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Abstract
Background Scene supervision is amajor tool tomakemed-
ical robots safer and more intuitive. The paper shows an
approach to efficiently use 3D cameras within the surgical
operating room to enable for safe human robot interaction
and action perception. Additionally the presented approach
aims to make 3D camera-based scene supervision more reli-
able and accurate.
Methods A camera system composed of multiple Kinect
and time-of-flight cameras has been designed, implemented
and calibrated. Calibration and object detection as well as
people tracking methods have been designed and evaluated.
Results The camera system shows a good registration accu-
racy of 0.05m. The tracking of humans is reliable and
accurate and has been evaluated in an experimental setup
using operating clothing. The robot detection shows an error
of around 0.04m.
Conclusions The robustness and accuracy of the approach
allow for an integration into modern operating room. The
data output can be used directly for situation and workflow
detection as well as collision avoidance.
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Introduction

In the past yearsmedical robotics has evolved to a pointwhere
not only teleoperated systems are considered to improve the
medical workflow. Current robotics research focuses more
on assistant systems, robots in close cooperation with the
personnel or semi-autonomous systems. Those systems have
in common that the usage has to be as intuitive as possible.
A future goal in research should be to have robots that can
be intuitively controlled and that do not require direct atten-
tion. More specifically, the system has to behave like the
surgeon expects it to, yet to ensure a safe usage of the sys-
tem especially in the case when conventional multi-purpose
(e.g., industrial) robots are being used and adapted to the
scenario.

With robots specially designed for surgery, some safety
requirements can be fulfilled in the design phase of the
kinematics. An example is the remote center of motion
for minimally invasive robot surgery that can be solved in
hardware with specially designed robots. For example, the
DaVinci system (Intuitive Surgical, USA) onlymoves around
a given remote center of motion.

Surgical systems using multi-purpose robots have to cope
with issues like safety or remote center ofmotion in software,
e.g., using special supervision systems.Acommonadvantage
of systems such as the DLR Miro [15], the LARS robot [4]
and some research systems using theKUKALWR4 (KUKA,
Germany) [3] is the huge and flexible workspace and a higher
applicable payload of the robots that allows usage in multi-
ple applications. This offers new applications like ultrasound
(US) probe steering, open surgery with increased accuracy
and a suitable workspace, orthopedics interventions using
milling devices and saws, as well as the field of minimally
invasive robotic surgery that is widely explored, e.g., by Intu-
itive Surgical [11] and the University of Washington [12].
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Our approach aims at raising the safety of multi-purpose
robots inside of the operating room. Moreover it offers the
base for a comprehensive operating room supervision that
can also be used with specially designed surgical robots in
order to improve the intuitiveness and the efficiency of the
system. Use cases of the system range from simple high-
speed collision avoidance and on-line path planning based
on point clouds, workflow detection focused on the operating
room environment to probabilistic and rule-based inference
from the perceived situation and workflow-based control of
the operating room and the surgical robots. These concepts
can, for example, be used in minimally invasive laparo-
scopic surgery. The transitions between hands-on movement
toward the patient, telemanipulation and hands-on move-
ment or automatic movement away from the patient can be
detected.

To the best of the authors knowledge there is no publi-
cation about similar approaches yet. However, the problem
of multi-depth camera room supervision for other applica-
tions is tackled by [16] who developed amulti-Kinect system
for interaction with the environment and a past self, by [28]
who are focusing on the “The room is the computer” and the
“Body as display” approach as well as [8] who are tackling
the problem of interference induced by using multiple struc-
tured light Primesense (Primesense,Tel-Aviv, Israel) devices.
Other approaches like [17] and [29] focus on multi-Kinect
people tracking anddynamic scene reconstruction fromasyn-
chronous depth cameras.

From a technical point of view, our system is composed
of three different camera systems. Seven time-of-flight (ToF)
cameras (six PMD[vision] S3 and one PMD[vision] Cam-
Cube 2.0) are dedicated to low-latency scene supervision.
These cameras are used for collision avoidance. Four Kinect
cameras (Microsoft, USA) that offer larger resolution, but
have the drawback of introducing more latency into the
processing chain, are used for semantic interpretation of the
scene. The marker-based tracking system ARTtrack2 (ART,
Germany) is used for calibration purposes and accurate track-
ing of marker equipped objects. Our supervision system
is developed in the context of OP:Sense [18,21], which is
mainly dedicated to safe and intuitive workflow controlled
human robot interaction in the operating room [2] as well
as exploring new applications for the operation. OP:Sense is
based on ROS [24].

In the following we describe our approach to processing
the high amount of data coming from the Kinect cameras,
dealing with registration issues between the cameras and our
approach to find corresponding humans in the camera’s field
of view.Weoutline howwe integrated theKinect systemwith
the combined Photonic Mixer Devices and marker-based
optical tracking system. Finally, our method for detecting
the location of robots in the scene is described as well as a
CUDA [10]-based distance calculation for point clouds.

Materials and methods

The OP:Sense system is composed of two KUKA light-
weight robots LWR4 (KUKA, Augsburg, Germany) that are
the central part of our robotic system, a ceiling-mounted
camera rig holding an optical tracking system ARTtrack2
(Advanced Realtime Tracking GmbH,Weilheim, Germany),
PMDtec cameras (PMD technologies, Siegen, Germany) as
well as four Kinect cameras, custom-built attachable surgical
instruments, milling devices, an ultrasound device, a high-
precision Stäubli (Stäubli International AG, Freienbach,
Switzerland) RX90 robot, the special endoscope steering
robot Viky (EndoControl, Grenoble, Frankreich) and an
endoscope. The software framework is based on ROS. On
top of that, a custom-built framework based on a java imple-
mentation for ROS is being developed in order to cope with
probabilistic, rule- and workflow-based control of the com-
plete system.

As described in [2] and [27], which are expanded through
this work, a Kinect camera acquires 3-channel RGB images
with a resolution of 8 bit per channel (dimensions: 640×480)
as well as a 11 Bit depth map (dimensions: 640 × 480). The
capturing frequency is 30Hz, which results in a data rate of
around 40MB/s to be transferred between the Kinect and its
host computer via USB. This requires the use of a dedicated
USB 2.0 host controller per Kinect which means that mul-
tiple Kinects cannot share the same USB bus. In order to
build up a scalable supervision system with a flexible num-
ber of cameras, we separated the capturing and processing of
Kinect data. Capturing is performed using small form-factor
PCs (Zotac ZBOX nano AD10) with an AMD E-350 CPU,
to which two Kinects are connected each. Due to the small
footprint of these PCs and their (spatial) separation from the
processing server, no unnecessary clutter is introduced close
to the region of interest, e.g., the OR table, andwe gain a high
flexibility in the number and position of theKinects. The pro-
posed algorithm for processing the acquired data runs online
with up to four cameras using an Intel Core i7 3770 and 8GB
of RAM.

