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Abstract

Purpose Statistical shape and appearance models play an
important role in reducing the segmentation processing time
of a vertebra and in improving results for 3D model devel-
opment. Here, we describe the different steps in generating a
statistical shape model (SSM) of the second cervical vertebra
(C2) and provide the shape model for general use by the sci-
entific community. The main difficulties in its construction
are the morphological complexity of the C2 and its variabil-
ity in the population.

Methods The input dataset is composed of manually seg-
mented anonymized patient computerized tomography (CT)
scans. The alignment of the different datasets is done with the
procrustes alignment on surface models, and then, the reg-
istration is cast as a model-fitting problem using a Gaussian
process. A principal component analysis (PCA)-based model
is generated which includes the variability of the C2.
Results The SSM was generated using 92 CT scans. The
resulting SSM was evaluated for specificity, compactness and
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generalization ability. The SSM of the C2 is freely available
to the scientific community in Slicer (an open source soft-
ware for image analysis and scientific visualization) with a
module created to visualize the SSM using Statismo, a frame-
work for statistical shape modeling.

Conclusion The SSM of the vertebra allows the shape vari-
ability of the C2 to be represented. Moreover, the SSM will
enable semi-automatic segmentation and 3D model gener-
ation of the vertebra, which would greatly benefit surgery
planning.

Keywords Statistical shape model - Second cervical
vertebra - Non-rigid image registration - Segmentation -
Principal component analysis

Introduction

The increased use of image guided spinal surgery has largely
improved precision for implant placement [1-8]. While
widely used in the lumbar spine, precision requirements are
far more critical in the cervical spine and need optimizing for
it’s increased use [1]. For example, the target bone volume
is much smaller [9], vertebral arteries have a complex and
convoluted anatomic relationship to the vertebral bone com-
plex, and the cervical spinal cord and nerve roots are in close
proximity [10-13]. Screw implantation in the cervical spine
is considered to be high risk [14]: screws are placed in the
isthmus, which measures about 6 mm while the screw diam-
eter is 4 mm so ideally the implant placement precision error
should not exceed 1 mm. Indeed, overall screw misplace-
ment rates have been well documented [15-17]. The C2, also
named axis, presents very specific challenges to the surgeon.
Not only is it morphologically the most complex of the entire
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vertebral column, but multiplanar CT 2D preoperative evalu-
ation of this trigonometrically complex 3D structure has not
substantially improved screw misplacement rates.

As described in [18], 3D models of an organ or bone
can be useful for the surgeon, particularly when bone qual-
ity may be poor (for example in osteoporosis), and is not
well visualized on standard imaging. This technique may
also have a particular application when a part of the C2
vertebra is affected by a bone destructive pathology (e.g.,
tumor) and that portion of the vertebra is not fully visu-
alized yet needs to be instrumented. 3D models are gen-
erated from segmented CT scans of patients. Image seg-
mentation is the process of partitioning images into dif-
ferent regions that represent anatomic structures. In the
above study [18], segmentation of the vertebra is done man-
ually with the 3D Slicer software [19,20]. The process
takes about 2h per vertebra, and this time delay makes it
unsuitable for some procedures, especially emergency surg-
eries. There is a need to automate segmentation process-
ing, and this is the main challenge for computer-assisted
medical applications. Major difficulties in image segmen-
tation are the complexity and anatomic variability as well
as the image quality available. A complete overview of
the different segmentation methods can be found in [21].
In [22], for example, a level set method is used for seg-
mentation but does not incorporate shape prior information.
Shape prior segmentation has been the most utilized and is
therefore established in medical imaging. The method uses
previously obtained data that document morphologic varia-
tions of the “standard” shape. This provides anatomic “cor-
rection” which can compensate for any image artifacts. A
graph cut method considering shape prior information is
employed in [23] but does not take into account the shape
variation, only the mean of the population shape. Statisti-
cal models include shape variations and can therefore be
employed to enhance segmentation of human anatomic struc-
tures (bones or organs). Probably the best known statistical
model algorithm for segmentation is the active shape model
[24].

A statistical model (SM) is a model of an anatomic struc-
ture that captures the anatomic variability in a sample popu-
lation obtained from a databank of medical imaging. A SM
can be placed into two different categories: The first is the
statistical shape model (SSM), which describes the average
shape and main variation modes of the bones. The second
is the statistical appearance model (SAM), which charac-
terizes the average bone density and variation. In [25], a
review discusses the SSM and SAM concepts and their main
applications. The authors demonstrate the potential of the
SM for diagnosis, evaluation and treatment of skeletal dis-
eases in particular osteoporosis, as well as implant design
and surgery planning. Currently, SMs have been created for
various anatomic structures and used to segment them. A
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complete overview of the different SSMs used in medical
image segmentation is presented in [26].

