in an era of unprecedented computational power for commodity desktop
and laptops and these limitations can no longer be neglected.

An example of a currently developed open source framework is SOFA, which stands for
‘Simulation Open Framework Architecture’. This has an emphasis on medical simulation
[2]. It currently integrates, in the same environment, a variety of different algorithms:
springs, co-rotational FEM, free form deformation grids, implicit and explicit solvers, and
several collision detection methods. SOFA has shown plausible results with non-realistic
deformable models [27] and has a recent implementation to specifically exploit parallelism
in multicore hardware architectures [13]. Limitations of SOFA include the lack of support
for haptic feedback. Another limitation is the difficulty to allow topological changes in the
model. This is a consequence of the multi-model representation used in SOFA. Although it
is presented as an advantage, it makes the task of maintaining coherence among the different
models complex and time consuming. Other frameworks for medical simulation usually
propose severe modeling simplifications which go as far as limiting the interactions to point-
based simulation [35].
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Real-time physics engines, originally developed for game development, offer another
alternative. Some of these engines are available commercially, others have closed source or
are under limited license such as Havok, PhysX and Newton Game Dynamics. Some other
engines are open source and available for free such as ODE, Open tissue, Dynamechs, True
Axis, Tokamak, Bullet, CMS-Labs Vortex, JIGLIB, and BOX2D. For more information
about their simulation capabilities, we encourage the reader to look into the work of [29] and
[5]. They compared the available physics engines and described the features of each engine.
One important conclusion is that only a few of them have the capability to simulate complex
VEs such as surgical scenarios. This can be due to the lack of a framework featuring a well-
balanced mechanism for exploration of modern hardware resources. Marks, Windsor, and
Wünsche [22] investigated some game engines and looked into the adaptability of these
engines to surgical simulation. They chose three game engines presenting functionalities that
allow for the development of surgical simulations. Id Tech4, Unreal Engine, and Source
Engine were chosen for further evaluation. These engines were evaluated in terms of editing,
content and gameplay. More specifically for the surgical case, their assessment focused on
the maintainability of the surgical task. They analyzed whether the engine supports change
in surgical procedures, creation of surgical scenarios, simplified incorporation of other
custom models, multiple users in simultaneous interactions, and, finally, the quality of
physics-based interaction. The conclusion is that game engines actually provide a great set
of features that help the development of simulated training applications. Such features
include graphics capabilities, audio and networking, and also a good use of the underlying
parallel hardware. The major drawback when using current game engines for surgical
simulation is that modeling highly mathematical physics models is not possible yet.
Simplified physics-based models can be adapted, but they do not provide the rich details
necessary for realistic and effective surgery simulation [3]. Any more complex physics
models in game engines will have to compete for CPU and GPU time with other
components of the engine such as graphics and management. Hence, current game engines
do not provide the reliability required for real-time medical simulation.

In summary, while several frameworks exist, none is capable of supporting the level of
complexity that is necessary to develop complex, high fidelity applications such as surgical
simulations that allow haptic interactions as well as collaborative features necessary for
shared virtual environments. In this paper, we discuss the development of a powerful,
unified framework based on the well-known model-view-controller (MVC) pattern [10] for
multimodal VEs that supports physics-based interactions including force feedback and
allows networking. The unique advantage of this framework over existing ones is a schema
which combines the well-known MVC pattern with support for parallel hardware and
multimodal interaction with force feedback. The development of this framework will be
presented in the context of a case study—physics-based surgery simulation with haptics.
While surgery simulation is, of course, not the only application, it provides some of the
toughest challenges as its purpose is to train surgeons in the skills necessary in their
profession and improve operating room outcomes [4].