The Kinect cameras and the processing chain introduce a
notable time delay into the system. In order to cope with fast
movements and time critical tasks such as collision detec-
tion and avoidance, the Kinect system is complemented by
ToF cameras that observe the same workspace as the Kinects
and feature a higher. The ToF cameras provide a low dense
uncolored point cloud with low delay. For precise 6 DOF
tracking of small objects such as surgical instrument, they
can be equipped with optical markers and tracked via the
ART track system.

ThePMDsubsystemconsists of six ceiling-mountedPMD
S3 cameras that surround the OR table. They provide a depth
map as well as an amplitude image with a resolution of 64
pixels×48 pixels. The value of each pixel in the depth map
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Fig. 1 Triggering scheme of
PMD cameras (colors represent
different modulation
frequencies); left camera group
one; right camera group two

provides the distance to the corresponding 3D point in the
scene, while the pixel value in the amplitude map gives the
intensity of the reflected IR light. Located centrally above
the OR table, a PMD CamCube provides depth map, ampli-
tude image and a grayscale image with a resolution of 204
pixels×204 pixels. The PMD S3 cameras, which can be
controlled and accessed via Ethernet, are connected via a
dedicated subnetwork using a 1 GBit/s switch.

Due to the measurement principle of ToF cameras, they
are very prone to crosstalk when multiple cameras are used
in a shared environment. While other works such as [5]
focus on employing this for further calculations, we chose to
eliminate crosstalk by implementing a time- and frequency-
multiplexing synchronization scheme that prevents the PMD
cameras (Low Resolution ToF) from influencing each other.
The six PMDS3 cameras, which are ceiling-mounted around
the operating table, are divided into two groups. Inside
each group, the cameras use different modulation frequen-
cies which are set when the system is started. Both camera
groups are triggered alternatively to each other with the
PMD CamCube (high-resolution ToF) triggered in between.
Figure 1 shows the triggering scheme of the two camera
groups.

The coordinate frames of the independent camera sys-
tems are registered to each other to acquire a multi-modal
scene representation. The layout of the supervision system
can be seen in Fig. 2. A close to reality setup with two
LWR4 robots attached to an OR table is depicted in Fig. 3.
The network setup for the multicamera system can be seen
in Fig. 4.

The proposed approach was implemented using the
OpenNI framework for full body tracking [20,23] and ROS.
Generally, it can be used with any people tracking algorithm
that delivers depth maps. The number of used Kinect cam-
eras was set to four and can be parameterized at the start up
of the system. In the following paragraphs, the detection and
correspondence matching as well as distance computation
works are described.

Fig. 2 Layout of the camera rig from a bird’s view. High-resolution
(204× 204 pixels) ToF is pointing downward and all other cameras are
pointing toward the floor with an angle between 30◦ and 45◦ compared
to the floor

Registration of Kinect cameras with respect
to a reference frame

One of the Kinect cameras is (arbitrarily) chosen as the
reference camera Kref . We perform a pairwise registration
between Kref and each other camera (Kn). A scheme show-
ing the calibration is given in Fig. 5.

A laser-printed checkerboard with 8 by 5 fields (8 cm
× 8 cm edge length) on DIN A3 standard paper is used to
provide a large area in which to detect the corners. The print-
out is attached to a wooden flat panel by adhesive in order to
provide a completely undistorted checkerboard.

The following steps are performed for all pairs of (Kref and
Kn [n = 2. . .4]), using always the same camera as reference:

1. Detection of the checkerboard using the RGB camera
(Kref and Kn): the OpenCV [6] checkerboard detection
algorithm is used to detect the corners of a checkerboard.
Resulting coordinates of the corners are stored locally for
every RGB image.
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Fig. 3 Setup in the IPR lab
showing the surgeon, the
operating table and the
minimally invasive robotics
setup [2]

Fig. 4 Ethernet setup for Kinect, ToF (PMD) and optical tracking system cameras (ART) [2]

2. Calculation of the corresponding depth value for every
checkerboard corner (Kref and Kn): Based on the known
relation between depth and rgb sensor in each Kinect,
an organized point cloud is created for each camera. An
intrinsic and extrinsic calibrationof cameras of theKinect
cameras has not been performed, as the registration errors
have been found to be already sufficiently low enough for
the application. The 2D coordinates of the checkerboard

corners detected in the previous step can now be used
to directly look up the corresponding 3D point in the
2D-indexed point cloud. However, it is very likely that
due to lighting conditions or reflection of the material,
not all 2D points correspond to a valid depth measure-
ment and/or that the noise level is high. To encounter
the noise problems, we acquire the depth data at every
checkerboard corner for 300 subsequent frames and cal-
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Fig. 5 Location of Kinect cameras over the operating table. Every
Kinect camera is calibrated with reference to camera 1

culate the average of all valid depth measurements for
each point. Compared to conventional calibration meth-
ods, where the checkerboard pose is computed from the
known geometry of the board, the depth error of the
Kinect cameras [14] is taken into account by using the
measured depth for the calibration.

3. Correspondences between the source and the target
point cloud are stored: after collecting the depth data
for every checkerboard corner, we evaluate how many
checkerboard corners with valid depth information (3D
checkerboard corner) have successfully been detected.
If a 3D checkerboard corner has been acquired by both
Kref and Kn , the respective data are added to a corre-
spondence list. Otherwise, e.g., if one depth value within
a correspondence (Kref or Kn) is missing, the com-
plete correspondence is dropped. This leads to a set of
correspondences that is later used as an input for the
transformation estimation.

4. Repositioning of the checkerboard: The checkerboard
has to be placed in different poses in the field of view (fov)
of the Kinect cameras in order to estimate further cor-
respondences, make the transformation estimation more
robust to outliers and increase the calibrated workspace.
The implementation supports unlimited checkerboard
positions. The registration results benefit if the planes
defined through the checkerboard positions are not par-
allel to each other (multiple orientations). After the
re-placement, steps 1–3 are repeated until enough cor-
respondences have been collected. In our experiments
we registered the cameras using 12 poses in a volume
of approximately 1.8m × 1.0m × 1.5m. Twelve poses
were experimentally found to lead to a reproducible reg-

Fig. 6 Registration object for registration of PMD cameras against
optical tracking system (ART)

istration result as specified in “Kinect camera system”
section.

