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Abstract Purpose: Needle biopsy of the prostate is
guided by Transrectal Ultrasound (TRUS) imaging. The
TRUS images do not provide proper spatial localiza-
tion of malignant tissues due to the poor sensitivity of
TRUS to visualize early malignancy. Magnetic Reso-
nance Imaging (MRI) has been shown to be sensitive
for detection of early stage malignancy and therefore, a
novel 2D deformable registration method that overlays
pre-biopsy MRI onto TRUS images has been proposed.
Method: The registration method involves B-spline de-
formations with Normalized Mutual Information
(NMI) as similarity measure computed from the tex-
ture images obtained from the amplitude responses of
the directional quadrature filter pairs. Registration ac-
curacy of the proposed method is evaluated by com-
puting the Dice Similarity coefficient (DSC) and 95%
Hausdorff Distance (HD) values for 20 patient datasets
and Target Registration Error (TRE) for 18 patients
only where homologous structures are visible in both
the TRUS and transformed MR images.

Results: The proposed method and B-splines using NMI
computed from intensities provide average TRE values
of 2.64+1.37 mm and 4.43+2.77 mm respectively. Our
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method shows statistically significant improvement in
TRE when compared to B-spline using NMI computed
from intensities with Student’s t-test p = 0.02. The
proposed method shows 1.18 times improvement over
Thin-plate splines registration with average TRE of
3.11£2.18 mm. The mean DSC and the mean 95% HD
values obtained with the proposed method of B-spline
with NMI computed from texture are 0.943 +0.039 and
4.75 4+ 2.40 mm respectively.

Conclusions: The texture energy computed from the
quadrature filter pairs provides better registration ac-
curacy for multimodal images than raw intensities. Low
TRE values of the proposed registration method adds
to the feasibility of it being used during TRUS guided
biopsy.

Keywords Prostate multimodal registration - B-
spline - quadrature filter - texture energy - normalized
mutual information

1 Introduction

Transrectal Ultrasound (TRUS) is routinely used for
interventional needle biopsy of the prostate to detect
prostate cancer. However, ultrasound images only pro-
vide very limited information about the location of pros-
tate cancer. Cancer tissues are either hypoechoic or
isoechoic in TRUS. The isoechoic cancer tissues account
for about 24% — 42% [7]. As reported in [3] the proba-
bility to diagnose prostate cancer from TRUS biopsy
alone is about 70% — 80%. Therefore, the multicore
biopsy technique used for needle biopsy oftens fails to
extract positive samples and the number of rebiopsies
thereby increases. It has been demonstrated in [36] that
detection of prostate cancer using Magnetic Resonance
Imaging (MRI) has a negative predictive value of 95%
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or greater and also the accuracy of MRI to diagnose
prostate cancer is 95%. Therefore, MRI may serve as
a triage test for men deemed to be at risk of prostate
cancer. In other words, if MRI has a negative predictive
value > 95% for significant cancer then it might greatly
reduce the number requiring biopsy, while at the same
time increasing the yield of useful information for those
who are sent for biopsy. Therefore, fusion of pre-biopsy
MR images onto interventional TRUS images might in-
crease the overall biopsy accuracy [22], [40], [34]. Fei et
al. [12] registered interventional Magnetic Resonance
Imaging (iMRI) slices to previously obtained high reso-
lution MRI volume of prostate images for iMRI guided
radio frequency thermal ablation of prostate cancer. A
validation and integration for 3D TRUS guided robotic
surgery for prostate brachytherapy was done by Wei et
al. [38]. Hummel et al. [17] proposed a rigid registration
for fusion of 2D intraoperative US with preoperative CT
volume based on fiducials.

