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Abstract

Purpose: In this paper, we investigate a framework for interactive
brain tumor segmentation which, at its core, treats the problem of
interactive brain tumor segmentation as a machine learning problem.

Methods: This method has an advantage over typical machine
learning methods for this task where generalization is made across
brains. The problem with these methods is that they need to deal
with intensity bias correction and other MRI-specific noise. In this
paper, we avoid these issues by approaching the problem as one of
within brain generalization. Specifically, we propose a semi-automatic
method that segments a brain tumor by training and generalizing
within that brain only, based on some minimum user interaction.

Conclusion: We investigate how adding spatial feature coordinates
(i.e. i, j, k) to the intensity features can significantly improve the
performance of different classification methods such as SVM, kNN
and random forests. This would only be possible within an interactive
framework. We also investigate the use of a more appropriate kernel
and the adaptation of hyper-parameters specifically for each brain.

∗mohammad.havaei@gmail.com
†hugo.larochelle@usherbrooke.ca
‡philippe.Poulin2@usherbrooke.ca
§pierre-marc.jodoin@usherbrooke.ca

1

ar
X

iv
:1

51
0.

01
34

4v
1 

 [
cs

.C
V

] 
 5

 O
ct

 2
01

5



Results: As a result of these experiments, we obtain an interactive
method whose results reported on the MICCAI-BRATS 2013 dataset
are the second most accurate compared to published methods, while
using significantly less memory and processing power than most state-
of-the-art methods.

1 Introduction

Brain tumor segmentation is primarily used for diagnosis, patient monitoring,
treatment planning, neurosurgery planning and radiotherapy planning. The
task of brain tumor segmentation is to locate the tumor and delineate dif-
ferent sub-regions of the tumor, namely edema, non-enhanced, and enhanced
regions (see Fig. 1). A standard way to diagnose a brain tumor is by using
magnetic resonance imaging (MRI), for which many different modalities can
be used. The most frequent MRI modalities used for brain tumor segmen-
tation are Flair, T1-weighted (also referred to as T1), T2- weighted (also
referred to as T2) and T1-weighted contrast-enhanced (gadolinium-DTPA)
which we refer to as T1C. These different modalities are often used jointly
as they provide complementary information for locating tumors.

Unfortunately, tumors (especially glioblastomas and metastases) can ap-
pear almost anywhere in the brain. They have no prior shape, and often have
poorly defined edges. Also, they visually present themselves in grayscales
that are present in healthy tissues as well. As a consequence, brain tumor
segmentation in practice is still done manually. Manual segmentation is not
only time consuming and tedious, it is also subject to variations between
observers and also within the same observer [18].

Figure 1: Left: T1C and T2
modality. Right: groundtruth tu-
mor segmentation.

Many methods have been proposed to
facilitate the tumor segmentation process.
Among them, automatic methods, which
rely on machine learning, are very popular
and in some cases very efficient [2]. These
methods are trained on a number of sub-
jects and generalize on data which might be
gathered from different MRI scanners. Be-
cause there is no intensity standardization
among MRI scanners, this makes generaliza-
tion difficult for automatic methods. In an
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attempt to overcome these difficulties, a lot
of prepossessing steps are made which can
be time consuming. Also, to improve gener-
alization, these methods often compute high
dimensional feature vectors [18] which add to the processing time and take
up a lot of memory.

In this paper, we consider the specific problem of segmenting an im-
aged brain into 4 classes: edema, non-enhancing tumor, enhancing tumor
and healthy tissue (see Fig. 1). Note that the non-enhancing tumor some-
times includes necrotic tissue. Our approach is halfway between automatic
and semi-automatic methods. While machine learning methods train on a
pre-selected set of brains and then generalize to testing brains, our method
implements a “single brain” supervised learning method. The user roughly
selects brain voxels associated to each class and then these voxels are used as
training data. The method then generalizes by labeling non-selected voxels.

The main characteristics of our method are as follows:

• Since it treats each brain as a separate dataset, it is immune to the
multi-MRI disadvantages mentioned above.

• Although it uses only 6 simple features, it produces highly accurate
results.

• The segmentation process for a 240 × 240 × 168 brain takes approx-
imately 10 seconds for our fastest method which is much faster than
most state-of-the-art methods which can take up to 100 minutes.

• The method is extremely memory efficient (50 Mb vs. >2 Gb for other
methods)

In this paper, we first evaluate the performance of a k nearest neighbor
classifier (kNN) within this framework. Then, we extend this framework and
thoroughly evaluate its potential through comparing the use of several classi-
fiers, including support vector machines (SVM), random forests and boosted
decision trees. Second, we propose better distance metrics to be used by
SVM classifier in the context of this approach. We also investigate the im-
portance of performing hyper-parameter selection individually for each brain,
as opposed to using generic hyper-parameters for every brain. Thanks to
this investigation, we were able to significantly improve the resulting brain
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segmentation system and achieve a competitive performance compared to
the methods submitted to the brain tumor segmentation challenge (BRAT-
SURL [5]) online evaluation benchmark.