5. Estimation of the transformation: the correspondences
are used to estimate a transformation between the cam-
era frames using the point cloud library (PCL) [25]. The
estimation is based on incrementally building a covari-
ance list of the correspondences and the means of the
correspondences. The rotation is estimated using eigen-
value decomposition of the covariance. The translational
component is estimated using the means of the point sets,
in a similar way to a standard ICP [1] iteration.

Registration of depth cameras with respect to an optical
tracking system (OTS)

As the OTS used in our setup features a big working volume
and a precise localization of rigid bodies, it is desirable to
also register depth cameras to the OTS. Apart from allowing
for fusion of data obtained by both OTS and depth cam-
eras, registering depth cameras with reference to the OTS
eases the registration process for cameraswith small overlap-
ping fields of view. Two different registration objects can be
used: A custom one especially designed for (low resolution)
PMDcameras or a checkerboard. The custom registration tar-
get features large white circles on a black background (see
Fig. 6), which can be easily and precisely located by the PMD
cameras, and retroreflective marker spheres that are tracked
by OTS.

In order to collect corresponding 3D points between OTS
and depth cameras, the following steps are performed for
each camera:

1. Detection of the registration object by depth camera: The
features of the registration object, e.g., center points of the
circles on the custom registration target or checkerboard
corners, are automatically located by the depth cameras.
In case of PMD S3 cameras, feature detection is per-
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formed based on the amplitude image, and in case of
PMD CamCube, feature detection is performed based
on the intensity image. For RGB-D cameras, the RGB
image is used. As in the previous section, feature detec-
tion yields the 2D coordinate of a detected feature in
camera space.

2. The corresponding distance value for each feature dete-
cted is calculated: We average the depth image over 10
consecutive frames in order to smooth out noisy data.
Based on the location of the features in the amplitude
image, the corresponding distance value is acquired via
a lookup in the averaged depth map. If a checkerboard
or similar is used instead of the custom registration tar-
get, the detected features (e.g., checkerboard corners) are
located at positions neighboring both white and black
regions. As this can introduce incorrect distance read-
ings by PMD cameras, the plane of the checkerboard is
determined from the averaged depth image using a con-
strained RANSAC [9]. At each 2D position indicated by
feature detection above, the corresponding depth value
is retrieved and projected onto the plane. The resulting
noise-free 3D feature position is then stored.

3. Detection of the registration object by OTS: The cus-
tom registration target with attached optical markers is
already calibrated against the OTS and can therefore be
tracked in 6D. Based on the known properties of the reg-
istration pattern, the 3D position of features (w.r.t. the
OTS), corresponding to those detected by depth cam-
eras, can be directly calculated. For registration objects
that are not equippedwith opticalmarkers, features canbe
manually annotated using a special rigid body (“pointer”)
whose tip has been calibrated to the OTS. Each feature’s
position is acquired by positioning the tip of the pointer
at the feature location.

4. Correspondences between features located by depth cam-
era and OTS are stored.

5. Repositioning of the registration object: As in the pair-
wise registration of Kinect cameras, the steps above are
repeated 12 times with different locations of the registra-
tion object. Due to the narrow field of view of the ToF
cameras and the resulting, rather small volume visible to
both ToF camera and OTS, this number of iterations has
been determined as the “sweet spot” where the volume
is completely sampled in the given system setup.

6. Estimationof the transformation:Basedon the stored cor-
respondences, the transformation between depth camera
and OTS is calculated using either the method of [13] or
the method provided by PCL (again, see pairwise Kinect
registration for details).

After performing the registration for each PMD camera, their
known transformations w.r.t. the OTS are used to establish
the registration between the PMD cameras themselves.

Registration of the reference Kinect camera with
respect to the OTS

The Kinect camera subsystem is designed to work indepen-
dently from any reference system. However, both PMD and
Kinect camera system need to be registered to each other
in order to enable a fusion of their data. The registration of
the reference Kinect camera is performed using the same
method as the registration of the PMD cameras. Due to the
lower resolution of the PMDcameras compared to theKinect
cameras, registration objects with larger patterns and there-
fore less details have to be used for the PMD camera system
registration.

Detection of a reference plane within the reference
camera’s frame

The correspondence detection for users in different cameras
and the robot base detection both depend on knowledge about
the plane equation that describes the floor of the room the sys-
tem is used in. The floor is needed for the detection of the
robot at the OR table and to project the centroids on. A com-
mon method to detect a plane is to use a RANSAC algorithm
in combination with a plane model. We use the RANSAC
plane estimator that is part of PCL. RANSAC delivers a
plane equation of the dominant plane inside a point cloud.
The plane equation is stored for future processing. This is
implemented as an interactive process to allow the user to
verify the registration result at any time in order to assure
that the correct plane has been found.

Robot localization

Contrary to, e.g., a typical industrial application, the posi-
tion of a robot in the clinical scenario is highly likely to
not remain constant. For example, even in the same type of
intervention itmight be placed at different positions along the
operating table rail (e.g., based on the patients anatomy or
the indication) to provide optimal workspace in the situs. In
other types of intervention such as in the ACTIVE scenario
for neurological interventions, the robots are not mounted
to the OR table at all. For this reason, the robot’s posi-
tion has to be determined before the system can be used
for human–robot interaction. We have defined two differ-
ent approaches for localization of the robot’s position in a
3D scene acquired from several registered depth cameras:
A passive localization based on landmarks and an active
localization throughout which the robot is moving. In the
following, a short explanation of the localization methods is
given. For more information we refer the reader to [19]

Both methods perform the following steps which can be
applied to the point cloud from a single depth cameras or a
full 3D scene acquired by multiple registered cameras:
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1. Approximate detection of the robot’s base: for pas-
sive localization, a landmark like the operating table is
detected first. In the reduced search space, the robot’s
base is determined with an appropriate method, e.g., by
localizing it along the operating table rail using circle
fitting on horizontal slices of the 3D scene. For active
localization, the robot performs a predefined motion. Via
spatial change detection, the area of motion is detected in
the 3D scene. Based on the known geometric properties
of the robot and the performed motion, the base of the
robot can be estimated.