The prostate of the same patient may undergo de-
formations during the TRUS or MR imaging proce-
dures due to full bladder or rectum, altered patient
positions on the couch and inflation of the endorectal
balloon inside the rectum containing the MR coil. In-
tended to cope with these deformations, nonrigid reg-
istration methods are applied for prostate multimodal
fusion [28], [31], [5], [29], [8], [4]. Spline based deforma-
tions have been commonly used for prostate registra-
tion. Lu et al. [24] used Thin-plate Splines (TPS) warp-
ing to generate statistical volumetric model of prostate
for localization of prostate cancer. However, the Tar-
get Registration Error (TRE) value of 295.66 pixels
seemed to be too large to be used in clinical interven-
tions. Prostate MR volumes were warped using TPS by
Fei et al. [13] where the prostate centroid displacement
was observed to be 0.6 mm. Vishwanath et al. [37] reg-
istered prostate histological slices and MR slices to de-
tect prostate cancer using B-splines. Since the aim was
to detect cancer, quantitative values related to regis-
tration accuracy were not presented. A recent work by
Xiao et al. [39] proposed to build a spatial disease atlas
of the prostate using both B-splines and TPS. How-
ever, only qualitative results were presented. Oguro et
al. [30] registered pre- and intraoperative MR images
for prostate brachytherapy. Dice Similarity Coefficient
(DSC) value for the total gland was reported as 0.91
and the fiducial registration error was 2.3 + 1.8 mm re-
spectively. TRUS and MR multimodal registration for
interventional biopsy was attempted by Mitra et al.
[27]. The method was based on TPS with automatic
point correspondences generated with an average DSC
of 0.97 +0.01 for 4 patient datasets.

In this work a method to register TRUS and MR
prostate 2D images with B-spline free-form deforma-
tions and quadrature filter pairs is presented. The B-
spline registration uses uniform grids over the MR im-
age and NMI is used as a similarity measure [32], [19].
However, the novelty of the proposal is to use direc-
tional quadrature filter pairs to transform both the MR
and TRUS images into texture images obtained from
the amplitude response of the filter pairs and use these
transformed images for NMI computation. A similar
method has been used by Jarc et al. [21] employing
Law’s texture to compute the MI in order to regis-
ter far-infrared and visible spectrum gray-scale images.
Francois et al. [15] used texture-based statistical mea-
sures to register carotid ultrasound volumes where the
texture information was given by spatial Gabor filters.
The remaining paper is organized with the details of
the method in section 2. Results and discussions follow
in section 3 with the conclusions in section 4.

2 Materials and Methods
2.1 The Proposed Method and Algorithm

The proposed method uses B-spline deformations to
register 2D MR slice corresponding to the 2D TRUS
slice. This work is a feasibility study (improving on reg-
istration accuracy) on the type deformable registration
algorithm that may be used during prostate biopsy for
accurate extraction of biopsy samples. Therefore, the
corresponding 2D axial MR slice of the respective ax-
ial TRUS slice is identified by an expert that closely
match each other. In the clinical context, the idea would
be to track the z-coordinate of the TRUS axial 2D slice
with an electromagnetic tracking device attached to the
TRUS probe during biopsy and find an automatic slice
correspondence with a reconstructed 3D TRUS volume
and finally register to the 3D MR volume [40]. In our
work, once the slice correspondences are established,
the prostate in each of the images is then manually seg-
mented. However, we plan to use some automatic seg-
mentation methods proposed by Shen et al. [33], Cosio
[9] and Ghose et al. [16] for automatic real-time fusion
of multimodal prostate images. The optimal B-spline
deformations are obtained by maximizing the NMI as
similarity measure. The NMI of the fixed TRUS and the
moving MR images is computed from the image texture
energies obtained from the amplitude response of the
directional quadrature filters (section 2.3). The advan-
tage of computing NMI by this method is that the gray
level differences in the TRUS and MR modalities are
minimized, enhancing the inherent texture information
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Fig. 1 A schematic diagram of the proposed algorithm.

of the prostate. A schematic diagram in Fig. 1 shows
the work flow of the proposed algorithm.

2.2 Registration using B-splines

A common technique to represent a free-form defor-
mation is to employ spline functions as B-splines [32].
B-splines consist of a set of control points that can
be locally controlled on the image domain. Although,
the original B-splines equation is formulated for 3D-
deformable objects [32], [19], the spline functions in this
paper are represented for 2D images.