2 Related Work

Brain tumor segmentation methods can be divided into automatic meth-
ods and semi-automatic (interactive) methods. Semi-automatic methods
are those relying on user interaction. Most of these methods use either
deformable models or classification methods to perform segmentation (see
Bauer et al [2] for a survey).

For automatic methods, machine learning classification techniques are a
tool of choice for designing such systems, as they can easily integrate different
MRI modalities as well as other features. After integrating different intensity
and texture features, these methods decide to which class each voxel belongs
to.

For instance, Festa et al. [14] used a series of intensity and texture based
features to make a feature space of over 300 dimensions, on which a random
forest classifier was trained. Tustison et al. and Reza et al. also used random
forests [14]. Tustison et al. constructed a multi-dimensional feature space by
incorporating first order neighborhood statistical images, GMM and Markov
Random Field (MRF) posteriors, and template differences. [12] performed
binary segmentation (tumor vs. non-tumor) using T1, T2, T1C in an SVM
framework followed by a variation of conditional random fields to account for
neighborhood relationships. [1] used a kernel SVM for multiclass segmenta-
tion of brain tumors, where a CRF is used to regularize the results.

Schmidt et al [18] compared the combination of many different feature
sets, such as binary mask, average intensity, left to right symmetry. Luts
et al [13] also compared different feature selection methods such as Fisher
discriminant analysis, Kruskal wallis, relief-f and ARD for LS-SVM.

Because automatic methods train on multiple brains, these methods are
vulnerable to the variations in the MRI data. These variations come from
the fact that MR images are generated by different machines and each have
their own unique noise and intensity level. To overcome this difficulty, most
of these methods rely on a large number of features, which requires a lot of
memory and computation time.

As for semi-automatic methods, deformable models are often employed.
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These algorithms are usually initialized by a user drawing a contour around
the tumor. Following an energy minimization criterion, the contour shrinks
down towards the borders of the tumor [10, 21]. Hamamci et al [7] used a so-
called CA-based method on T1 weighted images to produce a probability map
for the tumor, based on seeds provided by the user. This probability map is
later used in a level set framework. Later, they extend their method to accept
multi-modal MRI inputs namely T1C and Flair. For a two class segmentation
(tumor, edema) this method takes 1 minute for user interaction and 10-20
minutes for segmentation depending on the size of the tumor [6]. There exists
a line of research focusing on how to efficiently initialize the active contour
and thus remove user interaction. In this context, the location of the tumor is
roughly determined by some other method and deformable models are used as
post-processing for refinement. Ho et al [8] use the difference between T1 and
T1C together with a Gaussian mixture model (GMM) to get a probability
map of the tumor, which is used in a level-set model to initialize the contour.
Prastawa et al [17] used voxel registration with an atlas as a way to get a
probability map for abnormalities. An active contour is then initialized using
this probability map and iterates until the change in posterior probability is
below a certain threshold.

Although deformable models have been popular in medical image analy-
sis, they have some significant disadvantages. Because these methods rely on
image gradients, they are likely to fail when the object of interest does not
have well defined borders. The contour may get attracted by strong gradients
from surrounding objects. Incorporating different features into the model is
also non-trivial. Finally, without a GPU implementation, these methods can
be extremely slow.

There has been research on ensembling results from multiple methods
applied to brain tumor segmentation. Huo et al [9] used three segmenta-
tion methods: fuzzy connectedness, GrowCut and voxel classification using
SVM to generate candidate segmentations for each voxel. Confidance-based
averaging (CMA) was used to make the ensemble.

Although our method is a semi-automatic method, it shares with auto-
matic methods the use of a machine learning classification algorithm, ran
on a feature representation of voxels and improved by a spatial dependency
model. The main difference is that generalization is performed within each
brain, based on the training data provided by the user’s interaction. This
simplified generalization problem allows us to use a very simple feature space,
yielding an interactive segmentation method that is fast and effective. [20]
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used a similar, semi-automatic, kNN classification method, applied to pro-
ton density, T1 and T2 modalities. [3] also proposed a semi-automatic
segmentation method that uses instead Quadratic Discriminative Aanalysis
to perform multi-class segmentation. However, they did not use the 〈i, j, k〉
voxel positions as features (see Section 3.2.1) nor did they deal with label
spatial dependency modeling (see Section 3.4.1), which we found to play a
crucial role in obtaining competitive performances.