2. Localization refinement: a simplified model of the robot
is placed in the 3D scene at the previously determined
position of the robot. The scene is then segmented into (a)
points inside the robot hull (“inliers”), (b) points within
a certain distance to the robot’s hull (“outliers”) and (c)
points farther away from the robot. Using a metric based
on this segmentation (ratio of inliers to outliers, combined
with total numbers of inliers), the accuracy of the cur-
rently estimatedposition is rated.The scene segmentation
and subsequent rating of the current position estimate are
repeated for multiple robot positions. These positions are
determined using the following algorithm: First, a local
optimization is performed. Predefined positions within a
certain distance to the current position are rated and the
best rated position is used as the basis for the next steps.
Then, for each segment of the robot, an optimization vec-
tor is calculated based on the center of the segment and
the center of the potential outliers. The robot’s position
is then transformed by an average of the corresponding
optimization vectors, yielding a new position at which
local optimization is performed.

Human detection and tracking

Human detection using OpenNI

OpenNI and NITE (PrimeSense, ISRAEL) are frameworks
for the development of 3D sensing technologies using the
Primesense sensor that is built into the Kinect camera. For
a single Kinect camera it offers user detection and full body
tracking without the requirement of a calibration pose. We
use OpenNI for user detection in every single Kinect cam-
era. Per camera, up to 16 users can be detected. For each
user, we extract the corresponding depth values and add them
to an empty depth map that is used for further processing.
The result is a set of h depth maps per camera where h is
the number of users detected in the camera frame. Every
depth map holds the depth values corresponding to a single
detected user. This detection step is performed in real time,
e.g., repeated for each frame at 20–30 frames per second, and
triggers the execution of the complete processing chain.

Removal of noise pixels in depth image

Acommon problem of depth sensors is noise at edges present
inside an image. Using ToF cameras, the term “jumping pix-
els” is commonly used for pixel that changes position from
foreground to background and vice versa. We eliminate the
resulting noise by first performing Sobel-based edge detec-
tion on the depth map acquired by each ToF camera and then
filtering all “edge pixels” from the acquired point clouds.
Kinect cameras do not show the same phenomenom but
exhibit a behavior where several pixels at borders lie between
foreground and background. This noise makes it hard to per-
forma robust brute force distance computation and affects the
computation of centroids. Again, we use two steps of noise
removal process. In the first step the morphological erosion
filter is applied to each depth image holding a user. As filter
a rectangular kernel shape with size 2 has been chosen. This
removes pixels at the borders of the users in these images,
thereby eliminating most of the noise. Step two is described
in paragraph 2.6.4.

Point cloud computation for every detected user

Using the known focal length of the Primesense sensor’s lens,
the resolution of the sensor and the function that maps depth
maps to meters, one can compute a point cloud from every
depth map.

Denoising in point clouds

The resulting point cloud is still not completely free of noise.
In particular artifacts that occur during movements cannot
be completely removed by the erosion operation. In order to
cope with the remaining noise, statistical outlier removal is
being performed. The used algorithm is described in [25] and
uses k neighbors of a point to find inliers and outliers. Points
that are closer to the mean μ of the k neighbors locations of
a point in the point cloud than α (standard deviation multi-
plier) * σ (standard deviation) of the k neighbors locations
are considered as inliers. The other points are considered as
outliers and are removed from the point set. We set α to 1.0
and we used 50 nearest neighbors to be considered for the
filtering. The result is a point cloud representing a single user
in a single camera with almost no visible noise at the borders.
This provides a good base for centroid computation, sensor
fusion and distance computations.

Find correspondences based on centroids

In order to determine corresponding users, the centroid of the
point cloud representing the complete user is computed. The
centroid c of a point cloud can be computed by summing
up the translational components of every point in a cloud.
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Dividing the resulting vector through the number of points
gives the centroid of a point cloud as shown in Eq. (1)

c =
⎡
⎢⎣

p1,x+p2,x+···+pn,x
n

p1,y+p2,y+···+pn,y
n

p1,z+p2,z+···+pn,z
n

⎤
⎥⎦ (1)

where pi is a point in the point set and n is the number of
points.

In our approach, the centroids are used for the fusion of
user point clouds, as they are usually placed in areas of the
point clouds that represent the thoracal or abdominal regions
of the human and can therefore characterize a human’s loca-
tion. Alternatively thorax objects as computed from skeleton
tracking approaches could serve this purpose. However, the
shown approach purely relies on point clouds and the corre-
sponding centroids for the fusion of user representations, as
skeleton tracking can be unstable or less available compared
to the point clouds.

To establish a shared reference frame, all user point clouds
as captured by the cameras (configuration can be seen in
Fig. 5) are transformed into the reference frame of camera
Kref . Afterward, corresponding users are determined based
on distance between every computed centroid. Please note
that, if not explicitly stated otherwise, we use the Euclidean
metric for all distance calculations throughout this article.
If the distance of the centroids of two user point clouds is
below a certain threshold, both point clouds are classified as
belonging to the same user. We compute a matrix holding the
correspondences (in the following: correspondence matrix)
that is used for concatenation of the point clouds. However,
the centroid is a metric that is not very robust to movements
of the user. Bending of the user’s upper body or articulation
of a joint causes the centroid to shift. As each camera cov-
ers a different part of the scene due to its position and field
of view, partial occlusions are possible and only parts of a
user may be visible to a single camera. The movement of a
centroid in a single camera may result in a distance between
corresponding centroids that is above the defined threshold
which results in false-negative detection of corresponding
centroids. A possible solution is to increase the threshold for
correspondence detection. However, this results in a higher
false-positive detection rate. Instead, we tackle the problem
using the fact that the erosion operation from the removal of
noisy points does not only remove noise but also points cor-
responding to a user. The impact on image parts representing
limbs is higher compared to the impact on abdominal and tho-
racic regions. The reason for this is that in a 2D view (depth
image) of the users a longer contour is present for limbs
compared to the contour of upper body parts. The erosion
operation removes pixels along every contour and therefore
strongly affects the limbs because of the lower volume to sur-

face ratio of the limbs compared to thoracic and abdominal
regions.

The reduction in limb points has the effect of moving the
centroid more into the center of the body of the detected user
as the limbs compared to thoracic of abdominal regions are
farther away from the center of body. The overall number of
points inside thorax and abdomen exceeds the number of the
points of the limbs which additionally helps to pull the cen-
troid toward the center of a user. However, the problem of the
movement of the centroid through bending of the upper body
is not solved. We reduce the problem to a two-dimensional
one by projecting the centroids to the floor plane which was
detected in step 2.4. By doing this we now have to consider
the trace of the user on the floor plane instead of the trace
of the centroid in 3D space. This eliminates errors along the
longitudinal axis of the user and helps for cases where only
parts of a user are visible in a single camera image. The com-
putation of the distance between the centroids is performed
on these projected centroids and the final correspondence
matrix for users in different cameras is being stored.