In the section “MVC pattern for VE”, we discuss the MVC pattern and how this might be
used to develop an efficient framework for multimodal VEs with haptic feedback. In section
“Some applications”, we present case studies applying this framework to both local and
remote surgery simulation. In “Concluding remarks”, we discuss some capabilities of the
present framework and our plans for the future.
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MVC pattern for VE
The model-view-controller (MVC) pattern

Our framework is based on the model-view-controller (MVC) pattern [10]. MVC is a design
and architectural pattern used in software engineering. It aims at isolating data, business
logic and how information is displayed. As a result, changes in the visual appearance of the
application are independent of the business rules and vice versa. See Fig. 1 for a schematic
of the MVC. The Model represents the application data; the View corresponds to elements
of the user interface such as text, widgets, 3D rendering areas and so on; and the Controller
manages the data manipulation and modification. The Controller reads data from the Model,
changes them, and writes them back to the Model so that they are available to be viewed, or
modified by other Controllers. Many Controllers and/or viewers are allowed simultaneously,
while all data is seen as a unique module. In our framework, the Model holds geometric and
material information in the form of a scene graph, Viewers display Model information on
graphics windows and user interface elements as key-pressing or mouse clicking, and
Controllers modify the Model—e.g., the collision detection Controller inspects the geometry
and flags the penetrating triangles, the physics Controller applies physical rules to modify
the forces, accelerations, velocities and positions in the Model, and so on.

In this paradigm, Viewers and Controllers have a stable application program interface with
the Model. This allows a developer to replace a Controller or a Viewer by another as long as
they respect the interface. Essentially, as a Controller reads information from the model and
writes modified information to it, any custom or third-party software can be integrated in the
framework as a Controller. This includes open source or commercial libraries, engines, plug-
ins and toolkits, as well as in-house procedures. If new interaction devices are required for
new applications, they can be also integrated into the framework as a new Controller.
Analogously, a viewer just reads data from the Model and displays it. If new rendering
methods or new display devices are required, they can be implemented as a new viewer.

Design and implementation
Decoupled simulations have been used to manage 20-Hz display frequency with
modification of the viewpoint while the simulation itself was performed at a lower rate [30].
Our framework is designed in such a way that multiple execution threads run in parallel and
concurrently at different rates and in separate cores on the latest CPUs allowing two-ways
interaction, not only visualization. Our decoupled strategy permits, for example, transparent
haptic computation at over 1000 Hz in a Controller while a custom physics-based simulation
engine runs at lower frequencies, e.g., below 400 Hz, in another. At the same time, graphics
rendering is achieved at 30 Hz. Figure 1 presents a schematic of our framework. In the
following sections, we discuss the various modules.

The model module—The Model module, as in the MVC pattern, is a data structure which
comprises a set of classes necessary to describe the VE geometry, status, and physical
properties (Fig. 2). As stated in the previous section, the Model does not define behavior
directly.

Model in our framework defines the primitives required by OpenGL for rendering and the
physics attributes of materials necessary for simulation. It also includes visual attributes
such as textures, and many intermediary structures that can be used for a number of
Controllers such as boundary volume trees and topological structures. In our case study, a
scene is composed of organs and surgical instruments which are defined by triangle meshes.
Mechanical properties defining the stiffness of a deformable mesh and the location of a rigid
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mesh are both part of the Model, but the ability to deform or displace these elements is
defined in a Controller called the Simulator (see section “The simulator controller” below).

To extend the Model, new classes can be created specializing existing classes. One example
is to extend the functionality of the class Mesh with MeshFEM (for a finite elements method
implementation) or MeshMSD (for a mass-spring damper implementation).

The view module—Our View module uses OpenGL and GLSL to render a frame buffer
with full multi-textured color operations per vertex and per pixel (Fig. 3). It can combine
information from up to four textures loaded in the Model and light information to provide
final color on the screen. The textures are currently used for color maps, normal maps and
edit maps. For instance, in surgical simulation environments, color maps may be generated
from photographs of real organs, while normal maps are used to provide bump and relief
maps, and edit maps to represent surgical alterations on the tissues such as burning. The
textures are combined, blended, and rasterized in the fragment shader, in such a way that the
realism algorithms are executed in the GPU. This produces outstanding visual realism
without undue demand for CPU resources.