3 Investigating Within-Brain Generalization

Within-brain generalization treats the segmentation of each brain as its own
machine learning experiment, in which a classifier is trained (on user-labeled
voxels) and used to generalize to new observations (voxels not labeled by the
user).

This approach is motivated by the observation that, with current com-
puters and for relatively small data sets with small feature spaces, a machine
learning experiment (including hyper-parameter selection) can actually be
performed within a very short delay, even for more sophisticated algorithms
that require more than simply storing the data (as in kNN). Moreover, seg-
menting only within a given brain removes the challenging problem of gen-
eralizing across brain imaging acquisition conditions.

In what follows, we describe the details of our approach and enumerate
the different variations we explored in this direction.

Input Post processingUser interaction Generalization

Training

Figure 2: Our method in a nutshell. The segmentation is performed on the
entire brain based on data provided by user interaction.

Figure 2 shows our method in a nutshell. We explain these steps in
Section 3.
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3.1 Feature representation and manual selection

The first step of our method is to collect voxel label data for a given brain
image to segment. This is done by the user who roughly selects a subset of
voxels associated with each class, through a graphical interface. The number
of strokes required for obtaining the training data depends on the number
of tumors in a given brain. However, usually one or two strokes per-class is
enough. We will note as B a binary mask such that Bv ∈ {0, 1} indicates
whether a voxel v has been manually selected (i.e. labeled) or not. T will
then be the class-selection mask where Tv ∈ {edema, non-enhancing tumor,
enhancing tumor, healthy} is the class label associated with the voxel v by
the user.

We must also decide on a feature representation for the different voxels.
Each brain image I is assumed to come with 3 MRI modalities (T1C, T2,
Flair), such that I is a tensor where each voxel v in I is a 3D vector containing
the grayscale values of the modalities. This is represented by I1v , I

2
v , I

3
v . By

converting each voxel v to an N-dimensional feature representation Fv, it will
be possible to train a classifier to predict the voxel label Tv, for every voxel,
from its feature representation. We propose a simple 6 dimensional feature
represeentation, which consists of the MRI modality gray scales and the 3d
position of voxel v: Fv = (I1v , I

2
v , I

3
v , i, j, k). These features are normalized

between zero and one.
At this point, from each labeled voxel, we can thus generate a training

pair (Fv, Tv) and construct a training set D that we shall use to classify the
non-selected voxels using a classifier.

3.2 Voxel classifiers

Having built the training set through manual interaction, the next step is
to train a classifier and generalize the segmentation to non-selected voxels.
We investigate the use of different machine learning algorithms to produce
a classifier. While we could, theoretically, consider any existing algorithm,
it is natural to prefer algorithms that are known to be robust and fairly
”black box” in their use. For instance, we do not want the user (typically a
doctor or a neuro-scientist) to have to manually tune hyper-parameters for
each brain, with trial and error. So we chose algorithms that are known to
be easily tuned or for which default values of their hyper-parameters tend to
work well. These algorithms have also shown to be successful for automatic
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brain tumor segmentation [18, 14].

3.2.1 K-Nearest Neighbors (kNN)

To start, k nearest neighbor (kNN), one of the simplest classifiers, is consid-
ered. For every voxel v, kNN finds among the training data D, the set of k
nearest neighbors (Nv) based on Fv. LetNv = ((Fv1 , Tv1), (Fv2 , Tv2), ..., (Fvk , Tvk))
where Fvi is the ith closest training point of Fv. The kNN classification rule
assigns a class label to some voxel v following this equation

Tv = arg max
c

1

k

∑
(Fvi ,Tvi )∈Nv

δ(Tvi , c) (1)

where c is a class label and δ(a, b) returns 1 when a = b and 0 otherwise.
Note that this formulation can be seen as using a posterior class probability:

p(Tv = c|Fv) =
1

k

∑
(Fvi ,Tvi )∈Nv

δ(Tvi , c) (2)

which states that the probability of an observation Fv of being in class c is
given by the proportion of nearest neighbors assigned to that class. This
probabilistic formulation of the classifier will be reused for the unary terms
of a CRF, described in Section 3.4.1.

3.2.2 Support Vector Machine

The support vector machine (SVM) [4] is probably the most frequently used
classifier. This is in part due to the existence of many freely available, mature
and easy-to-use implementations. In its parametric form, it is a linear classi-
fier that attempts to classify data points by maximizing the margin between
the decision boundaries of the different classes and their closest points.

Of higher interest in our setting is the kernelized version of SVM [11]. A
choice for the kernel that often proves successful is the radial basis function
(RBF) kernel:

K(Fj, Fv) = exp(-γ ‖ Fj − Fv ‖22). (3)

where γ is a hyper-parameter. Also, a slack variable C is used to relax the
constraints in the SVM optimization problem [11]. The resulting classifier
effectively takes the form of a template matcher, that compares a given input
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with all training examples, each voting for their class with a weight related
to their similarity with the input (as modeled by the kernel). In this sense,
it is similar to the kNN classifier, though the former often outperforms the
later in practice.