An example for a common situation inwhich projection to
the floor improves the correspondence detection is a situation
where the complete body of a user is visible in one of the
cameras but only an arm is visible in another camera. In the
three-dimensional case, the centroid of the fully user in the
full body cloud is close to the center of mass of the user,
but in the cloud representing only the arm it is close to the
center of mass of the arm. Projection to the floor in this case
eliminates all errors along the z-axis (where z is along the
normal of the floor) and thereby allows for lower thresholds.

Projection can simply be performed by computing the nor-
mal of a plane (in our case the floor) and moving the centroid
along this normal until the plane is being crossed.

A high threshold for correspondence estimation is nec-
essary in order to reduce the false-negative detection rate,
especially as the view ports of the Kinects are different which
results in partial point clouds of the user. Due to the fact that
all parts of the body that are not facing the camera cannot
be captured, the centroid is biased along the axis through
the observed user and the Kinect, toward the Kinect camera.
In order to cope with registration errors and the aforemen-
tioned problems, a threshold of 0.4m has been chosen for
our experiments.

Concatenation of point clouds per user

Using the correspondence matrix calculated in step 2.6.5, we
perform a lookup on the computed point clouds of the users
detected in different cameras. All point clouds that belong to
the same user are concatenated into a single point cloud. This
results in overlapping regions being represented by points of
several cameras and several viewpoints and regions that are
only represented by the points of only one camera.
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Fig. 7 Left user detected by two cameras, different colors represent
data from different cameras; right illustration of computed centroids of
the respective point clouds and their projections on the ground plane

Regions with overlapping point clouds introduce redun-
dancy into the concatenated point cloud. In order to reduce
the size of the point cloud and to remove redundancy, we
downsample the point cloud using a voxel grid filter of PCL
with a leaf size of 0.005m for x, y and z. This reduces the
amount of points in areaswhere points are dense and does not
reduce the amount of points in areas with a lower point den-
sity. The downsampled point cloud is being used for distance
computations and situational inference in subsequent steps
of the process. Figure 7 shows a user detected by two Kinect
cameras in different positions using the camera geometry
seen in Fig. 5.

Distance computation using GPGPU

In order to calculate a measure the distance between humans,
robots, as well as humans and robots, we implemented a
CUDA-based algorithm that operates on point cloudswithout
using any shape information. Collision checks with meshes
are not included yet because in the current target scenario
there is no need for mesh-based collision checking. As
described in “Robot localization” section, each robot’s posi-
tion is detected in the scene. After successful detection, we
use the CAD model of the robot and information from the
position encoders of the robots joints for distance process-
ing. We update the CAD model using Denavit–Hartenberg
forward kinematics and the measured joint angles from the
robot’s internal sensors. In order to not rely solely on the
correctness of the measured joint angles, the robots’ pose is

continuously monitored by the PMD camera subsystem (see
“Robot pose monitoring” section). From the CADmodel, we
drop all triangle information and extract all vertices which
can be considered to form a point cloud. Both the extracted
point cloud from the CAD model and the point cloud from
the processing chain, e.g., that of the users, are being loaded
into CUDA pinned memory on the host computer in every
updated cycle. From there, all cloud data are uploaded to the
graphics RAM of a NVIDIA Geforce GTX Titan. A kernel
on the NVIDIA Geforce GTX Titan computes Eq. (2)

d(p, q)2 = ||q − p||2 (2)

which is the squared distance between points p and q. Using
a brute force approach, which was fast enough for the point
cloud sizes used in the experiments, we employ this kernel
to compute all squared distances between the source (user)
and target cloud (robot). Afterward, all resulting squared dis-
tances are compared on the graphics adapter to determine
the smallest one. The points for which the squared distance
is minimal are closest in the original point clouds, e.g., user
and robot point cloud. We transfer back the smallest squared
distance together with point indices of the points in source
and target cloud to themain process where the square root for
this value is being computed on the CPU, thereby calculat-
ing the distanced between both clouds. This gives a measure
of the closest distance between two point clouds, which can
be used for simple collision avoidance. Two thresholds have
been defined. If the distance is below threshold 1 (0.4m in
our experiments), a warning is displayed to the user. If the
distance is below threshold 2 (0.2m in our experiments), the
robot can be stopped in order to avoid hazardous situation like
collisions. The use of thresholds describing safe and unsafe
regions removes the requirement of performing a collision
check in our scenario. Small distances between a user and
the robot can be considered unsafe and uncomfortable for a
user, especially in the case of surgical robots where the robot
acts as an assisting system. However, using only the distance
between user and robot is a huge over-simplification (as close
distances may not always be unwanted), so in a future step
the distance will be used as a feature vector for a probabilistic
approach to infer about the safety.

This brute force approach only works if the data are nearly
free of outliers (points that represent noise or other errors in
the free space, or background), as those would also be con-
sidered as points representing parts of users. If outliers and
noisy pixels cannot be completely removed, the quality of
the distance computation decreases, resulting in wrong dis-
tance computation and a higher false-positive detection rate
of hazardous events. Figure 8 shows the detection process
from detection of a user in a single camera to final system
output representing the user in the scene. Figure 9 shows the
running system.
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Extract depth image for 
every user (F)

Detect users in
scene (F)

Erode depth images (G)

Compute point clouds 
for every depth image 

(H)

Perform statistical 
outlier removal (I)

Transform point clouds 
into reference frame (J)

Compute centroid for 
every point cloud (J)

Project centroid to floor 
plane (J)

Concatenation of 
point clouds (K)

Compute Euclidean 
distances between all 

centroids (J)

Find corresponding 
point clouds using 

thresholding (J)

Fig. 8 Flowchart of the user detection process from detection of users in a single camera to the final point clouds representing the users. The letter
in brackets represents the paragraph in which the algorithms are described

Fig. 9 Complete systemduring run time; foreground: supervised scene
with users arm and robot; background: scene representation with user
detected being too close to the robot (depicted as user colored in red)
[2]

Skeleton fusion

Most tracking algorithms (OpenNI/NITE as well) deliver
poses and orientation of the skeletal joints of a user. OpenNI
uses a model-based approach to detect the joints. If two or
more skeletons of one and the same user are available, a
fusion of the skeletons is possible. The quality of the skeletal
information is highly dependent of the orientation of the user
with respect to the camera. Most current tracking algorithms
deliver best results if the camera is facing the front of a user.
In our approach we count the number of available skeletons
for a user based on the correspondence matrix computed in
2.6.5. As the operating table is centered under the rectangular
configuration, the assumption can be made that the front of

the user is likely to be seen by two Kinect cameras (user on
one side of the table). It is unlikely that the personnel is seen
by all cameras at any time and most of the time we have to
rely on one or two cameras. We observed that tracking qual-
ity decreases if a camera can see less of a user’s front side.
Three cases for the skeleton fusion have to be handled:

1. Skeleton tracked in only one camera: the skeletal config-
uration of a user is the skeletal data of the camera tracking
the user.