One of the main problems in building a SSM is to find
correspondence between the reference and target objects in
an automatic or semi-automatic way. The objects can be rep-
resented by images, surface meshes and point sets obtained
from X-ray (2D) or CT scans and MRI (3D); the represen-
tation is where the SSM building methods differ. Based on
2D images [27], describes a process to reconstruct 3D lum-
bar vertebra and in [28], correspondences are found by con-
verting the surfaces into a spherical harmonic descriptions
(SPHARM—PDM). However, this method requires closed
surfaces. A spectral-based mesh point matching method is
used in [29] to register the vertebra followed by statisti-
cal shape modeling and a machine learning-based boundary
detector for the segmentation while [30] proposes a model-
based segmentation approach using a region-based appear-
ance model with the following different steps: the spine curve
extraction, vertebra detection, identification and segmenta-
tion. Heitz et al. [31] presents a non-rigid deformation-based
method for constructing a SSM of cervical vertebras 6 and
7 (C6 and C7). Group-wise registration as in [32] avoids
biasing the SSM to the arbitrarily chosen reference shape.
Moreover, a comparison of different registration methods
for building SSMs was done for a vertebra and hippocampus
(less variability than the vertebra) and showed that in case of
bones with high variation in populations, the SSMs are less
accurate.

In this study, we examine the feasibility of creating a SSM
of the second cervical vertebra. Most of the above meth-
ods are for lumbar [27,32] and thoracic vertebra [22,23] or
the entire spine [29,30], and only a few studies [31] have
considered cervical vertebra, especially the C2 that is mor-
phologically the most complex. Indeed, this vertebra has a
unique and unusual shape to allow efficient head rotation.
Certainly, the main difficulties for building the C2 vertebra
SSM and segmenting are its large variability (see Fig. 1), with
about 20 % inter-population variation [33] and the difficulty
in distinguishing the separation between vertebrae C1-C2
and C2-C3, even directly viewing the CT scan. But also, the
limited surgical exposure and small size of the C2 vertebra
leave few visible identifiable anatomic landmarks, making
surface matching a surgical challenge and potential source
of error.

In this article, the process of building a SSM of the second
cervical vertebra is described in the “Methods” section. The
principal characteristic of our model is the use of a Gaussian
Process method to perform the registration step. Landmarks
are defined to constrain the Gaussian model [34] and so incor-
porate additional prior information to improve the registra-
tion performance and deal with the several shapes of the C2.
A multi-scale Gaussian kernel [35] replaces the Gaussian
kernel used in [36] which enforces smoothness and allows
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Fig. 1 Example of three C2
vertebra

flexible representation of the vertebra for solving the variabil-
ity problem of the C2. Evaluation of our SSM by measuring
of generalization, specificity and compactness [37] and also
generating a surface mesh vertebra from a new CT scan is
presented in the “Results” section, together with a newly
created module and its workflow that allows any SSM to be
visualized in the 3D Slicer Software. Having access to a C2
SSM will allow us to semi-automate and speed up the C2
segmentation process and perform rapid surgical planning
and/or the surgical planning updates in the operating room,
a key issue for surgeon acceptance.

Methods

The different steps involved in generating a SSM of the C2
are developed in this section and illustrated in Fig. 2.

First, segmentation is performed manually on the input CT
scans from the database. Secondly, for vertebra registration,

Input Data (CT scans)

¥

Segmentation

Label maps ———— > Reference Generation ]

[ Registration Framework ]4— Reference Surface Mesh

Y

Surface Mesh

¥

Model Building

C2 SSM

Fig. 2 Flow diagram of the SSM construction

alignment of the data is done, thus establishing correlation
between the Reference Surface Mesh vertebra and the target
vertebrae represented by Label Map. The C2 SSM is built
describing the main shape variations of the shapes in the input
database anatomy. Mathematically, it refers to an estimate of
the probability distribution from the dataset.