Let 2 = {(z,9)|0 <z < X,0<y <Y} represent
the image domain. The transformation between the mov-
ing and fixed images is given by T:(z,y) — (2/,y),
where any point (z,y) of the moving image is mapped
onto its corresponding point (2’,y’) on the fixed image.
Given a mesh of control points on the moving image
with a control point defined as ¢; ; with uniform spac-
ing of 6 mm, the nonrigid transformation T is defined
by B-spline functions as

3 3
T(l‘, y) = Z Z Bl

=0 m=0
where ¢ = [z/6] — 1, j = |y/0] — 1, u=2z/6 — |x/J]
and v = y/d — |y/d]. |.] is the floor function and B;
represents the [*? basis function of the cubic B-spline
functions such that

¢z+l,]+m (1)

Bo(u) = (1—u’)/6

Bi(u) = (3u® — 6u* +4)/6

Bo(u) = (—3u® + 3u® + 3u+1)/6 (2)
Bs(u) = u®/6

The B-spline free-form deformations are locally con-
trolled because the deformation at any point (z,y) is
controlled by its neighboring 4 x 4 control points. B-
splines provide a wide range of deformations by orga-
nizing the mesh of control points and the images in

a hierarchy [14], i.e. the distance between the control
points decrease introducing more control points while
the images move from coarser to finer levels using a
multiresolution Gaussian pyramid. The B-spline con-
trol points grid refinement is done using the standard
splitting matrix [41].

The similarity measure used for B-splines deforma-
tion is NMI (described in details in section 2.4) be-
tween the moving (M) and the fixed (F') images and the
optimization is solved using a quasi-Newton optimiza-
tion method as “Limited Memory Broyden-Fletcher-
Glodfarb-Shanno” (L-BFGS) algorithm [23].

2.3 Quadrature Filters

Band-pass quadrature filters have been used in com-
puter vision to access multi-scale image information like
local-phase, energy, angular frequency etc. Central to
the theory of quadrature filters in the analytical do-
main is the Hilbert transform [6]. The analytical signal
of a 1D real signal f(x) is given by

fa(e) = f(z) —ifn(z); 3)

where ¢ = v/—1 and fy(x) is the Hilbert transform of
f(x) defined by:

+oo T
fr(z) = = / ) 4 (4)

T ) T—T

& Fy(w) = F(w).i sign(w),

where, F(w) is the Fourier transform of f(z) and

. -1 w<0
sign(w) = {+1 w>0 (5)

Therefore, the analytical signal in Fourier domain is
obtained from (3) and (5) as

Fa(w) = F().[1 + sign(w)] (6)

To compute the local features of an image, localization
of both space and frequency is required and is not pos-
sible directly from the resulting analytical signal since
the Hilbert transform or analytical signal in (3) and (5)
is defined over the entire signal. Therefore, an alterna-
tive approach is to compute the local phase or energy
from the filtered version of the signal. The filter is an
even, symmetric, zero-DC filter f.(z) and its odd coun-
terpart is f,(«) which is the Hilbert transform of f.(x),
hence they are in quadrature. Therefore, the analytical
signal can be written as

fA( ):fe( )* ( )_ZH(fe('r)
= (fe(x) —ZH(fe(x))*f( )
= (fe(x) —ifo(x)) * f(2).

f(@)) (7)
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Fig. 2 Even and Odd log-Gabor quadrature filter pairs in spatial domain.

Where H(.) is the Hilbert transform and ‘*’ is the 1-D
convolution operator.

In practice, an approximation of the local amplitude
or energy (A(z)) and phase (¢(z)) is obtained by using
band-pass quadrature even and odd filter pair, f.(x)
and f,(x) respectively, where,

A) = lfelw) = F@E + Uole) # £(2) (%)
¢(z) = arctan { fe(z) * f(z)/fo(x) * f(x)} . 9)
A generalization of quadrature filters in 2-D is provided
as a set of filters tuned to a particular orientation and
are therefore called directional quadrature filters [20].
The magnitude of the complex filter response with
images gives the power portions of the texture process
contained in different spectral bands [1]. Log-Gabor
quadrature filters are used in this paper that are Gaus-
sian functions on logarithmic scale. The 1-D representa-

tion of log-Gabor function in frequency domain is given
by

1n2(w/w0)> (10)

21n%(k3)
where wy is the peak tuning frequency at 7/3 and 0 <
kg < 1.

Kg = exp <—i\/Mﬂ) ;

where 3 is the bandwidth fixed to 2 octaves. The peak
tuning frequency and bandwidth are optimized values
obtained from the MATLAB toolbox provided by An-
dersson and Knutsson [2]. Quadrature filters in direc-
tions 0°,45°,90° and 135° are used and the individual
even and odd filter responses are added to provide the
magnitude of the combined filter response. The even
and odd filters tuned to 0° are shown in Fig. 2. Fig.
3 shows the texture energies of the fixed TRUS and
the moving MR images when the 4 directional even-odd
quadrature filter pairs are applied. It is evident that the
gray level differences between the internal structures of
the prostate are minimized in MR image as well as the
shadow regions have disappeared in the TRUS image.