2. Skeleton of a user tracked by two cameras: the skeleton of
a user is computed using the means of the joint positions
tracked by the cameras. The joint orientation is computed
using quaternion slerping described in [22].

3. Skeleton of a user tracked by more than two cameras:
based on the assumption that a maximum of two cameras
at once can view the user’s front side, the two best-fitting
skeletons are computed (based on the translational com-
ponent only). For every pair of skeletons (i.e., the skeleton
of a user tracked in two cameras), we compute the dis-
tances between the joints. These distances result from the
registration and tracking error. We find the pair of cam-
eras in which the distances between the joint positions
are the smallest, neglecting the lower body joints as they
often are occluded by the operating table and other oper-
ating room equipment. We assume that the two skeletons
with the smallest distances represent the actual skeleton
position best. With the resulting pair of cameras the steps
of 2 are performed.
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Fig. 10 Detection of a deviation of the robot pose; left real robot pose with deviation (marked by central red axis) and desired upright pose (marked
by central green axis); right resulting violation of the safe zone

Robot pose monitoring

The pose of the robot is continuously supervised by the PMD
camera subsystem in order to guarantee that there is no devi-
ation between the planned and the real robot pose. This is
achieved by an algorithm we call shape cropping in which
the point cloud of the immediate surroundings of a robot is
segmented into two zones. The robot zone contains all data
points that belong to the robot surface itself. The safe zone
can be thought of as an inflated hull of the robot that includes
all points in the immediate surroundings of the robot. Both
zones are created in each time step based on a simplified
CAD model of the robot and the current joint values. If the
robot joint values are reported incorrectly, the real robot pose
in the scene deviates from the CAD model. This leads to
an increased number of inliers in the safe zone which can
be detected easily. Using this method, we monitor the robot
continuously for deviations between planned and real pose.
Figure 10 shows the detection of incorrect calibration of a
robot in the first joint, leading to a violation of the safe zone.
Furthermore, the same concept is used to estimate potential
collisions (which is not in the scope of this article).

Results

Kinect camera system

We measured the frequency of the received image data col-
lected and transmitted via Ethernet by the mini computer

Table 1 RMS and Median errors in mm and quartile range for the
accuracy evaluation of each pair of Kinect cameras [2]

Variable RMS Median value 1st quartile 3rd quartile

Pair 1 25.1064 19.8392 12.7431 28.2076

Pair 2 25.2948 26.8867 19.9021 34.8021

Pair 3 26.0307 26.6838 20.2448 35.1427

using built-in ROS mechanisms. The resulting frequency
without any computation was 25Hz. The accuracy eval-
uation for the checkerboard-based registration has been
performed using 12 poses for the checkerboard in a volume
of 1.8m×1.0m×1.5m. The locations of the corners of the
checkerboard at each of the locations for the checkerboard
have been captured by both the reference camera and the
camera, whose registration error had to be evaluated. Using
the known transformation between each camera and the refer-
ence camera, the locations of the checkerboard corner have
been transformed to the reference camera frame. Then the
Euclidean distance between each corner as captured by the
reference camera and the camera to be evaluated have been
computed. These Euclidean distances are a measure for the
registration error between the point clouds of the cameras.
The data have been statistically analyzed using a Kruskal–
Wallis method to show the registration error of the pairwise
registered Kinects. In the following, Kinect pairs of a source
Kn and the reference camera Kref are called a pair.

In Table 1, the median and inter-quartile ranges of the
accuracy evaluation are reported. In subsequent tables and
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Fig. 11 Boxplot of the registration error for every checkerboard posi-
tion and each pair of Kinect cameras [2]

figures, pair 1 is the pair of Kref and K1, pair 2 is the pair of
Kref and K2, pair 3 is the pair of Kref and K3. The statisti-
cal analysis shows that the results for pair 1 are significantly
different from the other two pairs because of the spatial con-
figuration of the cameras, e.g., a smaller distance between
the cameras.

Figure 11 shows the results of the accuracy evaluation for
eachgroup (=pair) in all the tested checkerboardpositions.As
can be seen on the picture, the data exhibit statistical differ-
ences in the tested workspace, which is induced by different
angles and distances in between the cameras.

Figure 12 shows the results of the accuracy evaluation
for each position of the checkerboard in each pair of Kinect
cameras.

When introducing the detection and fusion chain, per-
formance measurements show that an Intel Core i7 3770
can process up to four Kinect cameras using the proposed
approach.

Our approach successfully removes noisy pixels at the
edges of detected users but also removes parts of the useful
information as well. We did not observe any voxels in free
space (through noise or jumping pixels) during our experi-
ments which made distance computation without knowledge
about the objects possible.

To evaluate the delay of the camera system, we used a
high-speed camera (SpeedCam MacroVis) that simultane-
ously captured the real scene and the resulting 3D scene
displayed on a monitor. A series of events was performed
and captured by the high-speed camera. The delay was cal-
culated by measuring the time between an event in the scene
and themonitor showing the result. The delay is about 950ms
on average using Kinect cameras in the setup detailed in this
paper, e.g., transmission via ROS and ethernet. However,
the exact delay between actual action and finished computa-
tion can only be deducted, as the time for visualization and
displaying on the monitor is included in this measurement.

Fig. 12 Boxplot of the error for each pair of Kinects in each of the 12
checkerboard positions. a Pair 1, b pair 2, c pair 3

Until further experiments are carried out, we assume aworst-
case scenario inwhich visualization and displaying introduce
no significant delay and therefore estimate the delay of the
Kinect system to 950ms.

PMD camera system

The hybrid frame rate of the PMD camera system was eval-
uated to be 18.4 fps. The delay was evaluated with the same
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method described in “Kinect camera system” section, result-
ing in a delay of 175 and 244ms for camera group one and
two. Both frame rate and delay are directly related to the
time for scene acquisition needed by each camera. The reg-
istration error was evaluated to be below 3cm per camera.
Depending on the robot’s pose, deviations from the correct
pose were detected from angular errors of 2◦ upward. Further
results have been presented in [19].

