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Abstract
Objective—Developing an efficient tool for accurate three-dimensional imaging from
projections measured with C-arm systems.

Material and methods—A circle-plus-arc trajectory, which is complete and thus amenable to
accurate reconstruction, is used. This trajectory is particularly attractive as its implementation does
not require moving the patient. For reconstruction, we use the “M-line method”, which allows
processing the data in the efficient filtered backprojection mode. This method also offers the
advantage of not requiring an ideal data acquisition geometry, i.e., the M-line algorithm can
account for known deviations in the scanning geometry, which is important given that sizeable
deviations are generally encountered in C-arm imaging.

Results—A robust implementation scheme of the “M-line method” that applies straightforwardly
to real C-arm data is presented. In particular, a numerically stable technique to compute the view-
dependent derivative with respect to the source trajectory parameter is applied, and an efficient
way to compute the π -line backprojection intervals via a polygonal weighting mask is presented.
Projection data of an anthropomorphic thorax phantom were acquired on a medical C-arm scanner
and used to demonstrate the benefit of using a complete data acquisition geometry with an
accurate reconstruction algorithm versus using a state-of-the-art implementation of the
conventional Feldkamp algorithm with a circular short scan of cone-beam data. A significant
image quality improvement based on visual assessment is shown in terms of cone-beam artifacts.
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Introduction
Angiographic C-arm systems are well established in clinical routine for guiding
intravascular interventions in radiology and cardiology. They are equipped with a movable
source-detector assembly (see Fig. 1), and they offer a large degree of freedom in
angulations to allow for optimal viewing angles. It turns out that this flexibility can also be
used to collect a set of 2D projection images along a specific trajectory allowing
reconstruction of tomographic 3D images. Moreover, the recent advent of flat-panel
detectors has improved the quality of X-ray images in such a way that CT-like images are
within reach. These features are important and timely because the complexity of
interventional procedures has been steadily increasing over the last decade, with a higher
and higher demand in 3D imaging capability. Today, 3D imaging has become an essential
tool for spine surgery (vertebroplasty), accurate delivery of chemo-embolization of tumors,
stenting of stenoses, and treatment of cerebral aneurysms. These applications and the
development of future procedures demand high resolution and detectability of low-contrast
details pushing for continuous improvements in imaging technology.

For image reconstruction, the C-arm’s enhanced flexibility induces some algorithmic
requirements. In particular, the C-arm is not able to move the source-detector assembly
along an ideal trajectory due to mechanical inaccuracies and physical phenomena. For
instance, gravity causes the C-arm to flex or expand during its motion. The non-ideality in
the data acquisition process has to be considered during image reconstruction to avoid
reconstruction artifacts. State-of-the-art implementations of the Feldkamp (FDK) algorithm
often consider geometrical deviations only in the backprojection step, while the remaining
filtering steps are implemented as if the geometry was ideal. Accurate reconstruction
algorithms, on the other hand, have to consider the precise data acquisition geometry in each
processing step.

The goal of this work is the robust implementation of an accurate filtered backprojection
(FBP) algorithm such that it is able to process real C-arm data. For data acquisition, we use
the circle-plus-arc trajectory. It is complete and especially well suited for C-arm systems
since it can be performed purely by rotating the C-arm around the patient without the need
to move the patient table. For image reconstruction, we adapt the M-line algorithm
originally presented by Pack and Noo [1] to the requirements imposed by our C-arm system.
The M-line algorithm has been our first choice for this task because it does not presume an
ideal description of the data acquisition geometry. For instance, the filtering step does not
require special care, even if the geometry is non-ideal. Other algorithms, such as the
algorithm of Katsevich [2], require a different determination of the filtering lines, which
may impose additional strategies for a robust implementation, as, for example, a trajectory
fitting; see Dennerlein et al. [3]. Note that other implementations of C-arm-based cone-beam
reconstruction techniques do exist; see, for example, references [4–6],

The paper is organized as follows. Section “C-arm imaging and geometry” introduces to
modern C-arm systems, with special focus on the Artis zee ceiling-mounted C-arm system
(Siemens AG, Healthcare Sector). Section “Image reconstruction fundamentals” reviews the
implementation steps of the FDK and the M-line algorithm. Section “Towards real cone-
beam data” presents strategies to adapt the M-line algorithm to the requirements imposed by
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real cone-beam data. Experiments are presented in Section “Experiments and results”.
Section “Summary and conclusions” summarizes our results.

C-arm imaging and geometry
We first give the mathematical formulation of the X-ray attenuation process, which is
fundamental for analytical image reconstruction. Next, we describe the C-arm flat-panel
detector geometry along with relevant coordinate systems. Then, two trajectories that are
well suited for C-arm systems are introduced: the well-known circle (or partial circle)
trajectory, which is commonly used for approximate image reconstruction, and the circle-
plus-arc trajectory, which fulfills the sufficiency condition for accurate image
reconstruction. For both trajectories, we provide a mathematical notation and show how the
trajectories can be performed with our particular C-arm system.

Data acquisition
Data acquisition will be discussed using, as an example, the Artis zee ceiling-mounted C-
arm system; see Fig. 1. For the acquisition of real cone-beam data, the X-ray beam is
focused on a region of interest (ROI) within the inspected object and the source-detector
assembly follows a specific trajectory around this ROI. Conventionally, this trajectory is a
circle or partial circle, and the acquired cone-beam projections are used for subsequent FDK
reconstruction.