It is also possible to obtain a posterior class probability p(Tv = c|Fv) from
the SVM. This is done by training the parameters of an additional sigmoid
function of the form

P (Tv = c|Fv) =
1

1 + exp (Af(Fv, c) +B)
(4)

where f(Fv, c) is the unthresholded output of the SVM and A,B are the pa-
rameters to be estimated [16]. Here again, the posterior probability function
will be used later on, for the CRF unary term.

3.2.3 Ensemble of Decision Trees

Another popular approach to classification are ensembles of decision trees.
Each decision tree is trained by recursively partitioning the feature space,
according to some heuristic that favors a good separation of classes. Once a
criterion for stopping the tree growth is reached, a conditional class distri-
bution is then computed at each leaf, based on the training data falling into
the corresponding partition. Specifically, the class distribution p(Tv = c|Fv)
is set as

P (Tv = c|Fv) =
Nc

N
(5)

where Nc is the relative frequency of examples belonging to class c of the
partition in which Fv falls and N is the total number of examples.

The performance of a single decision tree is often disappointing. However,
by constructing an ensemble of such trees, a competitive classification per-
formance is achievable. There are different approaches to combining decision
trees into an ensemble. The two most popular algorithms for ensembles of
decision trees are random forests and Adaboost [15]. We considered these
two algorithms for our experiments.

3.3 Distance Metric/Kernel

The performances of the SVM classifier often depends on the choice of met-
ric or kernel used to compare data points. Thus, it is generally beneficial to
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adapt this choice to each individual problem. For example, the conventional
RBF kernel puts equal weight to each dimension of the feature space. How-
ever, in our within-brain framework, the spatial coordinate features 〈i, j, k〉
and the modality features actually play different roles. Intuitively, one role of
the spatial coordinates is to avoid that a user-labeled voxel starts influencing
the prediction made at a voxel far away from it, e.g. to avoid false positives in
faraway regions. The modality features, are thus mostly informative within
the vicinity of a user-labeled voxel.

Therefore, we might want to weight the modality and spatial features dif-
ferently, within the RBF kernel of the SVM. To maintain positive-semidefiniteness
of the kernel, we simply opt for using two different values of γ for MRI modal-
ity intensities and the spatial features:

K(Fj, Fv) = exp( −γ1 ‖ Fj,{1:N} − Fv,{1:N} ‖22 (6)

−γ2 ‖ Fj,{N+1:N+3} − Fv,{N+1:N+3} ‖22).

This kernel is also equivalent to the product of two RBF kernels, each de-
fined on the subspace of modalities and of spatial coordinates, and each
having their own hyper-parameters. The hyper-parameters required by this
approach are γ1 and γ2.

3.4 Importance of Within-Brain Hyper-Parameter Se-
lection

When training a classifier, hyper-parameter values must be specified. One
approach which is commonly implemented [14] is to choose hyper-parameters
by cross-validation in a grid search approach on a subset of brains and fix
the selected set of hyper-parameters for the rest of the brains. We hypothe-
size given the variations in MRI data, using a fixed set of hyper-parameters
for generalization is not optimal. An alternative way is to perform hyper-
parameter selection individually for each brain, in order to adapt to the
specificity of each case. We measure the potential gains of this approach in
our experiments when selecting the hyper-parameters for the SVM, namely
the slack variable C and the coefficient γ. A detailed discussion of this ex-
periment is presented in section 4.2.4.
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3.4.1 Conditional Random Fields (CRF)

As mentioned earlier, segmentation accuracy can easily be improved by lever-
aging a model of the 3D spatial regularity of labels. One way of enforcing
spacial regularity is to define a joint (conditional) distribution over the labels
of all voxels in the brain that expresses the expected dependencies between
neighboring voxels. Conditional Random Fields (CRF) provide a convenient
formalism for that. CRFs model directly the posterior probabilities of the
labels given the features P (T |F ) directly, alleviating the need to model the
distribution over the feature vectors F and allowing us to construct rich
conditionals P (T |F ).

Formally speaking, we use the following form for P (T |F ):

P (T |F ) =
1

Z

∏
v

φ(Fv, Tv)φ(Tv, Fv, Tr, Fr) where r ∈ ηv (7)

where Z is a normalization term, φ are clique potential functions and ηv is
the set of voxels surrounding v.