Input data

Our input data are composed of a series of 92 anonymized
cervical spine CT scans with no C2 pathology (the indi-
cation for the CT scans was a history of neck pain in the
context of trauma), which meets the requirement of data
to represent the shape variations of the object we wish to
model. This database has been made available on the vir-
tual skeleton database (VSD) Web site [38], an open access
repository for Biomedical Research and Collaboration. The
dataset is composed of 42 women and 50 men with an aver-
age age of 28.5+5.8years. CT imaging resolution ranged
from 0.3mm x 0.3mm x 0.6mm to 0.3 mm x 0.3 mm x
1 mm spacing. The vertebrae size ranges from 46.75 mm x
43.07mm x 33 mm to 68.28 mm x 60.32 mm x 56.4 mm.

Segmentation

As a SSM is based on the shape of the organ, only the bound-
ary of the object is useful. Segmentation consists of separat-
ing the object from the background to obtain a representation
of the surface. It is performed in two steps using the 3D Slicer
software [19,20]. First, a threshold method is applied to iden-
tify the edge of the bone (Fig. 3a). Secondly, a slice-by-slice
manual segmentation is necessary to fill the holes and remove
the remaining soft tissue (Fig. 3b). The resulting segmenta-
tion is called label map and is used in the next SSM building
steps.

From the label maps, it is possible to generate a sur-
face mesh vertebra, which is considered as the ground truth
and is used to compare and validate the registration method.
To obtain the “ideal” vertebra removing small artifacts, the
segmentation is smoothed out using the label map smooth-
ing Slicer module with o = 0.5 (standard deviation of the
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Fig. 3 The different steps
required to generate the C2
surface mesh. a Threshold
segmentation. b Slice-by-slice
segmentation. ¢ Surface mesh

Fig. 4 Reference Vertebra generated from the dataset

Gaussian kernel), resulting in a C2 surface mesh representa-
tion (Fig. 3c).

Reference generation

A surface mesh vertebra used as “reference” for alignment
and registration is needed to generate the SSM. To avoid
biasing the SSM to a particular vertebra in the training set,
a template surface mesh vertebra is generated in an itera-
tive process. A surface mesh vertebra is selected from the
dataset and registered to all other label map vertebrae with
our method described below (registration framework). The
mean is computed and registered to all the training set and
a new mean vertebra is produced which is compared to the
mean of the previous one. This method is repeated until there
is no significant change in the generated vertebra mean. The
reference surface mesh vertebra is represented in Fig. 4.

Registration framework

Registration needs to establish correlation between two
objects: in our case between the reference surface mesh and
the target image. This is generally the most difficult step
in SSM building. The goal is to find a spatial transform T,
defined as T'(x) : $2ref —> $2target, Where 2 is the refer-
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Fig. 5 Surface mesh vertebra with seven landmarks used for alignment

ence object domain and §2¢arget the one of the target objects,
which maps one object domain to the other.

Alignment of the vertebrae is performed to initialize the
transformation and then a non-rigid registration using a
Gaussian Process is applied. So, the transformation 7 can be
seen as a two-step process: a global one, Tgjobal (alignment)
and a local one, Tjocy) (non-rigid registration). The advantage
of first aligning the dataset is to improve registration results.

Alignment

A “Procrustes Alignment” (also called landmark registra-
tion) is performed to align the dataset to the reference sur-
face mesh. This method consists of defining some landmark
points on each image and testing a transformation @ (x),
which moves the images to match the reference mesh verte-
bra. The most readily identifiable landmarks are first placed
on the Reference vertebra and input data. Figure 5 shows an
example of a surface mesh vertebra (for a better overview)
marked with seven landmarks as placed in our study.
The transformation is defined as

D(x) =Ax 4+t (1)

where A is the rotation matrix, ¢ is a translation vector.
The goal is to find a transformation, which minimizes the
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distance between the transformed landmarks of the target
object {®(x1), ..., P(x;;)} and the landmarks of the refer-
ence shape {y1, ..., yn}. This is represented mathematically
by the following equation:

m
(A, 1) =argmin ) [|®(x;) — yi
AL =

- (2)
= arg minz JAC) +t — i ||2

L
The details to solve the equation and its minimum solution
are detailed in [39].

Registration

With the aligned dataset, a point set to image registration
is performed to find the spatial transform u that maps points
from one surface I'g (the reference surface mesh) to homolo-
gous points on the vertebra of the second image I (the target
image) from a space of deformation, . Mathematically, it
is defined as the optimization problem:

u = arg min Z[Ig, I, u]l + nZ%|u] 3)

uelF

where & represents a similarity measure and & a regularizer.