Gi(w) = exp <—

(©) (d)

Fig. 3 Application of quadrature filters on TRUS and MR
images. (a) and (c) are the fixed TRUS image and its corre-
sponding quadrature texture; and (b) and (d) are the moving
MR image and its corresponding quadrature texture respec-
tively.

2.4 Normalized Mutual Information

The magnitude responses of the quadrature filters ob-
tained in section 2.3 are used to compute the NMI be-
tween the moving and fixed images. The NMI is an
information theoretic measure that tries to reduce the
joint entropy of the images [35] and is given by

NMI = Csimila'rity = H(M F)

(11)
where Cgimilarity 15 the similarity measure for B-splines
registration that is maximized in the process, H(M)
and H(F') are the marginal entropies of the moving
(M) and fixed (F) images respectively, and H(M, F) is
the joint entropy of the images. H (M, F') can be written
using probability theory as

H(M,F) ==Y p(m, f)log [p(m, )], (12)
m. f
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where, p(m, f) is the joint probability distribution of
the images obtained from their joint histogram.

2.5 Data and Analysis

The proposed method is evaluated with datasets of 20
patients with average prostate volume of 56.7 £+ 22.0
ecm?®. The TRUS images were acquired with 6.5MHz
side-firing probe with SIEMENS Allegra and TOSHIBA
Xario machines and the axial T2 fast relaxation fast
spin echo MRI slices with slice thickness of 3 mm, rep-
etition time of 3460 — 3860 millisecs and echo time of
113.62 — 115.99 millisecs were acquired with GE Signa
HDxt. The axial middle slices in TRUS are chosen for
which the corresponding axial MR slices are identified
by an expert. Ideally the axial MR slice corresponding
and parallel to the axial TRUS slice should be obtained
by rotating the MR volume in accordance with the ro-
tational angle of the TRUS slice and then resampling
the axial MR slice parallel to the axial TRUS slice un-
der observation. However, we have not quantified the
TRUS rotational angle in our current experimental pro-
cess. The prostate is manually segmented from both
the moving MR and fixed TRUS images. A NMI-based
affine transformation between the TRUS and the MR
images is followed by the free-form B-spline deforma-
tion. An uniform initial B-spline control grid with a
spacing of 64 x 64 is placed on the moving image with
an average image size of 256 x 256. Fig. 4 shows the uni-
form B-spline control grids on the moving MR, image of
size 219 x 249 at the initial and final resolutions. The B-
splines deform at each resolution to maximize the NMI
computed from texture images that are obtained from
the magnitudes of quadrature filter responses.

Fig. 4 B-splines control grid with 2 refinements over the
initial placement on the moving MR image of size 219 x 249.
(a) shows the initial placement of the B-spline grids with 64 X
64 pixel spacing on the moving MR image and (b) shows the
final set of B-spline control grids on the transformed moving
image.

Common metrics to evaluate registration accuracies
are DSC [10], TRE [26], [25] and 95% Hausdorff Dis-
tance (HD) [18]. DSC is a measure of overlap of the
same labels (F) between the transformed moving im-
age (M(E)) and the fixed image (F(E)) and is given
by

2(M(E) N F(E))

DSC = M(E) + F(E)

(13)

A target is an anatomical landmark in the patient’s
body and is normally the centroid of a lesion, tumor,
gland, etc. that is not used to compute the transforma-
tion of the moving image to the fixed image. TRE is the
root mean square distance of such homologous targets
tp; and tq;, i = 1,2,--- , N on the moving and the fixed
images respectively and is given by

N

TRE = 5\ 3 (Tl 10 (19)

where, T(.) is the transformation of the moving im-
age. The targets used in our experiments are primarily
centroids of lesions and tumors in central gland, pro-
static urethra, sometimes centroids of tumor in periph-
eral region and the centroid of the central gland in few
cases where lesions or other homologous structures are
not visible in TRUS as in the corresponding MRI. The
repeatability error in the localization of the targets is
given as the Target Localization Error (TLE) computed
from the centroids of manually selected regions from 5
independent trials by an experienced radiologist.