For analytical image reconstruction, the measurements are viewed as line integrals of a
function f(x), namely

(1)

In this notation, λ ∈ ℝ is the source trajectory parameter (typically the rotation angle of the
source-detector assembly); it controls the location of the X-ray source with respect to the
source trajectory. The X-ray source is pictured as an ideal point source. The location of this
point source is given by the vector a(λ). The parameter θ, with ||θ|| = 1, denotes the
direction of the emitted X-ray. At fixed λ, we get one value of g(λ, θ) for each line that
connects the point source to a detector pixel; the set of these values, which is essentially the
X-ray image, is called a cone-beam projection of f.

Function f(x) is our reconstruction target; it returns the X-ray linear attenuation coefficient
(LAC) of the inspected object at location x, or more precisely an energy-weighted average
of this coefficient, with the weight defined by the energy spectrum of the X-ray source and
the energy response of the detector. Logarithmic correction and other common calibration
steps are necessary to obtain, from the detector pixel values, measurements that match the
model of equation 1 as closely as possible; see e.g., [7,8] for further details). The values
taken by f(x) are expressed in Hounsfield units (HU).

Scanner geometry
The Artis zee ceiling-mounted C-arm system (Siemens AG, Healthcare Sector, Forchheim,
Germany) is equipped with a movable C-arm. The C-arm carries a 30 × 40 cm2 flat-panel
detector with a diagonal of 48 cm. The detector elements have a side length of 154 μm,
which amounts to a maximal matrix size of 1920 × 2480 pixels. Up to 60 cone-beam
projections are acquired per second with 14 bit digitization depth. The source-detector-
distance d can be adjusted from 90 cm to 120 cm.
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The C-arm flat-panel scanner geometry is depicted in Fig. 2. To describe the scanner
geometry, we define four coordinate systems: world coordinate system, source coordinate
system, detector coordinate system, and image coordinate system.

The world coordinate system is spanned by orthogonal unit vectors ex = (1, 0, 0)⊤, ey = (0,
1, 0)⊤, and ez = (0, 0, 1)⊤. While the world coordinate system remains fixed during the scan,
1 the source coordinate system is attached to the X-ray source and thus moves with the
source detector assembly. The source coordinate system is spanned by orthogonal unit
vectors eu, ev, and ew. Vectors eu and ev point in the direction of the detector rows and
columns, respectively, and vector ew points from the detector toward the X-ray source. The
X-ray beam with direction θ intersects the flat-panel detector at coordinates (u, v)⊤, with

(2)

The computed coordinates u and v refer to the detector coordinate system, the origin of
which is at the orthogonal projection of the X-ray source onto the detector plane (called
principal point); the u and v axes are parallel to the vectors eu and ev.

The image coordinate system is used to access a specific pixel within the cone-beam
projection. To express the detector point (u, v)⊤ in the image coordinate system, we apply
the following affine transformations

(3)

The quantities Δu and Δv denote the pixel width and height, respectively. In general, Δu
and Δv may be different from each other. However, the flat-panel detector of the Artis C-
arm system has square detector elements and so Δu = Δv. The parameters u0 and v0 define
the origin of the image coordinate system, with respect to the detector coordinate system; for
convenience, we select this origin to be the mid-point of the lower left image pixel, though a
different choice could have been made just as well.

Vice versa, the detector coordinates for a given pixel location, (û, v̂)⊤, are u = ûΔu − u0 and
v = v̂Δv − v0, and the direction of the ray that connects the detector point (u, v)⊤ to the X-
ray source is given by

(4)

Note that all vectors (ex, ey, ez, eu, ev, ew, a(λ), θ) are defined with respect to the world
coordinate system.

Trajectories suited for C-arm systems
For rotational image acquisition, the Artis zee ceiling-mounted C-arm system offers two
options of system rotation; see Fig. 1. In the rotational mode, the C-arm is propelling. In the
orbital mode, the C-arm segments are sliding in each other for a source-detector rotation.
The angular range of rotation is 330° and 200° for the rotational and orbital mode,
respectively. Theoretically, the X-ray source may move arbitrarily on the spherical surface

1In practice, the world coordinate system is defined by a calibration phantom, which is used to calibrate the source trajectory; see,
e.g., Hoppe et al. [9] for details.
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restricted to the angular range of those two modes. We assume a world coordinate system
with its origin located in the iso-center, its z-axis points in axial direction along the patient’s
table long axis and its x- and y-axes are perpendicular. Let us denote the azimuth and polar
angle with λ1 and λ2. A source position may be expressed as follows

(5)

The parameter r denotes the source-iso-center distance, i.e., the radius of the scan. The
typical source-iso-center distance is r = 78.5 cm. If the C-arm system is placed in the head
site position, the axial rotation (rotation axis in axial direction) and the polar rotation
(rotation axis perpendicular to axial direction) are performed by the rotational and orbital
mode, respectively. The C-arm rotational modes are changed by each other if the C-arm
system is placed in the right or left site position.

In the following, we give the description of two trajectories, which can be performed with
our C-arm system. The circle (or partial circle) trajectory is used for FDK reconstruction.
The circle-plus-arc trajectory is an extended (complete) trajectory, which can be utilized for
accurate image reconstruction. We restrict our discussion to these two trajectories, although
other C-arm suited trajectories for which image reconstruction algorithms exist would also
be possible (e.g., the circle-plus-line trajectory [10] and the saddle trajectory [11]).