Segmenting a brain requires that we find the labeling T with highest
probability P (T |F ). This leads to an optimization problem of the form
T = arg maxT

∏
v φ(Fv, Tv)φ(Tv, Tr) or, equivalently,

T = arg min
T∈T

∑
v

(
V (Fv, Tv) +

∑
r∈ηv

I(Tv, Fv, Tr, Fr)

)
. (8)

where we set the equivalence V (Fv, Tv) = − log φ(Fv, Tv) and I(Tv, Fv, Tr, Fr) =
− log φ(Tv, Fv, Tr, Fr).

In our case, we model the unary terms V (Fv, Tv) by taking the negative
log of the posterior distribution

V (Fv, Tv) = −log(P (Tv|Fv) (9)

specified in Eq.(2), (4) or (5). As for the pairwise term, we set it to be

I(Tv, Fv, Tr, Fr) = λ(1− δ(Tv, Tr)) exp

(
−‖Fv − Fr‖

σ2

)
. (10)

The choice of these unary and pairwise terms allows us to perform the opti-
mization of Equation 8 using the graphcut algorithm.

We refer to the segmentation methods using this label dependency model
as kNN-CRF, SVM-CRF, and DT-CRF, depending on the unary term
used.
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4 Experiments

4.1 Experimental Setup

All our experiments were conducted on real patient data obtained from the
brain tumor segmentation challenge dataset (Farahani et al [5]) as part of
the MICCAI conference. This dataset contains 30 patient subjects (20 high
grade and 10 low grade tumors) for training and 10 (all high grade tumors)
for testing. For each subject there exist 4 modalities which are co-aligned
together, namely: T1, T1C, T2 and Flair . In our experiments, we used
T1C, T2 and Flair only. We do not use T1 as it is not very descriptive and
using it did not improve the overall performance of the model. For each
brain, the user is asked to manually label voxels in only two 2D slices for
each class. The choice of slices depend on the size and spread of the tumor.
Considering the fact that the user can choose slices from any view (i.e. axial,
sagittal and coronal), the tumor coverage is sufficient and the results are
not very sensitive to the slices chosen for labeling. On average, only 0.4%
of the voxels containing pathology and 0.03% of the voxels corresponding to
healthy tissue were manually selected, thus providing minimal labeled data
to the algorithm. To make operations faster, we disregard all the voxels
outside of the skull and consider them as healthy.

The quantitative results for each method was obtained from the BRATS
online evaluation system, which provides Dice, Specificity and Sensitivity as
measures of performance. These measures are defined as follows:

Dice(P, T ) =
|P1 ∧ T1|

(|P1|+|T1|)/2
,

Sensitivity(P, T ) =
|P1 ∧ T1|
|T1|

,

Specificity(P, T ) =
|P0 ∧ T0|
|T0|

,

where P represents the model predictions and T represents the ground
truth labels. We also note as T1 and T0 the subset of voxels predicted as
positives and negatives for the tumor region in question. Similarly for P1

and P0 [14].
We report these measures for the test subjects over the three categories

considered by the BRATS evaluation (i.e. complete, core, enhanced). The
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complete category is the union of classes containing un-healthy tissue. i.e. {l|l ∈
[necrosis, edema, enhancing]}), the core category are classes containing tu-
mor core i.e. {l|l ∈ [necrosis, enhancing]} and the enhancing category is the
enhancing tumor class. i.e. {l|l ∈ [enhancing]}. The online evaluation sys-
tem also provides a ranking for every method submitted for evaluation. This
includes methods from the 2013 BRATS challenge published in [14] as well
as anonymized unpublished methods for which no reference is available. The
methods in each table presented in this section are ordered according to the
ranking provided by the online evaluation system.

Please note that we could not use the BRATS 2014 dataset due problems
with both the system performing the evaluation and the quality of the labeled
data. For these reasons the old BRATS 2014 dataset has been removed
from the official website and, at the time of submitting this manuscript, the
BRATS website still showed: “Final data for BRATS 2014 to be released
soon” For these reasons, we decided to focus on the BRATS 2013 data. Also,
this article does not contain any studies with human participants performed
by any of the authors.

4.2 Results and Discussion

In this section, we report experimental results obtained with the machine
learning methods presented in Section 3.2. This includes linear SVM (LSVM),
kernel SVM with rbf kernel (KSVM), our proposed product kernel SVM
(PKSVM), kNN, decision trees trained with Ada-Boost (ADT), and random
forests (RDT). All these methods have been explored with and without the
CRF. The CRF parameters α and β were set for each method, by cross-
validation on 6 brains on the training set. We also investigate the extent to
which adding spatial features 〈i, j, k〉 helps improving the performance. This
is noted by adding a “∗” next to the method’s name.