Given a set of finite points A = {a1,...,ap} and
B = {b1,...,b,}, the Hausdorff distance between the
point sets is defined by

HD(A, B) = max(h(A, B),h(B, A)) (15)
where

A, B) = i — 1
h(A, B) = max(min [|la — b]]) (16)
and ||.|| is the Euclidean norm.

We have compared the proposed method against
two spline-based registration methods; 1) B-splines reg-
istration that maximizes the NMI computed from the
raw intensities of the multimodal images [32], and 2)
registration using TPS that uses contour-based auto-
matic correspondences to solve the affine and TPS weight
parameters [27].
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Table 1 A comparison of registration accuracies of the B-spline registration with NMI computed from intensities, from texture
and TPS registration. p is the mean and o is the standard deviation of the measures.

B-spline Registration TPS Registration
Patient# NMI from Intensities NMI from Texture Mitra et al. [27]
Rueckert et al. [32]
DSC TRE | TLE | HD DSC TRE | TLE | HD DSC TRE | TLE | HD
(mm) | (mm) | (mm) (mm) | (mm) | (mm) (mm) | (mm) | (mm)
1 0.902 | 5.07 0.10 9.35 0.896 | 4.09 0.22 7.31 0.971 | 9.36 0.22 1.84
2 0.980 | 0.37 0.09 1.07 0.964 | 1.50 0.14 1.30 0.957 | 3.98 0.10 2.32
3 0.973 | - - 2.08 0.953 | - - 5.45 0.974 | - - 2.09
4 0.985 | 1.91 0.28 1.07 0.962 | 1.40 0.29 3.96 0.982 | 5.21 0.49 1.40
5 0.889 | 9.08 0.04 8.06 0.869 | 5.65 0.05 6.76 0.972 | 2.11 0.07 2.35
6 0.869 | 6.11 0.04 6.16 0.975 | 2.70 0.07 2.23 0.979 | 1.17 0.05 2.32
7 0.959 | 0.90 0.12 5.04 0.889 | 1.94 0.09 8.82 0.977 | 4.43 0.12 2.61
8 0.976 | 4.70 0.03 3.38 0.964 | 1.11 0.10 5.81 0.978 | 3.57 0.05 2.96
9 0.960 | - - 4.93 0.982 | - - 1.32 0.978 | - - 2.39
10 0.952 | 8.29 0.09 5.98 0.981 | 4.04 0.13 1.04 0.972 | 6.09 0.04 1.98
11 0.962 | 6.12 0.04 3.03 0.950 | 1.69 0.04 3.72 0.972 | 2.98 0.12 2.22
12 0.944 | 1.58 0.25 4.60 0.934 | 0.31 0.16 5.18 0.971 | 2.44 0.12 5.00
13 0.961 | 1.00 0.05 4.83 0.878 | 3.42 0.05 7.39 0.980 | 3.06 0.07 1.84
14 0.896 | 7.32 0.05 6.50 0.965 | 1.85 0.05 3.12 0.986 | 1.75 0.07 0.82
15 0.942 | 5.01 0.05 6.06 0.948 | 2.32 0.13 5.02 0.968 | 2.29 0.07 2.22
16 0.974 | 7.27 0.13 2.90 0.950 | 4.71 0.13 6.50 0.970 | 1.86 0.07 2.71
17 0.894 | 4.32 0.12 7.18 0.872 | 3.22 0.23 7.64 0.982 | 0.18 0.32 1.04
18 0.985 | 0.51 0.26 2.32 0.975 | 1.77 0.29 2.87 0.982 | 0.91 0.26 1.64
19 0.936 | 5.12 0.19 7.01 0.969 | 2.91 0.43 7.09 0.983 | 1.47 0.23 1.66
20 0.939 | 5.03 0.20 5.51 0.975 | 2.83 0.21 2.45 0.973 | 3.11 0.30 2.08
w 0.944| 4.43 0.12 4.85 0.943| 2.64 0.16 4.75 0.975| 3.11 0.15 2.17
o 0.036| 2.77 0.08 2.30 0.039| 1.37 0.11 2.40 0.007| 2.18 0.12 0.85