The method for doing this and used in this article is based
on [36] where the non-rigid registration is formulated as a
model-fitting problem using a Gaussian Process prior that
models smooth deformations of the reference vertebra. The
model is fitted to the target shape, to obtain a representa-
tion of the target shape, which is in correspondence with the
reference vertebra.

A Gaussian process is a probability distribution over func-
tion y(x) such as the vector y of y(x), evaluated at an arbi-
trary finite set of points xp, ..., Xx,, is Gaussian distributed
[40]. A Gaussian Process y ~ GP(u, »_) is then defined
by its mean u = E[y(x)] the reference shape in our case,
and its covariance (also called kernel) at any two values
> (xns xm) = E[y(xp)y(xm)]. A low-rank approximation
using the Nystrom method is performed on the covariance to

Fig. 6 A Constrained Shape
Model of the vertebra with
seven landmark points fixed

make the method computationally feasible and approximate
a parametric model so that each deformation can be written
as

u(x) = Mlai, ..., @] = pn(x) + D aikigi(x) )

i=1

with «; as the deformation parameters, A; as the eigenvalues
and ¢; the eigenvectors of the approximation. The covariance
function or kernel defines the process behavior and can be
arbitrarily chosen. A multi-scale Gaussian kernel k¢ is used
here and is defined as kg (x, x") = D" a; exp(||x —x’/crl.2||2)
where « is a scale factor. This kernel is utilized to enforce
smoothness and also a flexible representation of the vertebra.

Another important addition is the introduction of land-
marks placed by a knowledgeable expert in anatomy (radiol-
ogist, surgeon). Indeed [34], described a method to use land-
marks as additional information by integrating them into the
deformation prior.

The deformation of the Gaussian shape model is con-
strained by the landmark points, which remain fixed. Figure 6
shows the first main variation of the Gaussian Shape Model
constrained with the landmarks of the input vertebra.

This constrained shape model is fitted to the distance
map (Danielson distance Map in [41]) of the input verte-
bra label map instead of the label map itself to reduce com-
putational overhead. The advantage of introducing geomet-
ric constraints in a shape model is to allow space reduction
search in fitting which leads to a more robust registration.

Using that, the deformation u# can be expressed as
Eq. 4, and introducing the regularization term Z[u] =
> o?/ )Li2, we can formulate the general registration prob-

1

lem (Eq. 3) as

u* = arg min Z D(xj—I—M[otl,...,ot,,](xj))2

aq,...,0n
T xjelR

DI )
i=1

Here, D denotes the distance map that was computed from
the input labelmap. Equation 5 is a parametric optimization

Mean +20
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Fig. 7 Flow diagram of the registration method

problem and can be optimizated using a standard optimiza-
tion approach. We use an LBFGS optimizer, as implemented
in ITK [42] and a mean square metric. A summary of the
registration steps is presented in Fig. 7.

Model building

The construction of the SSM is based on a principal compo-
nent analysis (PCA), which allows the main shape variations
to be found. Each surface is represented as a vector and is in
correspondence thanks to the registration method. The mean
vector v and covariance matrix S are calculated by:

f):%Zvi (6)

1
n—1

> i = - " (7)

i=1

in which # indicates the number of datasets.

The covariance matrix S can be decomposed as S=UD?UT
using a singular value decomposition. The columns u; of the
matrix U are the eigenvectors of the covariance matrix S,
commonly named the principal components of the model,
and define the main modes of variation of the dataset. The
diagonal matrix D is composed of the corresponding eigen-
values A; of the eigenvectors, which describe the variance
of the model represented by the following principal compo-
nent. The matrix of the eigenvalues D is sorted, so that the
first value represents the maximal variance associated with
the eigenvector u 1. In this way, the SSM v can be character-
ized:

@ Springer
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A new and unique shape is then defined by a vector o =
(o1, ..., 0ty), and m is the number of principal components
that model the possible model. The assumption that the vector
« is distributed according to a normal distribution .47 (0, I,;;)
leads to the fact that the input objects follow a probability
distribution A4 (v, S).

Evaluations

Compactness (ability to use a minimal set of parameters),
generalization (ability to describe instances outside of the
training set) and specificity (ability to represent only valid
instances of the object) were used to evaluate the resulting
SSM as well generating a surface mesh from a CT scan using
the SSM. The open source toolkit Statismo [43] is used to
perform registration and model building.