Our View module also allows us to render the scene from two or more simultaneous points
of view, enabling stereo visualization. As the modern GPUs allow for a large frame buffer,
we render all points of view on the same frame buffer and allow the operating system or the
graphics card driver to control which part of the viewport is directed to which display
hardware. To demonstrate this capability, we have used a Planar Stereo display with two
polarized LCD monitors and polarized glasses (see Fig. 9) for stereo visualization.

For non-conventional displays, like some types of head mounted displays or tiled displays, a
similar strategy may be used. Of course, as newer display systems become available,
additional viewer modules would be necessary.

The haptics controller—The Haptics Controller enables the communication of the
Model with the force-feedback device (Fig. 4). This Controller is not responsible for
calculating the forces itself. The interaction forces are calculated by the Simulator and
Collision Detection Controllers and stored in the Model. The haptics Controller fetches the
current state of the haptic device which includes positions and orientations of the end
effecter and device buttons to the Model. It also sends the computed force from the Model to
the device. The haptics Controller is a generic device controller but customizable to
commercially available haptic devices. Device-specific implementation is achieved by
integrating corresponding device API functions to the haptics Controller functions.
Hardware level communication to the devices is enabled by the device specific drivers
supplied by the manufacturer. Currently, the haptics Controller supports Sensable
PHANToM devices through OpenHapitcs API, and NOVINT Falcon through Novint API.
The haptics Controller API has higher level functions that can transform the various device
positions and orientations from the device coordinates to the simulation world coordinates,
before updating the Model with the new information. Such conversions are often necessary
to register 3D spaces and to apply scaling between worlds (virtual and real worlds, for
example).

The asynchronous design of the haptics Controller makes it possible to run this Controller at
a frequency of more than 10 kHz, which is much higher than the necessary to maintain
smooth haptic interactions.

The collision detection controller—Collision detection is often the bottleneck in an
interactive VE simulation. Hence, the collision detection code must run with high priority
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and maximum resources. The collision detection code must also be highly optimized.
Various collision detection algorithms are possible, each with its own set of merits and
limitation [17]. As our framework is intended to be used in interactive multimodal VE’s,
providing access to different collision detection methods will greatly increase its flexibility.
We have included in our framework a number of classical collision detection algorithms
such as OBB [11], z-buffer, dynamic point [19], PQP [15], and the collision module
available as part of the PhysX library.

It is expected that the virtual environment will be composed of heterogeneous objects.
Hence, it might be necessary to apply multiple collision detection algorithms in the same
scenario. For example, in surgical simulation, a line to mesh collision may be necessary for
tool to organ collision and OBB-based collision for detecting self collision of the deforming
organs. The MVC architecture allows such multiple collision detection algorithms to run
simultaneously as each collision method is a separate Controller which is applicable to two
or more objects in the scene, hence more than one collision detection algorithm may be
implemented in the same Controller.

Each Controller (Fig. 5) is built as a separate thread object that can communicate directly
with the Model. It also contains method-specific data structures to handle collisions. The
Controller reads the updated information from the Model, checks for collision, and updates
the data structure with collision information. In this data structure (Model), individual
collision objects are instantiated. Collision objects are stored in a list of collisions which
starts as ‘void’ and is filled with collision elements as collisions are detected. Each collision
object in the list, in turn, points to the primitives that are colliding (triangles, tetrahedrons,
lines, boxes, spheres and so on, depending on the collision detection method) and other
necessary information for collision response, such as distance of penetration, direction of
contact, penalty forces, and velocity constraints.

The Viewer and other Controllers can access this collision list directly from the Model to
perform necessary actions. For example, a physics Controller can apply deformation to soft
bodies that have just collided or, in the case of the Viewer, the colliding triangles may be
shaded in red for display.

The simulator controller—This Controller applies physical rules to elements in the
Model to modify their position, velocity, acceleration, and other physical attributes (Fig. 6).
A multimodal virtual environment must also support multiple physical interactions, e.g., it
should be possible to simulate rigid bodies, deformable soft objects, fluid flows, smoke
generation, electrothermal and thermo-mechanical interactions. Each of these physical
processes may be simulated in multiple ways. For instance, soft bodies may be simulated
using mass-springs, finite elements, point associated finite fields [7] or boundary elements,
whereas particle systems or smoothed particle hydrodynamics methods may be used for the
simulation of fluid flows.

