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Abstract

Purpose Precise knee kinematics assessment helps to diag-
nose knee pathologies and to improve the design of cus-
tomized prosthetic components. The first step in identifying
knee kinematics is to assess the femoral motion in the
anatomical frame. However, no work has been done on patho-
logical femurs, whose shape can be highly different from
healthy ones.

Methods We propose a new femoral tracking technique
based on statistical shape models and two calibrated fluoro-
scopic images, taken at different flexion—extension angles.
The cost function optimization is based on genetic algo-
rithms, to avoid local minima. The proposed approach was
evaluated on 3 sets of digitally reconstructed radiographic
images of osteoarthritic patients.

Results 1t is found that using the estimated shape, rather
than that calculated from CT, significantly reduces the pose
accuracy, but still has reasonably good results (angle errors
around 2°, translation around 1.5 mm).
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State of the art

Knee kinematics assessment has great importance both to
understand the problems associated with a large number of
knee pathologies and to improve the design of prosthetic
components [1,2]. In case of severe osteoarthritis, that are
eligible for joint implant surgery, in vivo pre-operatory knee
kinematics is fundamental to understand the relative motion
between the three joint bones. The relative movement can
give an insight of how the ligaments are stretched and their
stability, and how could be the feeling for the patient. In this
way, pre-operatory knee kinematics could help the surgeon
to decide which prosthesis should be used and how to correct
the misalignment of the bones [3].

Currently, the reconstruction of the pose of the knee can
be done using 3D scan such as real-time magnetic resonance
imaging (MRI) or through a 2D/3D registration method that
superimposes the shape extracted from MRI or computed
tomography (CT) onto an image, usually X-ray or fluo-
roscopy. Real-time MRI is suitable to study joint kinematics,
as it evidences the muscle structure during movements. How-
ever, it can only be used with relatively slow movements,
and the accuracy obtained increases from 1 mm to more than
3 mm depending from the velocity of the movement. In addi-
tion, MRI scans are highly expensive [4]. Traditional CT and
MRI provide an accurate evaluation of the morphology of
the knee, but are limited to static positioning of the patient.
A great number of pathologies, such as patellofemoral pain
and osteoarthritis, require a dynamic evaluation of the knee
motion [1,3,5].

Three main methods are used in research centers to in
vivo assess knee kinematics: using skin-mounted markers,
implanted markers and 2D image-based methods.

Skin-mounted retroreflective markers are used in gait
analysis [6-8] using optical localization techniques. Since
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this type of measurement suffers from relative motion
between the skin and the bone, results are not reliable to
properly investigate joint kinematics.

The second method is based on tantalum markers
implanted in the bone; even if this method is much more pre-
cise than the previous one, it is not commonly used in clinics
due to the high invasiveness of the intervention [5,9,10]. In
[11], the authors used mono and biplane fluoroscopic images
to accurately reconstruct the pose of the patella, implanting
markers in cadaver specimens and artificially flexing the knee
joint.

The use of dynamic fluoroscopy to detect knee kinematics
is described in [12]. The authors use a fluoroscopic sys-
tem flashing at 30 Hz, obtaining continuous images of the
knee flexion from 0° to 120°. A static CT is projected to
reconstruct knee kinematics. A similar protocol is used in
[13]; the authors describe a method to align CAD projec-
tions of knee implants to fluoroscopic images. They perform
dynamic acquisitions at 8 Hz moving a Sawbone model with
an implant between 0° and 90°. In [14], the authors intro-
duced statistical shape models (SSMs) to reconstruct the
shape of the femur. They performed a deep analysis on the
optimal number of X-ray scans that allow an accurate recon-
struction of the shape of the knee. Their method was based on
manual segmentation of the bone contour from X-ray images.
In [1], the authors introduced a fully automatic technique
to extract the contour from the fluoroscopic images, based
on a Canny edge detector [15]. They used two fluoroscopic
sequences of drop-landing motion with intra-fluoroscopic
distance between 58° and 82°. They used a cadaveric knee
as gold standard, implanting tantalum markers and simulat-
ing motion of the knee while doing fluoroscopic imaging of
the joint. Their mean errors are less than 1 mm, spanning to
4 mm with both the CT-extracted shape and the SSM. How-
ever, the method proposed by Baka was only evaluated on
healthy subjects, without evidence that the same accuracy
could be obtained with osteoarthritic patients.