Robot localization

The robot position was localized by the Kinect camera
system with the active localization method as described
in “Robot localization” section. For evaluation, the robot
was placed at seven different positions inside the field of
view of both the Kinect camera system and the optical
tracking system (OTS). All localizations were performed
using only information obtained by the Kinect camera sys-
tem. The reference frame for all cameras was located at
the position of Kref with the z-axis parallel to the nor-
mal of the floor plane (as determined in “Detection of a
reference plane within the reference camera’s frame” sec-
tion).

For the purpose of evaluation, the Kinect cameras were
additionally registered against the OTS with the method
described in 2.2 in order to provide a ground truth for all
measurements.

For each position, the following steps have been per-
formed:

1. Position acquisition with OTS: The robots position was
determined using the OTS. The determined position was
stored as ground truth for this position.

2. Initial localization by spatial change detection: Spa-
tial change detection was performed in the scene view
of Kref on the predefined motion of the robot. Based
on the resulting change point cloud, the initial robot
base position relative to the reference frame was calcu-
lated.

3. Refinement of initial localization: Based on the initial
localization, the localization optimizationwas performed
for each camera separately.

4. Localization at additional positions: The robot was
moved to five different configurations. For each config-
uration, the localization optimization was performed in
each camera separately.

5. Calculation of final localization result: Over all 24 posi-
tions estimations pi (initial estimation plus five configu-
rations, seen from 4 cameras each), a weighted average
position vector pfinal was calculated as in Eq. 3, tak-
ing into account the total number of both inliers in and
inliers/outliers ratio in

out per measurement:

Fig. 13 Robot localization error per Kinect camera as euclidean dis-
tance between correct robot position and detected position by camera

Table 2 RMS andmedian errors in mm and quartile range for the robot
localization accuracy of the Kinect system

RMS Median
value

1st
quartile

3rd
quartile

First localization 109.5 79.5 76.9 80.4

Result by averaging 60.2 48.7 28.7 52.5

Final weighted result 44.7 38.0 29.3 53.4

pfinal = 1
n∑

i=1
ini · ini

outi

24∑
i=1

ini · ini
outi

· pi (3)

The acquired data were first evaluated against the robot
position acquired by OTS, which served as a ground truth,
for each camera separately: For Kinect K1−n, n < 4, the
position detected by the camera was transformed into the
OTS frame (based on the direct camera-to-OTS registration
as in “Registration of depth cameras with respect to an opti-
cal tracking system (OTS)” section). The Euclidean distance
between the obtained position and the ground truth was used
as error metric. The median error calculated over all cameras
was 41mm. Figure 13 shows the error distribution for each
camera separately.

To evaluate the robot localization accuracy of the whole
Kinect camera system, we compared the localization result
of the camera system (registered with the method described
in 2.1) against the ground truth. Table 2 shows the respective
results obtained by the initial pose refinement, calculated by
a plain average over all single camera results and the final
result obtained by weighting the results as shown in Eq. 3.

Kinect-based user detection

The system’s overall human detection performancewas eval-
uated using the test protocols described below:
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1. One person in blue surgical clothing moves in the field
of view of the camera system with a speed of 0.0–0.5m

s .
A human operator observes both the movement of the
person in the scene and the output of the supervision
system. We measure the time and the amount of losses
(system unable to detect the human) of the human in the
field of view. Three iterations with a duration of 3min
have been performed.

2. The same person moves in the field of view of the sys-
tem and completely stops movement, while its position
is close to the operating table. We measure the time until
the user is lost by the system. Thirteen iterations have
been performed.

3. As before, the person is standing close to the operating
table. He/she is mimicking the movement of the hands
during surgical tasks by moving hands in a workspace
of 0.3m×0.3m×0.3m. As before, the time until the
person is lost is measured. As no dedicated surgical inter-
vention has been chosen, the person has been advised to
perform hand movements in the workspace. The focus of
this experiment is to determine whether there is a signif-
icant difference between no movement and small hand
movements in terms of detection quality. Thirteen itera-
tions have been performed.

4. After the personhas been lost, he/she starts tomove again.
We measure the time until the person is detected by the
system. Thirteen iterations have been performed.

5. Two persons aremoving in the field of view of the camera
system.During the experiment, the personsmove close to
each other until the Kinect system incorrectly identifies
them as one person only.Wemeasure the distances below
which both users are identified as one and the sameperson
(false-positive detection). Thirteen iterations have been
performed.

To test the assumption that detection quality is related to
the height and figure of a person, all experiments have been
repeated for two persons. We have chosen a male with height
1.93m (test person 1) and a female with height 1.62m (test
person 2) to evaluate the influence of body characteristics on
detection quality.

To mimic realistic occlusions in the operating theater, a
robot, an ultrasound stand and an operating bed have been
placed in the field of view of the Kinect system. As the data
are annotated by visual observation of the virtual scene in
comparison with reality, errors are introduced due to reaction
time of the observer, so all values have been rounded to full
seconds. The delay of the system from action to visualization
of about 950ms has not been taken into account during data
collection, so all values have been corrected afterward using
a rounded delay of 1 s.

For experiment 1 and test person 1,we observed one detec-
tion loss of less than 3s for iteration 1, one detection loss of

Table 3 Median/mean values in sec and quartile range for the time
until loss of tracking test when standing still (experiment 2)

Test person Median
value

Mean
value

1st
quartile

3rd
quartile

Test person 1 14.0 14.3846 11.0 16.75

Test person 2 15.0 12.3846 6.0 17.25

Fig. 14 Boxplot showing the results of experiment 2: time until track-
ing is lost while standing still with both test persons

Table 4 Median/mean values in sec and quartile range for the time
until loss of tracking test when moving hands (experiment 3)

Test person Median
value

Mean
value

1st
quartile

3rd
quartile

Test person 1 9.0 18.0769 6.0 27.0

Test person 2 16.0 17.9231 11.75 23.5

2 s in iteration two and no detection loss in iteration three.
For experiment 1 and test person 2, we observed no detection
losses in two of three iterations and one detection loss of less
than 2s in the third iteration.

Results of experiment 2, time until loss of tracking for
a previously detected person after he/she stops moving, are
depicted in Table 3 and Fig. 14.