In our framework, the Simulator implements various physical interactions using some of
these techniques. The Simulator communicates with the Model through which inputs—such
as geometry, positions, velocities, accelerations and torques, collision constraints and
material properties—are passed to the Controller. These attributes are then updated by the
Simulator using implicit or explicit integration according to each case. It is known that some
modeling strategies provide faster convergence with stiffer models (e.g., FEM) while others
converge faster with softer models (e.g., mass-spring). For this reason, we used a wide range
of empiric values for the stiffness of both the models and the force feedback. Although no
formal evaluation has been performed to date to quantitatively assess user perception of the
model behavior upon interaction, we worked this aspect qualitatively. Our prototyping
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methodology included frequent interviews with experienced surgeons who tested the system
and provided feedback which allowed us to tune model and response stiffness.

In the scenario of virtual surgery, some objects in the simulation scene are kinematically
controlled by the interaction device (surgical instruments), some are defined by rigid-bodies
dynamics (needles) and yet others are controlled by soft-bodies dynamics (organs). In
simulating organs, some can be implemented as mass-spring systems while others as finite
elements or other equivalent models. While each physics-based method in the Simulator
Controller is responsible only for its own class of objects, the Collision Detection Controller
provides transparent interaction between them. In the framework, several types of simulation
methods have been implemented including mass-spring and FEM. Moreover, a physics
engine (PhysX) has also been included in the simulator as a separate Controller [19].

The input controller—Various input devices enable interaction between the user/s and
the VE. These devices can be as simple as keyboards and mice to more complex devices
such as joysticks, foot pedals, and head tracking devices. The Input Controller (Fig. 7)
handles all specialized inputs and updates the Model with the information. The haptic
devices, however, are specialized input/output devices due to their high update requirements
(1000 Hz) and are implemented as a separate Controller as described in section “The haptics
controller”.

In our framework, the Input Controller has two different types of input processing. The Qt
peripheral management routines which run as Qt event threads are used to process keyboard
and mouse inputs. The same routine can then be used to read the status of a foot pedal as it
emulates the mouse buttons. The other type of input processing is for information from
sensors connected to the VE interface. For example, these can be the information from a
motion tracking device or in the case of surgical simulation, output from the encoders
detecting tool movements. Currently, this is supported by the ADU 100 USB Interface from
Ontrak Control Systems Inc. The support for other input devices can be implemented using a
straightforward extension of the existing module.

The network controller—Our framework has also built-in network capabilities for
collaborative surgical and telementoring simulations. It could also be used for simulating
tele-surgery. It supports peer-to-peer, client–server, and hybrid network architectures. The
Network Controller (Fig. 8) in the framework handles all UDP and TCP/IP packet
communications. It is fully capable of handling lost and out-of-sequence packets.

The Network Controller enables remote users to collaborate and share the resources of the
framework. The Controller runs asynchronously in a separate thread. It consists of a socket
layer with an open UDP and TCP/IP port for communication. The UDP socket is used for
haptic data communication since it requires a very high update (usually 1000 Hz for haptic
applications). The TCP/IP socket is used for client–server communications.

Whenever there is a packet ready to read in the socket, the appropriate TCP or UDP packet
handler is called by the packet callback function. Each UDP packet carries a unique
sequence number and a checksum so that the out-of-sequence and corrupt packets are
detected and dropped. The packet handler then updates the packet data structure with the
new network data obtained from other users. This data are then queried by other Controllers
in the framework for interaction. When there is no new packet information, the previous
packet data are stored until this information can be updated; essentially this represents a
zeroth order hold. In the context of the simulated surgery, typical information that is passed
between the networked users include the quaternion for the position and orientation of the
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surgical instruments, grabbed or contacted node on the model, time stamp, packet sequence
number, checksum, and other relevant information for particular scenarios.