4.2.1 KNN

The results for the kNN related experiments are presented in Table 1. We
first made an experiment without including the 〈i, j, k〉 position features in
the feature vector as presented by [20]. Since his method uses neither the
spatial coordinate features nor the CRF regularization, it performs signifi-
cantly worse than other kNN related experiments. While adding the spatial
coordinates to this method improves the result by a significant margin, the
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Table 1: Dice, Specificity and Sensitivity measures for kNN methods on
BRATS-2013 test set.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

kNN-CRF* 0.85 0.75 0.60 0.91 0.85 0.77 0.78 0.69 0.56
kNN* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73

kNN-CRF 0.80 0.69 0.55 0.92 0.83 0.75 0.74 0.63 0.48
kNN 0.65 0.52 0.53 0.59 0.49 0.50 0.77 0.68 0.65

best performance is achieved when we use both spatial coordinates and a
CRF regularization.

4.2.2 SVM

The results for the SVM-related experiments are presented in Table 2. Re-
sults confirm that using spatial coordinate features (shown with ”*”) and
using the CRF model (shown with ”-CRF”) improve the performance of
both a linear SVM (LSVM) and an RBF kernel SVM (KSVM). It is also
quite clear from this experiment that the non-linearity of the kernel SVM is
crucial, as it significantly outperforms the linear SVM (LSVM).

As for the PKSVM method which stands for the RBF product kernel
SVM presented in Section 3.3 (c.f. Eq.(7)) it clearly improved the Kernel-
SVM and Kernel-SVM+CRF results. This underlines the relative importance
of the spatial coordinate features 〈i, j, k〉 versus the input T1, T2 and Flair
modalities.

4.2.3 Decision trees

For these experiments, we fixed the number of decision trees for AdaBoost
(ADT) and random forests (RDT) to 100 and the leaf size to 1. For Ad-
aBoost, decision stumps were used. The quantitative results are shown in
Table 3. While adding spatial features are beneficial for both random forests
and AdaBoost, using the CRF model is mostly beneficial except for ran-
dom forest without spatial coordinates. However, the segmentation systems
relying on decision trees tend to be worse than using kNN or SVM methods.
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Table 2: Dice, Specificity and Sensitivity measures for various SVM methods
on the BRATS-2013 test set.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.86 0.77 0.73 0.88 0.85 0.76 0.78 0.68 0.58
KSVM-CRF* 0.84 0.75 0.70 0.87 0.77 0.72 0.82 0.79 0.71

PKSVM* 0.82 0.71 0.69 0.84 0.73 0.71 0.80 0.76 0.71
KSVM* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73

KSVM-CRF 0.74 0.67 0.53 0.82 0.82 0.79 0.73 0.61 0.45
LSVM-CRF* 0.79 0.64 0.51 0.86 0.74 0.70 0.74 0.62 0.45

LSVM* 0.69 0.59 0.62 0.65 0.54 0.47 0.84 0.76 0.59
LSVM-CRF 0.72 0.60 0.46 0.77 0.66 0.59 0.72 0.61 0.44

KSVM 0.65 0.50 0.50 0.61 0.49 0.49 0.75 0.63 0.58
LSVM 0.51 0.35 0.45 0.48 0.35 0.43 0.73 0.59 0.59

Table 3: Dice, Specificity and Sensitivity measures for ensemble of decision
trees with AdaBoost (ADT) and random forests (RDT) on BRATS-2013 test
dataset.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

RDT* 0.81 0.69 0.64 0.83 0.71 0.64 0.79 0.75 0.70
RDT-CRF* 0.82 0.69 0.51 0.92 0.83 0.79 0.73 0.61 0.50
RDT-CRF 0.80 0.66 0.49 0.92 0.83 0.78 0.71 0.60 0.40
ADT-CRF* 0.79 0.64 0.51 0.88 0.75 0.71 0.72 0.61 0.45
ADT-CRF 0.78 0.63 0.50 0.87 0.73 0.67 0.72 0.61 0.45

ADT* 0.73 0.57 0.58 0.73 0.60 0.59 0.75 0.64 0.66
RDT 0.67 0.55 0.55 0.66 0.55 0.53 0.72 0.65 0.65
ADT 0.65 0.48 0.54 0.66 0.55 0.53 0.69 0.52 0.62
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4.2.4 Robustness of hyper-parameter selection

In our method when using the SVM as the classifier, the hyper-parameters
(regularization constant C and kernel hyper-parameters γ, γ1 and γ2) were
always cross-validated for each brain individually, using an automated grid
search. On the other hand, for automatic methods, a fixed set of hyper-
parameters is used for generalization. Given the variation of the MRI data
and tumor types, we hypothesize that using a fixed set of hyper-parameters
will degrade the performance quite significantly.