Circle trajectory—The circle trajectory is routinely used for image reconstruction in the
clinical environment; it is performed with a standard, pre-configured data acquisition
protocol available on commercial C-arm systems. In fact, the utilized circle trajectory
typically describes only a partial circle, termed short scan in this context. The circle
trajectory may be performed by rotating the C-arm purely in axial direction. The circle
trajectory is given by equation (5) with λ2 = 0. Thus

(6)

Here, λ1 is a azimuth angle in the (x, y)-plane.

Circle-plus-arc trajectory—The circle-plus-arc trajectory is a so-called complete
trajectory according to Tuy [12] and therefore qualifies for accurate image reconstruction.
Although currently not implemented on any commercially available device, the data
acquisition protocol can be configured easily on a C-arm system. To do so, we split the
trajectory into two segments, circle segment and arc segment. The data along the segments
are then acquired independently of one another. For the circle segment, the standard, pre-
configured data acquisition protocol is selected and the C-arm is rotated purely in axial
direction. For the arc segment, the C-arm is configured to rotate in polar direction. The
configured circle-plus-arc trajectory is practically limited to a maximal angular range of
±22° before the source-detector assembly collides with the patient table. Fortunately, the
detector size is such that collecting arc data over this limited range is more than sufficient to
complete the data from the circle segment and thereby allows a reconstruction free from
cone-beam artifacts in the volume covered by the detector area (see [2] for mathematical
details on how to evaluate detector-size and arc-length requirements for desired volumes).

The circle segment of the circle-plus-arc trajectory is defined in equation (6). Without loss
of generality, assume that the circle scan starts at the positive x-axis from location (r, 0, 0)⊤.
If we select the arc segment to intersect the point (r, 0, 0)⊤, we get from equation (5) with
λ1 = 0
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(7)

for the arc segment. According to this definition, the circle-plus- arc trajectory is two-sided,
which means that the arc segment reaches to both sides of the (x, y)-plane. A one-sided
trajectory may be configured by further limiting the polar angle, i.e., by selecting either

 or . However, a two-sided circle-plus-arc trajectory allows an
accurate reconstruction of the inspected object below and above the (x, y)-plane. A one-
sided trajectory allows us to accurately reconstruct the object only on the respective arc side
of the (x, y)-plane.

Image reconstruction fundamentals
This section reviews two algorithms to solve the image reconstruction task. The approximate
FDK algorithm for circular trajectories is state-of-the-art in modern computed tomography
and acts as a basis for comparison. The accurate M-line algorithm for the circle-plus-arc
trajectory is investigated in this work.

FDK algorithm
The description of this algorithm, which was suggested by Feldkamp, Davis, and Kress in
1984 [13], is provided in “Appendix”.

M-line algorithm
The M-line reconstruction algorithm was invented in 2005 by Pack and Noo [1] as an
accurate image reconstruction method. In general, this reconstruction formula can be applied
to any complete source trajectory according to the definition given by Tuy. However, the
presented algorithmic steps are specific to its application on the circle-plus-arc trajectory.
Figure 3 explains the fundamental setup for a better understanding of those steps.

As can be seen in the left portion of this figure, the method involves a specific point, called
M-point, on the source trajectory. In general, this point can vary for each x inside the ROI,
but at a cost in efficiency. For our purposes, we assume the M-point is chosen fixed. That
means that all object points are associated with the same M-point. This M-point is preferably
located (approximately) in the middle of the circle segment, as done in [1] and Hoppe et al.
[14]. This selection mitigates axial data truncation in case of long objects (see also Hoppe et
al. [15]). The line connecting x with the M-point is a so-called M-line. In this algorithm, the
M-line defines the filtering directions for x. More exactly, for each cone-beam projection,
the filtering direction for x is defined by the projection of the M-line associated with x onto
the detector plane (see also in “Step 3: forward rebinning”).

The left of Fig. 3 shows a second line passing through x, a so-called π-line. A π-line is a
line that connects two opposite source positions on the trajectory. By definition, a π-line is
unique in the sense that there exists only one such line for any given x. A well-known
property of π-lines is that any point on such a line fulfills Tuy’s data completeness
condition, since all planes passing through a specific point on that line intersect the source
trajectory. The existence and uniqueness of π-lines for the circle-plus-arc trajectory was
shown by Katsevich [2]. It was also shown that those π-lines cover a large volume; see the
right of Fig. 3. The π-line containing x delimitates the portion of the trajectory from where
the data must be backprojected onto x, to reconstruct f (x) accurately. Backprojection is
carried out independently over three segments, and then, the contributions are accumulated.

The first segment { } defines the portion of the trajectory from the M-point to the
point where the π-line through x intersects the circle segment. The second segment
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{ } reaches from the π-line’s other intersection with the arc segment to the foot

point of the arc segment. The third segment { } goes from this foot point back to the
M-point.

In the following sections, we review the processing steps of the M-line algorithm in the
specific context of reconstruction from a circle-plus-arc trajectory. For a derivation of the
algorithm, we refer to [1].

Step 1: view-dependent differentiation—Step 1 is the differentiation of the cone-beam
data with respect to the source trajectory parameter (typically the rotation angle of the
source-detector assembly) at fixed ray direction θ, according to

(8)

The implementation of this step may be critical in terms of resolution and image quality and
is discussed in Section “View-dependent differentiation”.