Some applications
In this section, we demonstrate the capabilities of framework through some application
scenarios. The first two applications are surgery simulation scenarios. The Virtual Basic
Laparoscopy Skill Trainer (VBLaST™) is a virtual box for trainee surgeons to practice and
evaluate their skills [20]. The Laparoscopic Adjustable Gastric Banding (LAGB) procedure
is a minimally invasive surgery where a ring is placed around the stomach to treat cases of
severe obesity. The third application is a Networked Haptic Surgical Environment, where
the effect of network latency on deformable object has been investigated. We present these
applications to show that many problems can be solved in the middleware layer of the
framework. Particularly, we demonstrate the capability of the framework to simulate
different types of dynamic objects such as rigid bodies, cloth, soft bodies, and various types
of collision interactions.

A virtual basic laparoscopic skill trainer (VBLaST™)
Surgical skill training is a long and tedious process of acquiring fine motor skills. The
Fundamentals of Laparoscopic Surgery (FLS) training tool box [14] consists of a box
covered by an opaque membrane through which trocars are placed on either side of a
laparoscope connected to a video monitor. Inside the box, five pre-manufactured tasks
including peg transfer, pattern cutting, ligating a loop, and suturing can be performed.

To overcome potential drawbacks of such mechanical toolbox systems, we have developed a
Virtual Basic Laparoscopic Skill Trainer (VBLaST™) whereby tasks, such as the ones
available in the FLS system, may be performed on the computer.

A stereoscopic visiohaptic workstation has been developed including two Phantom Omni™
force-feedback devices and a 3D display interface from Planar Systems, Inc (see Fig. 9).
During the simulation, the participants use the Phantom Omnis to control the virtual surgical
instruments in order to interact with the virtual training materials. On the virtual side, the
instruments represented in the system are tissue graspers, suture graspers, scissors, and the
ligating loop.

Consistent with the FLS system, we have developed the following tasks within VBLaST™

(see Fig. 10):

Peg transfer—Each of the six virtual rings may be lifted from a virtual pegboard with the
left hand, transferred to the right hand, and placed on another pegboard.

Pattern cutting—A 4-cm-diameter pre-marked circular pattern may be cut out of a 10 cm
× 10 cm piece of virtual gauze suspended between alligator clips.

Ligating loop—A 3-dimensional tubular structure is presented in space. Using bimanual
manipulation, a virtual loop is securely fashioned about a pre-drawn line on the tubular
structure.

Suturing—A virtual suture is tied using either an intracorporeal or extra-corporeal knot,
using 3-dimensional bimanual manipulation with a curved needle.

Collision detection and dynamic response computation in a virtual environment are
necessary so that one can pick, move, or even cut objects at the same time that effort
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responses are generated. An efficient dynamic point algorithm is used for line-based
collision detection and response. Readers can refer to [19] for more details.

Various physics-based algorithms are used for interaction with the various virtual objects.
For peg transfer, a rigid body simulation was used as the Controller. However, for both
pattern cutting and ligation loop, a mass-spring simulator was used. For suturing, a FEM
simulator was used for deformation calculation while the suture thread and the needle were
simulated using 1D mass-spring and rigid body dynamics, respectively.

The peg-transfer task relies on implementing correct rigid body dynamics. The rigid body
Controller in the simulator uses an Euler explicit integrator to compute linear and angular
positions from linear momentums and angular momentums acting on the rings during the
interaction with the tools. As only rigid dynamic and static bodies interact in this simulation,
for collision detection, the Proximity Query Package or PQP [15] has been used. An
impulse-based collision response is applied to the rings to prevent interpenetration and
ensure physically correct interactions with the environment. In addition, bimanual
manipulation of the rings has been implemented in order to give correct force feedback to
both the hands as the rings are transferred from one hand to the other.

For pattern cutting, ligation loop and suture thread a mass-spring simulator has been used to
compute and display deformations. The mass-spring simulator can be a 3D surface (tube for
the ligation loop), 2D surface (cloth for pattern cutting), or a 1D model (thread for suture). It
also has damping elements for added stability. An Euler integrator has been used to compute
new positions of the mass nodes. Penalty forces calculated based on collisions have been
used to handle contact with deformable objects.