The aim of this work is to propose a method able to
reconstruct the 3D pose of the femur using biplane flu-
oroscopies and a SSM. We used osteoarthritic femurs in
order to expand the validity of the method not only to
healthy subjects. The method was evaluated generating dig-
itally reconstructed radiographs (DRRs) from static CT
acquisitions of osteoarthritic patients and simulating femur
flexion—extensions. We evaluate the accuracy of the pose
reconstruction of the distal femur with both the CT seg-
mented shape and SSM.

Methods

Our femoral kinematics tracking method is based on SSM
whose pose is obtained using a biplane fluoroscopy. We
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applied a genetic algorithms (GA) optimization technique,
in order to improve the accuracy.
The tracking algorithm is divided into three main phases:

— Statistical shape model creation (2.1),
— Shape pose initialization (2.2),
— Femur tracking (2.3).

Statistical shape model (SSM) creation

SSM give an effective parameterization of the shape vari-
ations found in a collection of sample models of a given
population [16,17]. For our study, we used the distal part of
the femur only. Each bone model (M, witho = 1, ..., O)
is represented as an ordered set of p = 1,..., P vertices
M, = [x1, Y1, 21, -+ Xp, Yp> Zps -+, XP, yp, Zp] and a list
of triangular facets connecting the vertices. Applying the
algorithm described in [18], we found the correspondence
between corresponding vertices on different shapes. The
SSM is defined as the mean model M and a set of eigenvec-
tors obtained applying principal component analysis (PCA)
to the model vectors M,.
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where 03 are the descending-order eigenvalues of the covari-

ance matrix D and M, are the corresponding eigenvectors.
Every instance of this SSM is then expressed as:
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where «, is the weight corresponding to the oth eigenvec-
tor VIO and O’ is the number of significant eigenvalues
(0O’ < 0). In our dataset, O = 24, O’ = 23. For this
study, we used 24 MRI datasets of healthy knees, from
which we semiautomatically segmented the femur contours
using Amira® (VSG | FEI, Mérignac Cedex, France). From
each volume, we extracted the femur’s triangulated surface
with 2562 points and 5120 facets using the marching cubes
technique [19]. To create the SSM, corresponding points on
different shapes have to be determined [20,21]. In our case,
corresponding points between the O shapes were selected
using the automatic algorithm described in [18]. Within the
corresponding models, we computed the mean model and the
covariance matrix.

All the patients signed an informed consent, and the insti-
tutional review board approved the study.
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Shape pose initialization

The femur tracking dataset is composed of two fluoroscopic
images (frames) acquired during knee flexion—extension at
each time step r with = 0, ..., T. The contour of the distal
femur is extracted on each fluoroscopic image.

We defined a set of /(I = 7) landmarks on the mean
model (ﬁi(M), withi =1, ..., I)that were used to initialize
the pose of the SSM in the world reference frame (RF) YRF
(Fig. 2). The landmarks were identified as the most identi-
fiable anatomical landmarks in the images. Recent studies
have addressed the topic of automatically segment contours
from X-ray images using random forests [22,23]. However,
these methods need to be trained over a consistent number
of images to be used with nonstandard projections. In order
to save time and to give the possibility to use any angle of
projection, the operator is asked to manually identify the
I corresponding landmarks on the two fluoroscopic images

att = 0y withi = 1,...,7andn = 1,2, where i
indicates the number of the landmark and » indicates the
view).

Each fluoroscopic image has its own calibration parame-
ters, so that we know the position of the source and the
position of the image plane in the “RF, as well as its normal
vector. The initialization is used to estimate the initial posi-
tion of the SSM with respect to the 2 fluoroscopic images,
i.e., “TY . We can back-project each landmark pixel (¢;(,))
to the corresponding source S,. In this way, for each land-
mark we find 2 skew lines (one for each projection) that
should (ideally) intersect in one point (the 3D position of the
landmark) but, due to errors and noise, they actually do not
intersect. Thus, to define the position of the landmark we take
the middle point of the shortest line connecting the rays (see
Fig. 1).

Ideal 3D
position of
the landmark

As the landmarks are defined both in the 3D space and
on the model, we can use a simple registration algorithm for
corresponding points to find the initial pose of the model in
the 3D space [24]. z, o) is the landmark on the model surface,

the similarity transformation wT% (rotation R, translation t
and scaling factor s) transforms the model landmarks into
L;sswmy (Fig. 2). To obtain the transformation * ’i‘% ,wedefine
acostfunction F based on the Euclidean distance between the
transformed landmarks and the position of the points defined
by the backprojection of the landmarks on the images £; 3p).