Step 2: cosine weighting—Perform a cosine weighting, as known from the FDK
algorithm

(9)

Step 3: forward rebinning—Generate values on a rebinned detector grid by interpolation
of the values from the original detector grid, such that each row of the rebinned detector
holds the values for exactly one filtering line; see Fig. 4. The filtering lines are the
projections of the M-lines onto the detector plane (cf. Fig. 3, left); as depicted in Fig. 4, they
all intersect at the same point, namely the projection of the M-point, located at (uM, vM)⊤.

Mathematically, the forward rebinning corresponds to a coordinate transform from detector
coordinates (u, v)⊤ to filtering line coordinates (u, η)⊤, where η denotes the slope of the
filtering line, according to

(10)

Note that the implementation of the Katsevich algorithm for the helix trajectory contains a
similar rebinning step, called forward height rebinning there [16].

Step 4: Hilbert filtering—Apply a one-dimensional Hilbert transform along the filtering
lines

(11)

where hhilb(u) = 1/(π u) denotes the Hilbert kernel in the spatial domain.
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Step 5: backward rebinning—Generate values on the original detector grid by
interpolation of the values from the rebinned detector grid; see Fig. 4.

The backward rebinning corresponds to a coordinate transform from filtering line
coordinates (u, η)⊤ back to detector coordinates (u, v)⊤ according to

(12)

Step 6: data selection—Select for each x the subset of filtered projections that
corresponds to the portion of the trajectory that is delimitated by the intersection points of
the π-line through x with the source trajectory, i.e., select the data that must be
backprojected onto x; cf. Fig. 3, left. This data selection is done according to

(13)

The function w2(λ, u, v) takes only values between zero and one and masks out data that do
not need to be backprojected, as shown in Section “Data selection”.

Step 7: backprojection—Backproject selected filtered projections into the image space,
according to

(14)

where (u*, v*)⊤ are the detector coordinates of the projection of x onto the detector plane

(15)

and t1 = 1, t2 = −1, t3 = −1; cf. Figure 3, left. Also, , and

(16)

Note that  and  do not depend on x here and really denote the endpoints of the source
trajectory and not the endpoints of the backprojection interval of x. The correct data
selection is guaranteed by the weighting mask w2(λ, u, v).

The value for  is the same as  from Katsevich [2] and corresponds to the minimal
angular range of the arc segment, required to reconstruct a cylindrical ROI with radius rc and
height hc, centered at (0, 0, 0)⊤; see [2], equation (4.4). Similarly, one may want to compute

the minimal required angular range of the circle segment  for the same ROI by first
substituting h = rc and  into equation (4.2) of [2] and solving for  and then

plugging λ* = s2 into the formula for  above. However, doing so appears too cumbersome

and is actually not needed. For a practical implementation, we use ; see Fig. 5. This
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gives a minimally larger value for , and the angular range of the circle segment becomes a
little larger than absolutely required. No consequences on the reconstruction quality are to
be expected by doing so, since, as remarked before, the selection of the backprojection
interval for each x is taken care of by the weighting mask w2(λ, u, v) already in the data
selection step (Fig. 6).

Toward real cone-beam data
In this section, we first show how the geometrical parameters required to implement the
FDK and M-line reconstruction formulae may be extracted from projection matrices. We
assume that these projection matrices have been obtained from the geometrical calibration
presented in the study by Hoppe et al. [9]. Other calibration techniques that are based on a
direct estimation of the geometrical parameters, such as Noo et al. [17], may not require this
extraction. The main focus of this section is dedicated to presenting solutions to two
challenging implementation issues for the M-line algorithm such that the algorithm is
capable of handling real C-arm data from the circle-plus-arc trajectory. In particular, we
apply a novel and numerically stable technique for the differentiation with respect to the
source trajectory parameter, and we present an efficient way to compute the π-line
backprojection intervals via a polygonal weighting mask.

Parameter extraction
To extract the geometrical parameters from a projection matrix, we follow steps similar to
Hartley and Zisserman [18]. Let P be the 3×4 projection matrix for a specific source position
a. This projection matrix can be decomposed into the following product

(17)

The upper, 3 × 3, triangular matrix K is called internal parameter matrix. The 3 × 3 rotation
matrix R consists of the unit vectors that define the detector coordinate system and thus
provides the detector orientation, namely R = [euev −ew]⊤.

To obtain the complete parameter set, we need to extract K, R, and a from P. For that
purpose, we reformulate equation (17) as follows

(18)

The matrix M = K R is the left sub-matrix of P. Since K is upper triangular and R is
orthogonal, K and R can be determined from M by using an RQ Decomposition.2 The
decomposition is unique if we require that K has positive diagonal entries. This can be
achieved by multiplying K on the right and R on the left by diag(sign(k11), sign(k22),
sign(k33)), where the kii ’s are the diagonal entries of K.

From (18), we see that a can be computed according to a = −M−1 p4 where p4 denotes the
last column of P. The inversion of M can be done in a numerically stable way, e.g., by using
a singular value decomposition.