In the mass-spring simulator, picking of the object has been enabled by checking the
condition when the two jaws of the tool were closing and finding the surface triangles that
are in contact with both the upper and lower jaws of the tool. The contact triangle positions
are then explicitly set to move to follow the tool. The rest of the nodes react and move
accordingly due to the forces exerted on them from the springs connecting each of the mass
nodes of the triangles. In pattern cutting, this condition was used to remove the springs
around the triangle to simulate opening of the gauze while cutting.

For the suture thread simulation using 1D mass-springs, an impulse-based collision response
is computed for both tool-to-thread and thread-to-thread self collisions. This enables the
thread to be tied in a knot using intracorporeal suturing techniques.

For the suturing task, a 3D linear quasi-static FEM simulator has been used for the
deformation of the suturing base object. During simulation, the user is allowed to interact
with any of the nodes belonging to the surface of the model. The changing position of the
interaction tip is read from the device to estimate the displacement boundary condition of
the interacted node. In quasi-static analysis, the displacement boundary conditions are
applied continuously at each cycle to mimic continuous interaction.

Tetrahedral elements are used to discretize the deforming object. A straightforward
implementation of the finite element procedure would not result in real-time performance.
Hence, a pre-computation-based algorithm has been implemented. In this technique, the
inverse of the stiffness matrix of the deforming model is pre-computed after application of
the fixed boundary conditions. At run-time, the pre-computed inverse is used to compute the
deformation field when the user interacts with the model.

To simulate the action of suturing of this finite element model, a constraint is applied at the
interaction point of the needle and the model and the corresponding displacement field is
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computed using the FEM simulator. A similar procedure has been applied to model for the
suture thread interaction as it is constrained to follow the needle through the insertion and
exit points in the body.

A Laparoscopic Adjustable Gastric Banding (LAGB) simulator
The Laparoscopic Adjustable Gastric Banding is a complex minimally invasive surgical
procedure indicated for patients with morbid obesity. It consists of placing a flexible band
around the stomach to constrict the food passage and produce an early sensation of satiety.
The motivation for this specific surgical procedure is the high cost in training surgeons and
the increasing demand for it.

We simulate the pars flaccida technique for the lap-band placement, which involves
basically three phases: port placement, dissection, and band placement. As the port
placement phase is extracorporeal, we focus our modeling on the remaining two phases.

Dissection—In this phase, a passage is created behind the upper part of the stomach to
pass the band. To perform this step, the liver is retracted using a Nathanson hook liver
retractor, and the gastrohepatic ligament (pars flaccida) is divided and then the gastric
fundus and omental fat are retracted. The angle of His is subsequently mobilized to create a
small window in the phrenoesophageal ligament. The right crus is identified and the
peritoneum overlying its lower portion near junction of the left crus is divided.

We modeled a hook cautery (Fig. 11a) as a rigid body and a blunt dissector or grasper (Fig.
11b) as rigid articulated body. The positions and orientations of the surgical instruments
(hook cautery, blunt dissector or grasper) are controlled using a Phantom Omni as 3D input
device with 6 DOF for each instrument. When the virtual instruments contact a virtual
organ, the haptic interface device produces force feedback to the user’s hand. The
electrosurgical procedure is simulated by modeling the temperature increase caused by
applying the cautery to the tissue, removing triangles when vaporization temperature is
reached. Figure 12 shows the result of cutting different types of tissues using the cautery
tool. The dissector can grab parts of the organs to push and pull soft regions in order to
remove obstacles from the field of view allowing visual exploration of hidden areas such as
the right crus and the angle of His. The virtual laparoscope is controlled with the mouse.

To accomplish these tasks, we extensively combined custom methods and PhysX
capabilities in our framework. The organ deformation is calculated using PhysX, while the
graphics rendering is accomplished using our custom shaders. The PhysX Controller uses
the softbody simulation object for calculating deformations. Internally, PhysX uses
volumetric tetrahedral elements and position-based dynamics to update the soft bodies. As
soft body-to-soft body collision detection is not efficient in PhysX, the method described by
[21] is used for organ-to-organ collision detection. However, PhysX rigid body-to-soft body
collision detection is very efficient and is adapted to detect contacts between instruments
and organs.