7
F =" llLigp) — Lisswll

i=1

Lissmy =5 -R-Ligp +t 3)

We thus apply the same transformation matrix w’i‘% to all
the points of the mean model (M).

Mssm) = 70 . M. 4)

Femur tracking

After the manual initialization of the pose in the first frames,
the algorithm returns the pose of the shape as homogeneous
matrix *'T",. To track the pose of the femur in the  RF during
time, we repeat the steps described in “Pose optimization”
section for each sample time t = 0, ..., T. In each frame,
the initialization is given by the homogeneous matrix of the
previous frame (YT 1).

The shape of the femur is optimized at = 0, as described
in “Shape optimization” section, and then kept constant for
all the tracking times.

Fig. 1 Definition of the landmark pose in the 3D space. In the right part of the figure, the position of the real landmark is shown (£;3p))
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Lyssm)

YWRF

Fig. 2 Schematic of the reference frames involved in this algorithm.
Points on the image plane, expressed in pixel index (i, j), are in the
PRF", where n indicates the number of the image plane. " RF is the
reference frame of the SSM, and “RF is the world reference frame.
Points in red on the model are the landmarks Z; 7, points in blue on

Contour
edge

Si

Fig. 3 Definition of the contour edge describing the silhouette of the
model. The red points are the projection of the silhouette points. The
green points are the extracted contour

Pose optimization

Using the initialization of the SSM’s pose in the *RF, for
each given image plane 'RF" we can extract the silhouette
of the model, identifying the points that share a “contour”
edge. This edge is in common between two facets that have
the normals pointing in opposite directions from the corre-
sponding source S, (see Fig. 3). We define the silhouette of
the model as Sj, (), with j, = 1,..., J;;n = 1,2, where
each point is shared between two “contour” edges. We then

@ Springer
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the image are the selected landmarks on the first image ¢;,), points in
purple are the landmarks in the RF extracted from source-image rays
( Li@y ), and points in green are the model landmarks in the *RF after
the initialization (L;ssm))

project the silhouette extracted on the corresponding image
plane, defining the corresponding set of pixels on each image
plane as s, ().

For each contour pixel in ¢, (), we find the nearest pixel
of s;,( and associate it with the corresponding silhouette
pointin S, (»). We call Sy, () the associated silhouette point.

For each point on the image plane, we define the projection
line from the source (S(;)) and find Cx, (n), the closest point
on the line between the line and the corresponding silhouette
point S, (), as shown in Fig. 4.

The cost function Fpose to minimize can thus be defined
as:

Ky
Fpose = min z Dy,
T \ k=1
Dy, = | Cr,m) — St | (5)
YR, Yt
me — |: Om %mi|

where “T!, (s, "Ry, "t,) indicates the transformation
matrix from the ”RF in the YRF, composed of rotation,
translation and scaling factor, || ... || is the Euclidean dis-
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Fig. 4 Definition of the objective function: minimization of the dis-
tance D

tance, and Cy, ;) and Sy, (,) are, respectively, the 3D point
on the contour line and the 3D point of the silhouette of the
model.

A GA optimization process is performed independently
on each frame, to avoid local minima [25]. The popula-
tion is composed of the parameters that define the pose
of the femur in the world reference frame, i.e., Euler
angles, translation vector and scaling. The initial popula-
tion (40 samples) of each minimization is extracted from
uniform parameter distributions defined as small deviations
(£10°, £10 mm, £0.1 scale factor) from an initial pose, i.e.,
the initialization pose for the first frame or the result of the
previous minimization otherwise. The maximum number of
iterations was equal to 100.

Shape optimization

After the first optimization of the pose, we performed a shape
optimization, based on the algorithm described in [16]. The
shape optimization process implemented a closed form solu-
tion for the best approximation of the original shape with a
deformable model. The optimization is inserted in a mini-
mization procedure Fipape, based only on the O — 1 = 23
weights of the SSM («,).

Kll
F shape = n;in Z Dkn
* k=1 (©6)

Dkn = ”Ckn(”) - Skn(”) ||

S3 Sz

Fig. 5 Description of the virtual environment setup for the DRR cre-
ation. The CT model reference frame was used as world reference frame
(orange reference frame). The source of Ly was established on the y-
axis, as well as the center of L. L ¢ is obtained rotating the source-plane
axis of 10° on the x—y plane. F is obtained rotating the source-plane
axis of 90°, having it correspondent to the x-axis [27]

Validation
Datasets

In order to validate our tracking algorithm, we used the
datasets of three different patients, which have, respectively,
severe, mild and moderate osteoarthritis of the knee. For each
patient, we have the CT scan and we generate the DRRs.