Experiment 3 shows results similar to experiment 2 which
is given in Table 4, which means that there is no difference in
detection quality between a person standing next to the oper-
ating table without moving and a person standing next to the
operating table andmoving the hands. For further evaluation,
a Kruskal–Wallis test with null hypothesis “No significant
difference between standing still andmovinghands” has been
performed. The p value of the performed test is 0.7380 when
performed with the data of test person 1 and 0.1815 when
performed with the data of test person 2, which indicates
that there is no presumption against the null hypothesis and
therefore no significant difference in between the samples of
experiment 2 and experiment 3 can be assumed on the 10%
significance level.
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Fig. 15 Boxplot showing the results of experiment 3: time until track-
ing is lost while moving hands with both test persons

Table 5 Median/mean values in sec and quartile range for the time
until user detected test (experiment 4)

Test person Median
value

Mean
value

1st
quartile

3rd
quartile

Test person 1 1.0 0.6923 0.0 1.0

Test person 2 1.0 1.0769 1.0 1.0

Fig. 16 Boxplot showing the results of experiment 4: time until detec-
tion of test person for both test persons

The results of experiment 3, detection robustness when
moving hands only, are depicted in Table 4 and Fig. 15.

The results of experiment 4, re-detection of previously
untracked person, are depicted in Table 5 and Fig. 16.

AKruskal–Wallis testwith null hypothesis “No significant
difference between samples” was performed to find statisti-
cally significant differences in between the detection quality
of the test persons. We compared the results of test person 1
with the results of test person 2. The p values were 0.7776
for experiment 2, 0.5207 for experiment 3 and 0.0878 for
experiment 4. There are no presumptions against the null
hypothesis for experiment 2 and 3, and there is only low pre-
sumption against the null hypothesis for experiment 4 on the
10% significance level.

In experiment 5, testing at which distance two persons
are incorrectly detected as one, we were not able to provoke
such a mis-detection (false positive) for test person 1 in 12
of 13 samples. In the remaining sample the distance for a
false positive was 0.4m. For test person 2, in 8 samples we
were not able to provoke a detection of two users as one and
the same user (false positive). In two samples we observed a
false-positive detection distance of 0.0m. In two samples a
false-positive detection distance of 0.1m was measured and
in one samplewe observed a false-positive detection distance
of 0.4m.

Furthermore, the Kinect system has been integrated into a
demonstration and validation system for the ACTIVE FP7
project that aims at improving robotics surgery for neu-
rosurgical interventions and is integrated with the system
described in [7]. The system is used for optimizing the
robot’s nullspace configuration based on the position of the
personnel, for workflow detection and hazard detection and
performed well in all use cases. The scenario allows a sur-
geon and a scrub nurse being close to the operating table. A
third person is considered as a safety risk. Using the meth-
ods described above, we were able to successfully raise a
safety alert when more than two people were closer to the
robot than the allowed thresholds. However, we observed a
false-positive hazard detection when moving very fast (e.g.,
running) in the field of view of the cameras. While this is
usually not the case in a surgical setting, it can lead to a per-
son being detected twice at different positions as the Kinect
camera does not allow for active synchronization.

The false-positive and false-negative detection rates for
the estimation of correspondences between a person tracked
by different cameras are correlated via the threshold for cor-
respondence estimation. A higher threshold results in a lower
false-negative detection rate, but increases the false-positive
detection rate. The proposed threshold value of 0.4m led to
a good performance in the aforementioned scenario.

Discussion

We propose a novel approach for fusion of detected users
inside 3D depth maps as well as a registration method for
RGB-D sensors. The approach is scalable, robust to inter-
ferences and noise introduced by the use of multiple Kinect
cameras, and independent from models to compare the cap-
tured data with. Therefore the approach is highly flexible,
can run with different detection algorithms and works also
for other objects than humans andwith otherRGB-Dcameras
than theKinect and thePMD.With regard to the latency of the
PMDcameras, it has to be noted that themodels of PMDcam-
eras which are currently integrated in the setup are outdated
by now. Using newer camera revisions is expected to fur-
ther raise the frame rate and lower the delay. This flexibility
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allows the system to be adaptable tomany environments. The
cameras can be positioned in the operating room where they
have the best view on the scene to be supervised and where
the occlusions can be minimized. The approach is scalable,
which allows for the use of more cameras when complex-
ity in the scene increases. An integration in a real operating
theater would require small technical modifications, but is
feasible and planned for future works.

The approach shows a registration error that makes it
usable for high-level scene supervision for workflow detec-
tion and for inferring about the situation but is not suited
for high precise measurements of body area, volumetric or
exact distance calculation. Additionally, the removal of noisy
pixels increases the model quality but removes also part of
the surface around an object being detected. The use of better
sensors like precise stereo cameras could reduce the error, but
introduces problems like lighting and the need for stereo cal-
ibration and feature matching. The delay between the action
being performed and the scene being completely processed
by the Kinect subsystem is notably high. This is not a prob-
lem for inferring about long-lasting processes like workflow
detection in the operating room, but makes the use of faster
systems like the PMD subsystem for time critical tasks like
collision avoidance necessary. In order to reduce the thresh-
old for correspondence estimation, a shape-based model for
computing a point that is closer to the center of mass of a
user compared to the centroid may help.

The results of the detection and tracking tests show that
the system and the integrated algorithms are more reliable
when the test persons are moving in the field of view instead
of standing still. This can be explained through the use of the
OpenNI algorithmwhich is based on detecting users based on
moving objects. Also during our experiments we observed
that a curtain, the operating bed, a server rack and a stand
for an ultrasound device were infrequently detected as a per-
son. To overcome these shortcomings, in future iterations the
Microsoft Kinect V2 camera with the Microsoft algorithms
[26] will be used. The results show that moving persons in
the operating theater can be detected in very short time; how-
ever, it has to be taken into account that the data are adjusted
using the delay (rounded 1s) resulting in higher values for
detection time. The results also show that the system is prone
to false-positive detection of two users as one user. Regard-
ing the outcome of the Kruskal–Wallis tests comparing the
system performance for different body heights and figures,
we have to assume that the system does not perform signifi-
cantly different for the different body heights and figures of
the test persons.

Future work will include situation-based information into
the process.Measuring distances to infer about hazardous sit-
uation is not enough as in cooperative controlmodes thatmay
occur during operations the robot is allowed to be in contact
with the surgeon. This is being worked on using probabilistic

approaches based on the Kinect subsystem data. The system
will be included into a workflow management system that
flexibly controls an operating room using enviromental data
and a knowledge-based system that models all system com-
ponents as well as the medical workflow.

The final output data will be used to infer about the current
situation in the operating room, to switch between workflow
steps and will form the base for workflow-based assistance
in the operating room. The target system is a completely
integrated neurosurgical platform developed in the scope of
the ACTIVE project as well as an integrated multi-purpose
operating room in the scope of OP:Sense. In both projects
several robots work close together with humans and share
the same workspace. The system is intended to follow the
workflow during the operation and provide safe and intuitive
human–robot interaction during the whole intervention.
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