2Sometimes scientific computing packages (such as Matlab) do not offer an RQ Decomposition but offer instead a QR
Decomposition. In this case, one can first perform a QR decomposition on M−1 followed by an inversion of the obtained matrices
since M = (M−1)−1 = (R−1K−1)−1 = K R. Note that R−1 = R⊤.
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Given the complete data set that describes the C-arm geometry, we are prepared to
implement the required processing steps of the M-line algorithm. We need those parameters
on many occasions throughout the implementation. For instance, û0 and v̂0 are required to
perform a coordinate transform from image coordinates to detector coordinates or vice
versa. If we want to compute for a given detector coordinate the corresponding X-ray
direction, we need eu, ev, ew, and d. And we need a to compute the view-dependent
derivative, as explained in the following section.

View-dependent differentiation
Many accurate image reconstruction formulae impose the front-end requirement of a view-
dependent data differentiation step. This view differentiation step has often been assumed to
be suboptimal with respect to the resolution and the quality of the reconstructed image
because the discretization along the source trajectory in λ is typically coarse, compared to
the much finer sampling on the detector in u and v.

Former differentiation schemes include the direct scheme and the chain-rule scheme. The
direct scheme may provide good results when the sampling rate along the source trajectory
is high but has been shown to break down in case of coarse view sampling [19]. The chain-
rule scheme is more robust to view sampling and can provide higher resolution results than
the direct scheme, but not for all source trajectories. In particular, the chain-rule scheme was
shown to yield very poor results with data from a circle-plus-line trajectory [19]. For this
reason, we adopted a recently proposed view differentiation scheme [19] that seems to be
robust to changes in the data acquisition geometry as well as to coarse view sampling. This
scheme is summarized below.

First, note that the differentiation of the cone-beam data g(λ, θ) with respect to the
trajectory parameter λ at fixed viewing direction θ can be discretized into

(19)

where ε can be seen as a resolution-control parameter, with 0 < ε ≤ 1. If the trajectory is
equidistantly sampled at increments Δλ and λ is one of the samples, setting ε = 1 into (19)
yields a formula that involves available cone-beam data. But this formula is not appealing
due to the low sampling rate along the source trajectory. Instead, we would like to use ε ≪ 1
to minimize discretization errors and resolution losses.

When ε ≪ 1, applying equation (19) requires unavailable cone-beam data, namely g(λ −
εΔλ, θ) and g(λ+ εΔλ, θ). To be able to compute the derivative nevertheless, we use an
interpolation scheme that estimates the desired (but unavailable) cone-beam data g(λ −
εΔλ, θ) and g(λ + εΔλ, θ) from the available cone-beam data g(λ − Δλ, θ), g(λ, θ) and
g(λ+Δλ, θ). This interpolation is performed using the following equations:

(20)

(21)

where
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(22)

(23)

Figure 2 in [19] gives a geometrical description for the unit vectors α−, β−, α+, and β+.
Those vectors are defined by the three source positions a(λ − Δλ), a(λ), and a(λ + Δλ) as
well as by the two points b(λ − Δλ, θ), and b(λ + Δλ, θ). The points b(λ − Δλ, θ) and b(λ
+ Δλ, θ) should be chosen such that the integral values along the lines with directions α+,
β+, and α−, β− approximate the desired integrals along the lines with direction θ, as good as
possible. We assume that this will be the case if b(λ − Δλ, θ) and b(λ + Δλ, θ) are the
orthogonal projections of the object’s center of mass onto the two lines with direction θ,
radiating from a(λ − εΔλ) and a(λ + εΔλ), respectively. Since for real data the true center
of mass is rarely known, the origin of the world coordinate system is chosen as an
approximation.

The values of g (λ, α−), g (λ − Δλ, β−), and g (λ, α+), g (λ + Δλ, β+) are obtained by
bilinear interpolation in the detector plane after computing the detector coordinates
corresponding to the involved lines using formulae (2).

Data selection
Besides the view differentiation step, there is another processing step in the reconstruction
algorithm that requires some care during implementation, namely the data selection step. For
the final algorithm, it remains to show how for each object points to practically select the
subset of cone-beam projections that need to be backprojected. This data selection can be
done analytically for an ideal trajectory. This has been shown, for instance, for the circle-
plus-arc [2] and for the circle-plus-line trajectory [10]. Since we are dealing with a non-ideal
trajectory, we present an approximation to the analytical formulae in this chapter. This
approximation involves the computation of a two-dimensional weighting mask for each
cone-beam projection, which must be multiplied with the detector content. This
multiplication can be implemented efficiently. The method is not restricted to the circle-
plus-arc trajectory but may also be applied to similar complete source trajectories, such as
the circle-plus-line trajectory.

The M-line algorithm for the circle-plus-arc trajectory reconstructs the object by
backprojecting the filtered cone-beam data onto π-lines, which must cover at least the ROI
under investigation. Each object point x belongs to a specific π-line, which determines the
backprojection interval for x and for all other object points on this π-line. More specifically,
the backprojection interval is determined by the endpoints of the π-line, which are the two
points of intersection of the line with the source trajectory. Data outside the backprojection
interval is redundant and must not be backprojected. Otherwise, streak like artifacts that
manifest along the π-lines will disturb the reconstructed object, since the redundant data are
backprojected but not taken into account by the algorithm. It is therefore important to
accurately compute the backprojection intervals. Such a computation was shown in [2] for
an ideal circle-plus-arc trajectory. Our non-ideal data acquisition geometry forces us to
approximate the analytic formulae. We do this approximation as follows.