3 Results and Discussions

The registration accuracies of our method are evaluated
in terms of DSC and 95% HD values for 20 patients and
TRE and TLE values for 18 patients i.e. only where ho-
mologous structures are visible both in TRUS and the
transformed MR images. Table 1 shows the DSC, TRE,
TLE and 95% HD values as obtained from the exper-
iments for B-spline deformations with NMI computed
from intensities [32], our method for B-spline deforma-
tions with NMI computed from textures and TPS reg-
istration [27]. A statistically significant reduction with
two-tailed t-test p = 0.02 is observed in the average
TRE value for B-splines with NMI computed from tex-
ture when compared to B-splines with NMI computed
from intensities with 2.64 £+ 1.37 mm and 4.43 + 2.77
mm respectively. Our proposed method shows an im-
provement of 1.18 times in TRE when compared with
TPS registration with average TRE of 3.11 £ 2.18 mm.
However, this improvement of average TRE over TPS
is not statistically significant. The average TLE for all
the methods are similar with 0.16+0.11 mm, 0.124+0.08
mm and 0.1540.12 mm for our method, B-splines with
NMI from intensities and TPS registration respectively.
It is observed from Table 1 that TLE is normally higher

for patient cases where the centroid of a larger region
is considered as the target.

The DSC value is a global measure of region over-
lap and the average DSC values for our method of
B-splines with NMI computed from texture, B-splines
with NMI computed from intensities and TPS registra-
tion are 0.943 4+ 0.039, 0.944 + 0.036 and 0.975 £ 0.007
respectively. 95% HD provides the contour accuracy for
which the average values of 4.75+ 3.40 mm, 4.85+2.30
mm and 2.17£0.85 mm are obtained for our method of
B-splines with NMI from texture, B-splines with NMI
from intensties and TPS respectively. We observe that
TPS registration based on control points placed over
the contours always has higher average DSC and lower
average HD values over the proposed B-splines regis-
tration with statistical significance (two-tailed ¢-test)
of p < 0.001 and p < 0.0001 for DSC and 95% HD
measures respectively.

TRE values of all patients are much lower with the
proposed method when compared to the B-spline method
with NMI computed from intensities except for patients
2, 7, 13 and 18 where the dark shadows near the edges
of the TRUS images are misinterpreted as the black
background. Higher DSC values are obtained from the
proposed method when compared to B-spline with NMI
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computed from intensities especially for patients 6, 9,
10, 14, 15, 19 and 20 and for patients 2, 9, 10 and 20
when compared to TPS.

Fig. 5 shows the qualitative B-spline registration us-
ing NMI from raw intensities, using NMI from texture
and the TPS registration in the form of checkerboards
for 6 patients (patient 6, 8, 10, 11, 13 and 15). As seen
in Fig. 5 for patients 6 (column 1), 10 (column 3) and 15
(column 6), the checkerboards (row 6) show good region
overlaps that are also evident from Table 1 for the pro-
posed method. TRE is a reliable measure of registration
accuracy than region overlap measure specially when lo-
calization of biopsy site is involved. Therefore, in spite
of the less satisfactory region overlaps in Fig. 5 for the
proposed method (row 6) with patients 8 (column 2),
11 (column 4) and 15 (column 6) when compared to
other methods (rows 4 and 8), lower TRE values are
obtained for the same patient cases with our proposed
method as seen in Table 1. In Fig. 5 we observe poor
region overlaps for patients 11 and 13 in columns 4 and
5 respectively. There may be two reasons for the poor
registration accuracy around the prostate contour, 1)
acoustic shadows in TRUS images around the rectum
do not provide any texture information and are con-
sidered homogeneous with the black background, and
2) part of the contour of the moving image may lie
far from the respective fixed image contour. In both
these cases, the control grids placed on the moving im-
age around the contour consider a large part of the
black background for the maximization of NMI with
the corresponding TRUS (textured) region and there-
fore the maximization process fails to reach a global
maximum. However, blurring of the prostate around the
bladder or rectum would not affect the contour regis-
tration accuracy since blurred regions still may contain
some texture. As seen for patient 15 (row 1, column 6)
that the blurring of the prostate around the rectum in
TRUS does not affect the overlap accuracy. It is also
observed that shadow artifacts and calcifications inside
the prostate do not affect the contour registration ac-
curacy. For instance, for patient 11 (row 1, column 4),
the acoustic shadow region inside the prostate does not
affect the overlap accuracy; however, the large part of
the shadow on the lower-right contour region deterio-
rates the contour overlap accuracy.