To evaluate the importance of performing per-brain model selection, we
conducted an experiment where we used a fixed configuration of hyper-
parameters for all subjects. For this experiment, we considered our top two
segmentation methods, PKSVM-CRF* and KSVM-CRF*. The values of the
hyper-parameters were chosen by taking the hyper-parameter value most fre-
quently selected by these methods, across all the brains. The idea was to pick
values that are most likely to work well in general. For the KSVM-CRF*, C
was set to 1 and γ to 5 and for the PKSVM-CRF*, C was set to 1, γ1 to 100
and γ2 to 10.

The results (Table 4) show a decrease in performance if fixed hyper-
parameters are used for all brains. We also performed this experiment on
the BRATS training data (not shown here) and the performance decreased
even more. This was not unexpected, since the training data is more varied
and actually consists of both high grade tumors and low grade tumors, while
the test data only contains high grade tumors.

While it appears the tuning of the SVM’s hyper-parameter to each brain is
beneficial, we tested the extent to which small changes to the optimal hyper-
parameters would affect the performance. This is meant to simulate the fact
that cross-validation might not always find the same hyper-parameters be-
tween variations on the manually labeled voxels. In order to measure how
resilient our method is to slight hyper-parametric shifts, we ran another ex-
periment to measure the sensitivity of our model. We did so by randomly
selecting 20 brains from the BRATS training data, trained an SVM whose
hyper-parameters have been obtained from cross validation. We then added
noise to the hyper-parameters and measured the effect on the resulting seg-
mentation. The noise corresponded to Gaussian noise, whose standard devia-
tion was set to a certain percentage of the hyper-parameters’ values. Figure 3
shows the resulting Dice measure for different noise level. As one can see,
even with a noise level corresponding to a corruption of 25% of the hyper-
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Table 4: The effect of having a fixed selection of hyper-parameters for kernel
SVM and product kernel SVM.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.86 0.77 0.73 0.88 0.85 0.76 0.78 0.68 0.58
KSVM-CRF* 0.84 0.75 0.70 0.87 0.77 0.72 0.82 0.79 0.71

FixedKSVM-CRF* 0.82 0.69 0.56 0.93 0.82 0.78 0.75 0.64 0.49
FixedPSVM-CRF* 0.72 0.56 0.55 0.71 0.62 0.58 0.73 0.65 0.65

parameter values, the end result is still close to the one obtained without any
noise.

Figure 3: Sensitivity of the model with respect to the gamma hyper param-
eter.

Finally, the importance of optimizing the hyper-parameters was found to
be less crucial for the other methods. For kNN, we evaluated the effect of
using different values of k, with k = 3 consistently producing higher perfor-
mance. The same type of experiment was performed to measure the effect
of using different number of trees and leaf size in ADT and RDT. For these
methods, setting the number of decision trees to 100 and leaf size to 1 always
worked well.
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4.2.5 Speed-up procedure

Every segmentation method presented in this paper uses manually-selected
voxels as their input. However, these selected voxels often carry out similar
information. That is especially true for neighboring voxels whose 〈i, j, k〉
position is almost the same, and whose T1,T2, Flair values are likely to be
identical. Thus, in order to speed-up the segmentation procedure, one can
randomly down-sample the training data. To have an overall idea to what
extent we can down-sample the data without hurting too much the overall
precision, we conducted an experiment where we divide the training points
into healthy and non-healthy subsets and subsample them separately. This
is done as to maintain a balance between the size of the healthy class with
respect to other classes. The outcome of this process is a smaller training
set but with roughly the same proportion of healthy points and non-healthy
points. Figure 4 shows the result of this experiment. The curves were ob-
tained by averaging the results of 20 randomly selected brains from BRATS
training data. The horizontal axes in Figure 4 shows the number of training
points in the subsampled training set. As shown in Figure 4(a), with maxi-
mum number of training points (i.e 3000) we get an average Dice measure of
0.72 and by considering 1000 training points the average Dice measure barely
drops to 0.71, while the processing time decreases by 60%. Thus, all exper-
iments submitted to the BRATS website were done with this subsampling
measure.

5 Conclusion

5.1 Putting it all together

We finally present how our top performing methods compare with other
state-of-the-art methods. The BRATS official website provides a ranking
system for this purpose. However, because the BRATS organizers have re-
cently made all methods anonymous, a complete comparison is not possible.
For that reason, we rank our method based on the MICCAI-BRATS 2013
challenge results for which references to the methods were available. This
is shown in table 5 1. As one can see, PKSVM-CRF* and KSVM-CRF*

1Please note that the results mentioned in Table 5 are from methods com-
peting in the BRATS 2013 challenge for which a static table is provided
[https://www.virtualskeleton.ch/BRATS/StaticResults2013]. Since then, other methods
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(a) (b)

Figure 4: Sensitivity of the model with respect to the number of training
points. (a) shows variation in average Dice measure while (b) shows variation
in the average processing time and memory usage.