First, we note that the decision if the current source position belongs to the backprojection
interval of a given object point x can be made by projecting one segment of the trajectory
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onto the detector plane. More specifically, we project the arc segment onto the detector
when the source moves along circle segment and we project the circle segment onto the
detector when the source moves along the arc segment. We then select only those detector
data at the appropriate side of the projected trajectory segment. The principle is illustrated in
Fig. 7. Assume the source is on the circle segment. The current source position belongs to
the backprojection interval of x, only if x projects on the right-hand side of the projected arc
segment. Since this is true for every object point, we can create a two-dimensional
weighting mask w2(λ, u, v) that assigns each pixel on the right-hand side a value of one and
a value of zero otherwise. The same principle applies if the source is on the arc segment.
Here, the current source position belongs to the backprojection interval of x, if x projects
above the projected circle segment. Thus, the weighting mask must be one on top of the
projected circle segment and zero elsewhere.

In a realistic scenario, we do not have an analytical description of the source trajectory. The
source trajectory is described by a sequence of X-ray source positions. To project one
trajectory segment, we first project the corresponding source positions onto the detector and
then connect the projected points by lines. The resulting polygonal curve then represents the
projected trajectory segment.

To avoid artifacts appearing along the π-lines in the final reconstructed object, we generate
a smooth transition zone within a small neighborhood to the polygonal curve, by assigning
each neighborhood pixel a value between zero and one. We do this by applying a one-
dimensional convolution of the weighting mask with a simple averaging filter. When we
project the arc segment, the convolution is done along eu. When we project the circle
segment, we convolve along ev. The support of the averaging filter was selected to be three
pixels, which we found worked best, at least for our specific C-arm geometry.

We would like to emphasize that the weighting mask w2(λ, u, v) depends only on the
projection of x onto the detector plane, not on x itself. That means that all other points,
which lie on the line connecting the current source position with x, are assigned the same
weight. Therefore, this data selection can be implemented efficiently.

Experiments and results
The M-line algorithm has been tested on real C-arm data. We used an AXIOM Artis dTA C-
arm system, which is the precursor of the Artis zee ceiling-mounted system to perform the
circle-plus-arc trajectory. The parameters are shown in Table 1. Note that since we
reconstructed the volume above and below the circle plane, the arc scan actually consisted of
two segments, one reaching above and the another reaching below the circle plane. To
compute the view-dependent derivative, the resolution-control parameter ε was set to 2−6, a
value that yields highest resolution. The M-point was placed (approximately) in the middle
of the circle segment. We calibrated the trajectory geometry with the method of Hoppe et al.
[9].

Figure 8 show the results of our implementation of the M-line approach against a state-of-
the-art implementation of the FDK algorithm applied to the data from the circle segment of
the circle-plus-arc trajectory. An anthropomorphic thorax phantom was used for the
comparison; this phantom consists of a human spine that is embedded in water-equivalent
material to emulate real tissue including the heart and the liver. Each column in the figure
displays a different slice through the phantom and includes the result from a CT scan to
establish the anatomical ground truth. Each slice was obtained as an average of 11 sub-slices
separated by 0.1 mm, using the same square pixels of size 0.5×0.5mm2 for each sub-slice;
this averaging was performed to reduce noise at low cost to spatial resolution. The CT
images were obtained with a SOMATOM Definition AS (Siemens AG, Healthcare), using a
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spiral scan performed with the following parameters: 120kV, 29mA, slice thickness of 1
mm, B46f kernel. Registration of the C-arm images to the CT images was done using the
syngo 3D image fusion software (Siemens AG, Healthcare Sector) that is based on a mutual
information cost function. Note that slight residual registration errors remain, due to the
complexity of the registration task. Also, due to differences in X-ray source spectra,
truncation errors, and scatter, only an approximate matching in HU units can be expected.
Data truncation problems for the M-line reconstruction were handled using the Basic
Approach from Hoppe et al. [15]. Data truncation problems for the FDK reconstruction were
handled using the modified water cylinder correction of Zellerhoff et al. [8].

The spine in the thorax phantom is a structure that is highly sensitive to data incompleteness
in a circular short scan, and allows thereby easy visual assessment of cone-beam artifacts.
The results in Fig. 8 show a substantial elimination of cone-beam artifacts from using the M-
line method with the circle-plus-arc data, in comparison with employing (incomplete)
circular short-scan data along with the FDK method. The typical cone-beam artifacts we see
in the FDK reconstruction manifest in dark directed shadows radiating from the bones of the
spine whenever there is a noticeable frequency change in z-direction.

Given the more complicated data processing steps being involved in the M-line method, it is
also nice to observe very little difference in discretization errors, highlighting the robustness
of our implementation scheme. Only one slight streak-shaped artifact appears noticeable
(see the bottom image in the middle column of Fig. 8).