Compactness

The cumulative variance captured following the number of
principal components is calculated. It allows model compact-
ness to be studied that means that the variability of the model
must be described using as few modes (or components) as
possible. It is calculated as the cumulative variance

M
CM) =" h ©)

i=1

where A; is the ith eigenvalue. C (M) is measured as a func-
tion of the number of principal components M. The standard
error of C (M) is determined from the number of datasets n:

M
ocm) = Z 2/nk; (10)

i=1
Leave-one-out experiment

To evaluate the generalized ability of the SSM to represent a
new instance of an object (i.e., a new C2 shape) not present in
the training data, a leave-one-out experiment is performed.

A model is created using the reference surface mesh gen-
erated in the method section and all of the training sam-
ples except one (the test sample). Then the left-out sample
is reconstructed using the generated model. To evaluate the
error between the test sample and the resulting shape, the
root-mean-square (rms) distance is calculated between the
two shapes. The experiment is repeated leaving out one train-
ing sample each time and an average the distance error calcu-
lated. Mathematically, the generalization ability G(M) and
its standard error o () are defined as
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Fig. 8 Flow diagram for generation of a surface shape model from an input CT scan: semi-automatic segmentation

1 n
G(M) = — > Di(M) (1)
i=1

o
7 = Jo

where D; (M) is the rms distance between the two shapes,
n the number of samples and o the standard deviation of
G(M).

12)

Specificity

A specific model should only generate instances of the object
class that are similar to those in the training set. For this, a
population of instances is generated using the SSM and is
compared to the data of the training set. The specificity S(M)
and its standard error og(s) are then measured using

1 N
S(M) = > Dj(M) (13)
j=1

o
OS(M) = —F= < (14)
VN -1)
with N the number of samples (N = 100 in our study),
D;(M) the distance between the shape generated by the
SSM (in the range of parameters [—3X, +3A]) and the nearest
shape of the training set, and o the standard error of S(M).

Using our SSM for the generation of a surface mesh from a
CT scan: semi-automatic segmentation

The main application of the SSM that we built above is gen-
erating the surface mesh vertebra from the input CT scan

allowing, for example, screw placement surgery planning.
For this, the method described in the registration part is used
with a few adjustments. Automatic threshold segmentation
is performed on the input CT scan to obtain a label map.
The SSM is then constrained by the landmarks, instead of
the Gaussian shape model. The main steps are presented in
Fig. 8.

Slicer module (SSM viewer)

A new Slicer module, SSM Viewer was specifically devel-
oped to display the created SSM. This module can be down-
loaded into the latest version of Slicer and installed as an
extension.

Thanks to the SSM Viewer module, the main variations
in any type of bone can be visualized, in our case, the C2.
Figure 9 presents the layout of the module. By varying the
sliders of the principal components and the standard devia-
tion, all shape populations are displayed as a surface mesh,
and further by converting the surface as a volume in the axial,
coronal and sagittal views. The eigen spectrum also appears
that enables the number of datasets to be confirmed, very
useful for SSM building.

Results and discussion
Compactness
Shape modes

Figure 10 shows the mean and the first two modes of the
PCA. In the first row, the mode corresponding to the largest

@ Springer
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Fig. 9 The Slicer module SSM Viewer to visualize the main shape variations of the model

v+ 30

v— 30

Mode 1

Mode 2
Mean v

Fig. 10 The first two modes of variation in the linear SSM of the
vertebra showing the mean 3 SD

eigenvalue is varied between —30 and +3o, and in the sec-
ond row, the same is done for the second mode. The result
shows the large variability found in the C2 and that the size
of the bone is mainly captured in the first modes.

Eigen Spectrum

The cumulative variance captured following the number of
principal components is shown in Fig. 11.

The first 20 modes captured 88.5 % of the cumulative vari-
ation among the ensemble of the C2. Specifically, mode 1
captured 27.1 %, mode 2, 14.2 %, mode 3, 10.4 %, and mode
4, 5.7 % of the variation.
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Fig. 11 Captured variance according to the number of principal com-
ponents

Leave-one-out experiment

The result of the generalization ability G (M) is presented in
Fig. 12.

For the first mode of variation, the reconstruction error is
0.93 mm with a confidence interval of 0.02 while above mode
60, the error converges on 0.33 mm. The results obtained with
our method are better than those presented in [31]. Indeed, for
mode 14, the error is 0.63 mm with a confidence interval of
1.3 mm while with our algorithm, itis 0.59 mm with 0.01 mm
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Fig. 12 Leave-one-out experiment following the number of principal
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Fig. 13 Specificity following the number of principal component

of SE. Moreover, in [32], for L2 vertebra, four methods are
compared and generalization with rms distance converges
with values above 0.7mm which is larger than the values
obtained here.