The texture obtained from the magnitude of direc-
tional quadrature filter transforms of an image mea-
sures the power portions of the image. The MR and
TRUS images have varied gray-level intensities and con-
trasts. Therefore, transforming the MR and TRUS im-
ages as texture energy images homogenizes the inten-
sity variations between them and reveals the underly-
ing prostate architectural information that is common

to both the modalities. Hence, the proposed method
shows better registration accuracies in terms of TRE
than traditional B-splines deformation with NMI from
intensities. The proposed algorithm is validated only
on TRUS-MR slices from the prostate mid-gland re-
gion and the performance of the same on the base and
apex regions is yet to be validated.

The algorithms are implemented in MATLAB 2009b
with a machine configuration of 1.66 MHz Core2Duo
processor and 2 GB memory. The average time require-
ments of our method of B-splines with NMI computed
from texture, B-splines with NMI computed from in-
tensities and TPS registrations are 797.72+202.59 secs,
147.25 4+ 43.81 secs and 76.22 + 29.79 secs respectively.
The computation time includes the time for affine and
nonrigid registrations for each of the methods. The ob-
vious reason of B-splines with NMI computed from tex-
ture being computationally expensive is due to the use
of 4 quadrature convolutions for each of the fixed and
moving images at each resolution of B-splines deforma-
tions. The lowest time of 397 secs and the maximum
time 1316 secs are recorded for the proposed method.
However, quadrature convolution and registration of
256 x 256 x 256 3D volumes are achievable at 3.05 secs
when programmed in GPU [11]. Therefore, paralleliza-
tion of the convolutions and our algorithm implemented
on GPU would ideally reduce the execution time to less
than 3 secs which is closer to the clinical requirement.

4 Conclusions

A method to register TRUS and MR prostate 2D im-
ages have been presented that uses B-spline deforma-
tions with a novel method of computing the NMI. The
NMI as similarity measure for the registration is com-
puted from texture energy of the images obtained from
magnitude of the directional quadrature filter pair re-
sponses. Log-Gabor filters with narrow bandwidth has
been used that allows to measure power portions of the
signal representing texture energy in case of 2D TRUS
and MR images. NMI computation involves reduction
of entropy of the images. The entropy between TRUS
and MR raw intensity images is typically more than
the entropy of texture images due to variations in the
gray-levels. Therefore, B-spline registration with NMI
computed from texture images provides more average
accuracy in terms of TRE than that with NMI com-
puted from intensity images. We observed from the ex-
periments that the average DSC and 95% HD values for
TPS registration show smaller error compared to the
proposed method and B-splines with NMI computed
from intensities. This is due to the fact that the TPS
registration in [27] is based on control points primarily
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placed on prostate contour. This results in higher con-
tour accuracy (related to both DSC and HD measures),
while B-spline control points are uniformly spread over
the prostate image. Since the final aim is accurate local-
ization of biopsy samples and TRE provides a measure
of registration accuracy for localized regions, it may be
better to choose TRE over DSC or other contour accu-
racy measures. In this respect our method of B-splines
with NMI computed from texture shows statistically
significant improvement over B-splines with NMI com-
puted from intensitites; and 1.18 times improvement
over TPS registration. However, if the clinical require-
ment is contour accuracy, TPS registration may be pre-
ferred over the B-splines registration.

The proposed method may be extended to 2D-3D
registration with the help of an electromagnetic track-
ing device eliminating the issue of choosing the slice cor-
respondence by an expert. Considering the feasibility of
the method of being used for clinical interventions, the
entire process may be automated and the algorithm can
be implemented on a GPU to be used during real-time
interventional needle biopsy procedures.
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Fig. 5 Qualitative B-spline registration using NMI from intensity images, NMI from texture images and TPS registration.
Patients 6, 8, 10, 11, 13 and 15 in columns. 1°¢ row shows the fixed TRUS slices, 2" row shows the moving MR slices,
374 — 4" rows show the fused MR and the checkerboards for B-spline using NMI from intensity images, 5t" — 6"

rows show
the fused MR and the checkerboards for B-spline using NMI from texture images and 7*" — 8" rows show the fused MR and
checkerboard for TPS registration.