We performed a preliminary evaluation of noise and resolution, comparing the M-line
method with the circle-plus-arc data to the FDK reconstruction from the data on the circle
segment. By comparing various profiles (not shown here) through the slices in Fig. 8, we
could observe that the differences in resolution are tiny. To quantify the difference, we
determined the standard deviation of a Gaussian kernel that allows minimizing the least-
square difference between the modulation transfer function for each reconstruction method,
which was obtained by computing the average of the Fourier transform of each image over
the polar angle. A standard deviation of 0.3543 pixels was found in favor of the FDK image.
To evaluate noise, we first applied the Gaussian kernel to the FDK image, so as to globally
equalize the resolution, then we computed the standard deviation inside an homogeneous
region of interest of 60 × 60 pixels. The following values were obtained: 69.97 HU for the
FDK image and 65.17 HU for the M-line reconstruction. Thus, the M-line image has a lower
standard deviation; but the M-line image also uses more projections. Considering that the
M-line method uses 543+108/2 = 597 projections, where as the FDK method uses 543
projections only, the FDK result may be expected to be more noisy, by coarsely 4.85%,
which is comparable to the observed difference3. Hence, it appears at first hand that the M-
line method does not amplify noise in the data more than the FDK method; more thorough
evaluations of noise will, however, be needed to properly validate this statement.

Summary and conclusions
We have shown how to implement two important processing steps of the M-line approach
such that the algorithm is able to handle cone-beam data from a circle-plus-arc trajectory,
acquired with a real C-arm system.

As a prerequisite for implementing the algorithm, we reviewed how the necessary
geometrical parameters that describe the data acquisition geometry can be extracted from

3Assuming the pixels values in the region of interest are statistically independent, the standard deviation of our computed values can

be estimated to be about .
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projection matrices. This may become important in practice if the calibration procedure
outputs projection matrices, as in our case.

For the first critical processing step, we applied a novel and numerically stable way to
compute the view-dependent derivative in the context of the M-line algorithm for the circle-
plus-arc trajectory. The computation is based on a direct discretization of the derivative,
which involves a unique resolution-control parameter. For the derivative at λ, this parameter
basically determines how much data are used from the neighboring cone-beam projections at
λ ± Δλ and may need to be adjusted on a case-by-case basis for a fine tuning of the
derivative computation, especially if Δλ is big. As already pointed out, the suggested
method can be applied to any accurate reconstruction algorithm that involves a view-
dependent data differentiation step.

As the last step toward accurate image reconstruction from real C-arm data, we presented an
approach to determine for each object point the backprojection interval in a robust and
efficient way. We did this by creating for each cone-beam projection a two-dimensional
detector weighting mask, which must be multiplied with the detector content prior to the
backprojection step. The mask thereby ensures the correct handling of data redundancies and
takes care that the backprojection interval borders have a smooth transition zone in order to
avoid reconstruction artifacts. The creation of the weighting mask involves the projection of
specific trajectory segments onto the detector. We approximated the projections of those
segments by a polygonal curve that connects a set of projected X-ray source positions. In
former experiments, we have tried to fit an ellipsoidal curve to the projection of the X-ray
source positions. This was done by using standard linear algebra. We found out, however,
that this fitting cannot be implemented in a robust way, since there are too few source
positions for a stable estimate of the ellipsoid. Therefore, we decided to use the polygonal
approach, which seems to be a good approximation and is robust. The suggested method can
easily be adapted to other complete source trajectories, such as the circle-plus-line
trajectory.

Our experiments with real data of a human thorax phantom show that by applying the
presented implementation techniques, cone-beam artifacts can be considerably mitigated.
This has been confirmed and tested against using the circle segment of the data only along
with a state-of-the-art FDK reconstruction. Furthermore, the reconstruction with the M-line
algorithm appears to have similar noise and resolution. And our implementation of the M-
line algorithm appears robust enough to avoid discretization errors that would have
outweighted the benefits in cone-beam artifacts mitigation.
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Appendix: FDK algorithm
The FDK algorithm was initially designed for a circle trajectory. It was later modified to
process cone-beam data also from other trajectories, as, for instance, from a partial circle
trajectory [20,21].

Because the FDK algorithm utilizes an incomplete trajectory, it is an approximate image
reconstruction algorithm. In fact, the FDK algorithm is based on a 2D image reconstruction
formula and may be regarded as an empirical 3D extension of a 2D algorithm [22].
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The FDK algorithm reconstructs the attenuation coefficient f accurately only in the plane of
the trajectory. Outside of this plane, the algorithm approximates f. One can show, however,
that in the special case when the object is constant along the direction orthogonal to the
plane of the trajectory, reconstruction is accurate also outside of that plane; cf. Feldkamp et
al. [13].

The FDK algorithm applies a filtered backprojection technique to solve the reconstruction
task in a computationally efficient way. Due to its efficiency, it has been implemented
successfully on almost every commercially available medical CT imaging system and still
maintains its state-of-the-art status in modern computed tomography, either in its original
form or in various extensions [22].

In the following sections, we review the processing steps of the FDK algorithm. For a
derivation of the algorithm, we refer to Feldkamp et al. [13] and to textbooks such as Buzug
[7] or Kak and Slaney [23].

Step 1: cosine weighting
Perform a cosine weighting of the projection data g, according to

(24)

where we used g1(λ, u, v) = g(λ, θ) to express each cone-beam value by its detector

coordinates (u, v)⊤. The factor  weights each detector pixel value to normalize the
distance between the detector pixel and the X-ray source position; see Fig. 9. This factor is
equivalent to the cosine of the cone angle, ω, and one may verify that

(25)

by replacing θ with the right-hand side of equation (4) and noting that ew ⊥ eu and ew ⊥ ev.

Step 2: Data Redundancy Weighting
Perform a data redundancy weighting, according to

(26)

where the weighting function w1(λ, u) is given by

(27)

for a full circle trajectory, and typically

(28)
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for a partial circle trajectory, where 2ωmax is the fan angle and λ* = arctan(u/d); this
corresponds to the original Parker weighting [20].