The CT dataset was composed of DICOM images acquired
with a SIEMENS Sensation 64 CT machine. Each slice is
512 x 512 pixel (0.3516 mm/pixel) with a slice thickness of
0.6 mm and a spacing between slices of 0.4 mm. In order to
assess the model reconstruction performances, we segmented
the bone shape using Amira® (VSG—FEI, France).

For each patient, a virtual environment around the CT
was created, in order to simulate fluoroscopic scans from
three different point of views. Eleven angles of flexion were
simulated for a total of 11 x 3 patients x 3 views =99 images.
The center of the CT dataset was taken as the “ RF. The setup
of the acquisition was virtually created in order to have the
ground truth for the pose of the femur. The center of the CT
dataset was taken as the WRF. The DRR is built integrating
the density of each voxel of the CT along the direction of each
ray as in [26]. Three different sources and image planes were
simulated for each patient, resulting in three sets for each
patient: The first image shows a lateral view of the femur
(Lo), and the second and third images show a view rotated
on the sagittal plane of 10 (L o) and 90° (F') (see Fig. 5). To
represent the knee flexion—extension, we rotated the images
T times (t = 0,..., T, with T = 10). The pose of the CT
shape is fixed, and the source and the image plane rotate
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Fig. 6 Description of the virtual environment setup for the DRR cre-
ation. To represent the knee flexion—extension, we rotated the images
T times of 8° each (T = 10). Sg indicates the position of the source of
image 3 at time 0, Sg indicates the position of the source of image 3 at
time 5, and S%O indicates the position of the source at time 10, i.e., after
80° of rotation from time 0

in order to simulate a rotation of the femur. To build the
images on the lateral plane, we rotated the image plane of 8°
clockwise. The same rotation is made on the frontal plane,
rotating both the image and the source, to get a consistent
motion of the femur in the 3D space (see Fig. 6).

Experimental protocol

To reduce the computational effort of the minimization func-
tion, we used 3D models with a reduced number of points
(1:8). In order to evaluate the performances of the shape
reconstruction and the tracking separately, we used the CT-
based shape and the SSM shape. An open source software
called cloud compare (www.danielgm.net/cc) was used to

Approximate distances (320 values) [8 classes)

120 o

100 1
80

60

Count

40

20 ]

—T T T T

-3 0 3 6 9 12
Approximate distances (mm)

assess the differences between the SSM and the CT shape.
The software returns both the point to shape distances for the
meshes (calculated as the distance between points and facets)
and a graphical view of them. Referring to Fig. 5, we call L
the lateral view (Image 1 in the figure), L the projection at
10° (Image 2 in the figure) and F' the frontal view (Image 3
in the figure). The tracking algorithm was then computed on
the following images sets:

— CT(Lo — L10): Tracking is done using the CT shape and
images Lo and L.

— CT(Lg — F): Tracking is done using the CT shape and
images Lo and F.

— SSM(Ly — Lip): Tracking is done using the SSM shape
and images L and L.

— SSM(Ly — F): Tracking is done using the SSM shape
and images Lo and F.

These four setups are tracked for each one of the three
models from which the DRR were generated. Kruskal-Wallis
test p < 0.05 was performed to verify the significative dif-
ference between the median of each test.

Results

We tested the capability of the algorithm to deform the SSM
in order to better approximate the CT shape and the ability to
reconstruct the pose of the femur with two images per sample
time.

In most cases, the distance between the SSM and CT was
less than 3 mm (Fig. 7; Table 1).

For each CT shape, we identified the anatomical axes (as
defined in [28]) and used these axes to report the errors.

As in [29], we defined the precision as the standard devi-
ation of the error left after removing the mean error of all
frames for that specific sequence. Difference in coordinate

15

Fig. 7 Similarity between the original CT mesh and the reconstructed SSM mesh
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Table 1 Mesh comparison statistical parameters: distances from point
to surface represented as mean and standard deviation

DRR 1 (mm) DRR 2 (mm) DRR 3 (mm)
SSM (Lo — L1g) 0.516 £2.438 —0.607 £5.104 2.188 £2.933
SSM (Ly — F) 0.545£2.391 —0.418 £4.955 2.066 £ 2.835

system definition is thus minimized, as it is mainly formed
by mean error. The three sequences (one for each patient)
are then considered as a single population. In Fig. 8, the box-
plots of the angular precision for each anatomical axes are
shown, while in Fig. 9 the translation precision on each axis
is shown. Kruskal-Wallis test was performed to verify the
significant difference between the median of each test.