are ranked second and third respectively, closely behind Tustison et al. and
kNN-CRF* is ranked 6th in this table. Using the spatial features 〈i, j, k〉,
and CRF post-processing is vital to produce highly accurate results. Many
methods in this table (like that of Tustison et al. Reza et al. and Festa
et al. ) use random forests with a large number of features. In our case,
random forests did not perform as well as the SVM or kNN methods. This
might be due to the low dimensionality of our feature space. Recently Sub-
banna et al [19] published competitive results on the BRATS 2013 dataset,
reporting Dice measures of 0.86, 0.86, 0.77 for Complete, Core and Enhancing
tumor regions. Since they do not report Specificity and Sensitivity measures,
a completely fair comparison with that method is not possible. However, as
mentioned in [19], their method takes 70 minutes to process a subject, which
is significantly slower than our method.

Figure 5 shows a visualisation of segmentation results, for different varia-
tions of our SVM method. This illustrates the contribution of adding spatial
features, using a CRF and using our improved kernel function, in improving
the general performance of the SVM approach.

have been added to the score board but for which no reference is available.
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Figure 5: Illustration of brain tumor segmentation maps predicted by differ-
ent variations of SVM. Top row from left to right : T1C modality, KSVM,
KSVM*, PKSVM*. Bottom row from left to right: ground truth, KSVM-
CRF, KSVM*-CRF, PKSVM*-CRF.

5.2 Processing time and memory usage

A key advantage of our proposed method is in having a very small processing
time and memory usage, while maintaining high accuracy. Due to the low
dimensionality of our feature space, it only takes up, on average, 50 MB of
RAM to store the feature space of a brain. This is very small compared
to state-of-the-art methods, whose memory footprint of the feature space is
on the order of GB’s. For example, Festa et al. use a feature space of 300
dimensions for their random forest approach which would take up to 2.7GB’s.
Tustison et al. Reza et al. and Meier et al. also take a similar approach using
random forests [14]. These methods rely on a high number of texture features
which are computationally time consuming and memory wise expensive.

Apart from the feature space, our proposed methods have different speed
and memory footprint. We can make a comparison in accuracy, speed and
memory usage as presented in Table 6. The processing time was measured
on an 8-core processor and includes both training and testing. The time
required by graphcut inference is the same for all methods and involves only
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Table 5: Comparison of our top implemented architectures with the state-
of-the-art methods on the BRATS-2013 test set.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

Tustison 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83
PKSVM-CRF* 0.86 0.77 0.73 0.88 0.85 0.76 0.78 0.68 0.58
KSVM-CRF* 0.84 0.75 0.70 0.87 0.77 0.72 0.82 0.79 0.71
kNN-CRF* 0.85 0.75 0.60 0.91 0.85 0.77 0.78 0.69 0.56

Meier 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73
Reza 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76
Zhao 0.84 0.70 0.65 0.80 0.67 0.65 0.89 0.79 0.70

Cordier 0.84 0.68 0.65 0.88 0.63 0.68 0.81 0.82 0.66
Festa 0.72 0.66 0.67 0.77 0.77 0.70 0.72 0.60 0.70
Doyle 0.71 0.46 0.52 0.66 0.38 0.58 0.87 0.70 0.55

Table 6: Best performing methods for each machine learning category with
average processing time and memory usage.

Method Dice Specificity Sensitivity Time Memory
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.82 0.71 0.69 0.84 0.73 0.71 0.80 0.76 0.71 35sec 7.7MB
KSVM-CRF* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73 10sec 75KB
kNN-CRF* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73 3sec. 40KB

RDT* 0.81 0.69 0.64 0.83 0.71 0.64 0.79 0.75 0.70 10sec 120KB

an additional 8 seconds. As shown in Table 6, PKSVM-CRF* has the highest
accuracy but requires a higher processing time (35 seconds) and memory
usage (7.7 MB), on top of the 50 MB required to store the feature space.
On the other hand, KSVM-CRF* and kNN-CRF* are closer to real time
implementations with negligeable memory consumption. This allows the
expert to interact in real-time with the software. That being said, all methods
presented in Table 6 are significantly faster than state-of-the-art methods.
For example, Tustison’s method takes around 30 minutes to process a brain
as mentioned in Menze et al [14].

In this paper we evaluated the capability of within brain generalization
using a variety of classifiers. We showed that the SVM reached the best
performances, thanks in part to a kernel function specifically adapted to our
feature space. Most interestingly, we also showed that adopting a fixed hyper-
parameter configuration for all brains actually decreases the performance of
the SVM. A better strategy was to also perform hyper-parameter selection
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for each brain individually, in order to adapt to the specificities of each brain,
further motivating our within brain generalization framework.
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