The weighting function considers the fact that some line integrals (cone-beam values)
through any given point inside the object are measured twice. This is true for points located
in the plane of the trajectory, but not for points outside this plane, which are treated as if
they were located at their orthogonal projection onto that plane, as appears evident from the
function w1(λ, u) being independent of the v-coordinate.

Step 3: Ramp Filtering
Apply a one-dimensional convolution along the filtering lines (i.e., the detector rows) to
obtain

(29)

where hramp(u) denotes the Ramp kernel in the spatial domain

(30)

Here, we assume that eu is parallel to the plane of the trajectory. If this assumption is
violated, for instance, due to a slight detector tilt or rotation, those deviations are often
assumed to be negligible in practical implementations and filtering is performed in the
direction of eu anyway.

Step 4: Backprojection
Backproject the filtered projections into the image space, according to

(31)

where (u*, v*)⊤ are the detector coordinates of the projection of x onto the detector plane:

(32)

The backprojection interval is given by

(33)

for a full circle trajectory, and typically

(34)

for a partial circle trajectory. For a cylindrical ROI with radius rc, centered at (0, 0, 0)⊤,
ωmax = arcsin(rc/r); see Kak and Slaney [23].
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Fig. 1.
As an example, data acquisition is illustrated at the Artis zee ceiling-mounted C-arm system
(Siemens AG, Healthcare Sector, Forchheim, Germany). Two modes of rotation are possible
for rotational angiography. In the rotational mode, the rotation axis is parallel to the long
axis of the patient table. In the orbital mode, rotation is performed by sliding of the C-arm
segments. By courtesy of Siemens AG
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Fig. 2.
C-arm flat-panel scanner geometry
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Fig. 3.
(Left) For each point x inside the object, there is one associated M-line and one associated
π-line. The M-line defines the filtering directions for x. The π-line delimitates the portion of
the trajectory from where the data must be backprojected onto x, to reconstruct f(x)
accurately. (Right) The volume covered by the union of surfaces (see hatched areas) defined
by π-lines connecting one source position on the arc segment to all source positions on the
circle segment can be reconstructed accurately; see Katsevich [2] for details
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Fig. 4.
During forward rebinning, the values on the rebinned detector grid (right) are generated by
linear interpolation from the values on the original detector grid (left). During backward
rebinning, the values on the original detector grid (left) are generated by linear interpolation
from the values on the rebinned detector grid (right). The filtering lines are sampled such
that interpolations need to be done only in vertical direction. In horizontal direction, both
detector grids coincide. The figure shows a case with five filtering lines. As illustrated with
the top arrow, the detector values that are at the two positions (crosses ’+’) within the dashed
circle on the left are interpolated to produce the rebinned detector value within the dashed
circle on the right. Vice versa, the bottom arrow shows that the rebinned detector values at
the two positions (circles ’o’) within the dashed circle on the right are interpolated to
produce the detector value within the dashed circle on the left

Hoppe et al. Page 21

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2013 January 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.

Top view onto the circle-plus-arc trajectory. The angular range  of the circle segment is
determined by the orthogonal projection of the line, passing through the highest point on the
arc segment (the one corresponding to ) and being tangent to the ROI, onto the plane of
the circle segment
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Fig. 6.
The new scheme to compute the view-dependent derivative at position λ on the circle
segment of the circle-plus-arc trajectory; see also Noo et al. [19] for further details
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Fig. 7.
Data selection principle for a the circle segment and b the arc segment. a If a source position
belongs to the backprojection interval of x (shown in bold), x projects on the right-hand side
of the arc segment. Otherwise, x projects on the left-hand side of the arc segment. b If a
source position belongs to the backprojection interval of x, x projects above the circle
segment. Otherwise, x projects below the circle segment
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Fig. 8.
Sagittal (left), axial (middle), and coronal (right) slices through the thorax phantom. Top
row: CT image to be used as ground truth. Middle row: FDK reconstruction from the data on
the circle segment. Bottom row: M-line reconstruction from the circle-and-arc data. In the
first column, the white arrows in the FDK image highlight cone-beam artifacts in the form
of streaks that are caused by sharp variations in z and that have been eliminated using the
circle-and-arc data with the M-line reconstruction technique. In the second column, the
arrows in the FDK image highlight low-frequency cone-beam artifacts that have also been
eliminated, whereas the arrow in the M-line image highlights a streak artifact due to
discretization errors that does not appear in the FDK image. In the third column, the arrow
in the FDK image highlights a cone-beam artifact that affects the analysis of the material
between the bottom two vertebrae and has been eliminated; notice again in the same image
the numerous streak artifacts that originate from the spine
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Fig. 9.

The factor  weights each detector pixel value to normalize the distance between the
detector pixel and the X-ray source position. This factor is equivalent to the cosine of the
angle ω
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Table 1

Parameters used for the experiments

C-arm parameters

Radius (circle/arc) (r) [mm] 750

Source-detector distance (d) [mm] 1200

Pixel width (Δu) [mm/pixel] 0.308

Pixel height (Δv) [mm/pixel] 0.308

Detector dimension [pixel2] 1240 × 960

Angular sampling (circle) [°/projection] 0.4

Angular sampling (arc) [°/projection] 0.4

Number of projections (circle) 543 (216.8°)

Number of projections (arc) 109 (43.2°)
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