Band placement—In the next phase, a grasper is inserted from the right passing through
the opening behind the upper part of the stomach until it can be seen by the angle of His at
the left. The band is then inserted into the abdomen and pulled around posteriorly, from left
to right, with the passing device or a grasper. The band is then secured and locked in
position. The major steps in this modeling are explained below, with Fig. 13 illustrating
these steps.

The instruments used in the previous phase are also used in this phase. Two graspers are
used to manipulate the band. The band is modeled as two meshes which are coupled and can
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be manipulated (picked and dragged) with the instruments. Consequently, collision
detections between the band and the organs (soft bodies) require a custom method [21] but
collisions with the instruments are resolved using PhysX. As for picking, when the grasper
closes, all colliding triangles are flagged as picked by that instrument in the Model. Then, as
the closed grasper moves around, all picked triangles are kinematically manipulated by the
PhysX Controller, i.e., their positions are updated following the displacements of the handle
at the beginning of every simulation frame. Finally, the positions of all nodes adjacent to
flagged triangles are recalculated by the physics Controller to smoothly follow the
displacements. Flags are reset when the grasper opens to release the picked triangles.

For a thorough view of the LAGB application within the framework and of how it benefits
from the framework topology, please refer to Fig. 14.

A networked haptic surgical environment
Collaborative training requires interaction over a network. Due to network latency,
performing even a simple surgical task gets complicated. In order to gain vital expertise in
performing the surgical tasks over the internet under various communication latencies, a
networked simulation environment was built using our framework. The Network Controller
of the framework was used to enable network connections that communicated to and from
the virtual salve.

The tele-surgery simulation setup shown in Fig. 16 consists of two workstations located
inside our laboratory in Troy, NY. WS1 was running the framework which consists of a 6
DOF virtual slave that can interact with the virtual deformable models. A PHANToM Omni
haptic device connected to WS1 acted as a master device that controlled the virtual slave
manipulator. WS2 was running a packet reflector program that reflected to WS1 the packets
sent to it. The positions and orientations from the master device were routed through the
Internet using a packet reflector program hosted at our collaborator’s site in Seattle, WA.
UDP was used for communication between the master and virtual slave device. When there
is no delay the UDP data packets were sent to WS2 which is then reflected back to WS1. For
time varying delay, the packets were sent to WS2 through reflector in Seattle and reflected
back to WS1 through the same packet reflector in Seattle. Note that using a packet reflector,
twice the amount of normal latency was simulated while operating in network with
latencies. The packets were routed through the Internet 2 gigabit network.

The snapshot from the simulation is shown in Fig. 17. The slave environment consists of a
deformable liver and a stomach model placed inside the peritoneum. The virtual slave can be
used to interact with the deformable models for grasping, cutting, or electrocautery. Based
on the selected packet reflector location, different communication latencies may be
simulated for training.

Figure 18 shows the X-axis position tracking of both the master and the virtual slave during
a trial with data packets reflected through the server in Seattle. Figure 19 shows the round
trip time varying delay between WS1 and WS2 for the packet reflector location in Seattle.
The average delay was 150.57 ms. From Fig. 18, one can see that the virtual slave has
perfectly tracked the master device while interacting with the deformable models under
time-varying communication delay.

Concluding remarks
We have designed and implemented a multimodal simulation framework and tested it with
various simulation scenarios involving both local and collaborative interactions. The
framework relies on a combination of available libraries, toolkits, physics engines, and

Maciel et al. Page 12

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



customized parallel algorithms to render physics, graphics, and haptics in real time. It
exploits the parallel capabilities of current multi-core CPUs and multiprocessor GPUs to
maximize efficiency. Although using game and physics engines, dedicated libraries and
other existing standard or custom software have the potential to improve efficiency in
development and quality of the final results in VE applications. The greatest challenge is to
control the various threads running at different frequencies in the same environment. We
have shown that this is possible by extending the MVC pattern in the sense that the many
Controllers exchange information through the Model at the frequency of the slower thread
for each pair of threads.