Specificity

The result for the specificity is shown in Fig. 13. Our model
shows better specificity than the models presented in [32],
which is important to represent only valid instances of the
vertebra. Indeed, for mode 10, our specificity is about 0.8
instead of more than 1.2 for others.

Generation of a surface mesh from a CT scan
C2 Surface mesh generation was tested on 31 CT scans from

anonymous patients. Using the 3D Slicer software [20] (man-
ual segmentation), generation of a representative surface

(mm)

3.7%
3411
3032
2,653
2274
1.695
1.516
1137
0.758
0.379
0.000

Fig. 14 Euclidean Distance between the manual and generated surface
mesh vertebra

Table 1 Comparison with different methods

[29] [30] Our method
Mean (mm) 1.4 0.81 0.9
SD (mm) 0.4 0.97 0.12
Segmentation time 2 min 3 min 30s

mesh takes about 1 h. In contrast, using our SSM method, an
average of 2 min is required from landmark placement on the
CT scans to surface mesh generation. The Euclidean distance
from the manually generated surface shape and that obtained
using our segmentation algorithm gives a mean distance error
of 0.90 £ 0.12 mm. The shape differences between the man-
ual and SSM-generated surface mesh are mainly located in
the inferior articular facet of the vertebra (see Fig. 14), a
zone where the distinction between two vertebras is difficult
to identify even directly viewing the CT scan.

We compared our method to the methods used in [30]
and [29] which also use Statistical Models for vertebra seg-
mentation. Table 1 presents the results for the mean and the
standard deviation of the distance error between the ground
truth mesh (manual segmentation) and the generated mesh,
and also the computation time of the C2 vertebra algorithm.

Our method has a slightly higher mean error than [30] but
is better than [29]. Moreover compared to both, the standard
deviation is lower with our method. Our SSM-based segmen-
tation is clearly faster than the other two methods (305 vs. 2
and 3 min), not considering landmark placement by the user.
If we take into account landmark placement, segmentation
takes 2 min, comparable to the other techniques, which are
entirely automatic (no landmarks). While we loose a bit of
speed and the automatic of the algorithm we gain in precision
of the segmentation of the C2.

The SSM robustness in segmentation could be improved
by focusing the landmarks to the region of interest depending
on the problem: the isthmus for screw placement for exam-
ple. Fitting can also be enforced in particular zones such as
the inferior articular facet, to get closer to the manually seg-
mented vertebra.
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Conclusion

A SSM of the second cervical vertebra was generated from
CT scans of patients with normal C2 vertebrae and clearly
illustrates its anatomic variability. One of the major chal-
lenges was to find point-to-point correspondence between
the reference surface mesh vertebra and the input data ver-
tebrae represented as Label Maps. This was resolved using
a Procrustes Alignment” on the manually defined landmarks
to align the Label Maps and registration is treated as a
model-fitting problem. In generating the SSM a Gaussian
Process method is used for registration and the incorpo-
ration of additional prior information by defining land-
marks to constrain the Gaussian shape model. The nov-
elty of this method is a multi-scale Gaussian kernel for the
Gaussian Process that replaces the usual simple Gaussian
kernel and is utilized to enforce smoothness as well as a
flexible representation of the vertebra, necessary for its high
variability.

Compared to state-of-the art methods for SSM building,
this registration method presents an improvement in results
for a complex and variable bone like C2. The compactness
analysis with the eigen spectrum shows that this registration
method allows compact SSM to be obtained. Similarly, gen-
eralization demonstrates that the SSM can represent a new
unknown vertebra shape and outperform the results obtained
with other SSMs. The specificity analysis presented better
results, which is important to represent only valid instances
of the vertebra. The first results for the SSM robustness in
segmentation show clear improvements compared to previ-
ous methods due to incorporation of prior information though
user interaction is needed.

In conclusion, SSMs are invaluable tools for rapid and
precise surface merge algorithms for 3D model generation,
diagnosis (scoliosis, trauma modeling of broken vertebrae
elements) and robotic surgeries.

Notably, using the C2 SSM described here, the surgeon
will obtain the 3D model of the vertebra almost instanta-
neously after the patient CT scan, enabling rapid planning or
adaptation of planning for spine surgery. This process will
facilitate image guidance surgical techniques for complex
C2 instrumentation for segmental vertebral instability due to
trauma, destructive tumors or inflammatory processes. Addi-
tionally our SSM may be extended for use in a wide range of
bone or organ surgeries.
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