Discussion

In this paper, we present a femoral kinematics reconstruction
technique based on biplane fluoroscopic images taken during
knee flexion—extension movements using SSMs.

The tracking capabilities of the proposed method were
separately evaluated using the exact model, semiautomati-
cally reconstructed from the CT dataset, and the implemented
SSM [18].

Our approach shows the applicability of a semiautomatic
algorithm for 2D/3D registration using SSM. With respect
to dynamic MRI, our method is less expensive and more
accurate [4]. Compared to actual clinical procedures, that
are based on a previous static CT or MRI scan and a man-
ual fitting of the shape, this method is less expensive (as CT

Rotation precision
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Fig. 8 Rotation precision with respect to the ground truth (known as artificially generated). The height of the box indicates the median value and
whiskers extend from the 25th to the 75th percentile. Square parenthesis above two boxes indicates that the two populations are statistically different
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Fig. 9 Translation precision with respect to the ground truth (known as artificially generated)
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and MRI can be avoided) and more accurate due to the auto-
matic fitting. The ionizing radiation given to the patient in
our procedure is just a few hundredths of a mSv (consider-
ing a total of 22 images and an average dose of 0.001 mSv
for each image, we have a total dose of 0.02mSv, much
lower than a 2.2mSv average dose absorbed with a CT)
[30,31]. Compared to skin-mounted markers, our system
does not suffer from relative movements between the skin
and the bone and is thus suitable for accurate joint kinemat-
ics studies [6—8]. Our method proved to be stable without
relying on implanted markers or joint implants that will
return more accurate results at the price of high invasiveness
[5,9,11].

In order to have the ground truth pose of the model, we
artificially simulated the fluoroscopic projections using DRR
technique. Our SSM was derived using 24 MRI datasets of
healthy patients. Such a number of samples is quite limited
compared to other dataset in the literature; e.g., [2] used 43
CT images of the knee, and [16] used 30 CT-based models
of the hip. When we evaluated the exact model reconstruc-
tion ability of our SSM and the implemented deformation
technique, we found residual errors on the order of 2.2 mm
as median Euclidean distance in the worst case. Such error
is due to the different levels of cut of the femoral diaphysis
and to the limited number of femurs used as SSM. Also, the
subject used to obtain the DRR was osteoarthritic, thus with
evident deformity of the femur’s shape. The result obtained
is in line with the ones by [2], where they state a point to sur-
face distance of 2mm and maximum errors of 3 mm. Having
a larger dataset, including greater variations, would allow
increasing the morphing possibilities, reducing reconstruc-
tion errors.

In the case of the CT shape, all the median translation
errors are lower than 1 mm, in line with the results presented
by [2]. We used two different angles for the DRR definition,
and the results showed that the higher translation error in
medio-lateral precision at 10° is due to a lower capability to
resolve the depth information. The residual error at 90° can
be associated with rounding error and to a limited number of
generations for each GA running.

Using the SSM shape, the results are statistically different
from the one obtained with the CT shape. The translation
median errors are lower than 1.5mm, probably due to the
low deformation possibilities given by the reduced number of
shapes of the training set, whereas the rotation error spans up
to 4° in almost all directions. In [29], the authors state errors
up to 3°, but they used a SSM including a longer femoral dia-
physis; thus, the informative content of the statistical model
is bigger.

The advances of the proposed new methodology with
respect to the current state of the art reside in the fact
that our method has been applied to pathological patients
resulting in accuracy comparable to the current state of the
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art. Moreover, we managed to achieve limited decrease in
performance with a lower angle (up to 10°) between the
fluoroscopic projections. In this way, the range of move-
ment for the flexion—extension of the knee is enlarged,
extending the possibilities for the tracking with different
movements.

One of the limits of our study is the reduced testing dataset
for tracking; nevertheless, since we used 11 image projec-
tions, progressively extending the knee joint, the dataset
is enough to assess the statistical power of the analysis.
Fluoroscopic images could be much noisier than the vir-
tually reconstructed projections, due to fast acquisition of
the images that causes blurring, calibration plates and white
noise due to instrumentation. Further analysis will be directed
toward adding realistic noise to the images and testing the
tracking algorithm performances. Acquired images as per-
formed in [27] will also be used to test the algorithm.

In conclusion, we showed the clinical applicability of our
method for femoral tracking using a biplane fluoroscopy and
based on SSM, thus reducing costs and lowering the patient’s
radiation dose.
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