We have developed example applications that involve complex realistic scenarios to
evaluate the performance and extensibility provided by the framework. For all our
applications, the system displays graphics at 60 Hz, corresponding to 30 Hz for each
monitor/eye for stereo visualization. Such frequencies provide smooth graphical displays
with no flickering. The haptic response is provided at frequencies over 1,000 Hz, which
allows for a vibration-free haptics rendering. The force update in the model, in turn, is
bounded by the collision detection and response algorithms, which run at frequencies
between 100–4,000 Hz depending on the number of elements involved: rigid to rigid being
the fastest; soft to rigid being slower; and soft to soft being the slowest.

As for the physics processing, while explicit time integration methods are simple but require
more steps (usually 300–600 steps per second for real time) for convergence, engines using
implicit methods are more time consuming per frame but are unconditionally stable.
Typically, our simulation processes physics at 10–20 Hz when using implicit integration,
without interference in the performance of other modules.

Our team is composed of researchers some of whom are mechanical engineers, some are
computer graphics people, and others are medical personnel. Once the core of the
framework was developed, most of the team members were able to implement and use their
own Controllers and create their own specialization of classes for their intended
applications. This underscores the utility of having such a framework in a multidisciplinary
research environment.

As a part of future work, we plan to support interaction between objects simulated with
various possible simulation types in the Simulator controller. One such example would be an
interaction between an object simulated using FEM and another using the PhysX. We also
plan to expand the supported simulation types in the Simulator controller with dynamic
FEM, and nonlinear simulation using a novel data-driven approach known as PhyNNeSS
[8]. We will also add more collision detection methods to our support library. GPU-based
computing has the potential to reduce computational load on CPU and increase
computational speed. Currently, GPU-based computation is indirectly supported in our
framework through PhysX. In the future, we plan to implement support for GPU-based
computation directly in our framework.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The structure of the extended model-view-controller (MVC) framework
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Fig. 2.
The structure of the Model module
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Fig. 3.
The structure of the View module
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Fig. 4.
The structure of the Haptics controller
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Fig. 5.
The structure of the Collision Detection controller
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Fig. 6.
The structure of the Simulator controller
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Fig. 7.
The structure of the Input controller
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Fig. 8.
The structure of the Network controller
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Fig. 9.
The hardware setup of the simulator comprises a stereo monitor with polarized glasses and
two SensAble Phantom Omnis with custom surgical handles
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Fig. 10.
The 4 VBLaST tasks: a peg transfer; b circular pattern cutting; c ligating loop; d suturing
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Fig. 11.
Models of the laparoscopic instruments: a hook cautery, b grasper and c scissors
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Fig. 12.
Electrosurgery is used to cut the tissue. In a, the color mapping shows the temperature
distribution, b shows the result of cutting a membranous tissue, and c shows the result of
cautery applied to a more massive organ
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Fig. 13.
Snapshot from LAGB simulation illustrating the various steps in the band placement: a liver
retracted to expose lesser omentum; b dissection of the lesser omentum; c exposure of angle
of his and picking of the band tip; d band placement on the stomach; e sliding of the band
through the hole for locking; f band locked and secured in place
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Fig. 14.
Status of a system running the LAGB application within our framework. The schematic
shows the simulation running with the several threads at different frequencies and how they
communicate through the model and with the external world. Color schema has been
preserved for coherence with Figs. 1–8
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Fig. 15.
Example of a Networked Haptic Surgical Environment with a massively parallel high
performance computing platform simulating complex surgical scenarios and multiple clients
across USA connected to the simulation
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Fig. 16.
Tele-surgery experiment setup illustrating the packet reflector and local LAN configurations
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Fig. 17.
Snapshot from the tele-surgery simulation showing the remote slave interacting with the
liver model: a making contact; b retracting to expose the stomach
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Fig. 18.
X-axis positions of master and the virtual slave devices showing tracking under latency
during interactions with the deformable model
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Fig. 19.
Round trip delay between WS1 and WS2 when the packets are reflected through the server
in Seattle
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