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Abstract

Purpose—This paper presents the results of a large study involving fusion prostate biopsies to 

demonstrate that temporal ultrasound can be used to accurately classify tissue labels identified in 

multi-parametric magnetic resonance imaging (mp-MRI) as suspicious for cancer.

Methods—We use deep learning to analyze temporal ultrasound data obtained from 255 cancer 

foci identified in mp-MRI. Each target is sampled in axial and sagittal planes. A deep belief 

network is trained to automatically learn the high-level latent features of temporal ultrasound data. 

A support vector machine classifier is then applied to differentiate cancerous versus benign tissue, 

verified by histopathology. Data from 32 targets are used for the training, while the remaining 223 

targets are used for testing.

Results—Our results indicate that the distance between the biopsy target and the prostate 

boundary, and the agreement between axial and sagittal histopathology of each target impact the 

classification accuracy. In 84 test cores that are 5 mm or farther to the prostate boundary, and have 

consistent pathology outcomes in axial and sagittal biopsy planes, we achieve an area under the 

curve of 0.80. In contrast, all of these targets were labeled as moderately suspicious in mp-MR.

Conclusion—Using temporal ultrasound data in a fusion prostate biopsy study, we achieved a 

high classification accuracy specifically for moderately scored mp-MRI targets. These targets are 

clinically common and contribute to the high false-positive rates associated with mp-MRI for 

prostate cancer detection. Temporal ultrasound data combined with mp-MRI have the potential to 

reduce the number of unnecessary biopsies in fusion biopsy settings.

Shekoofeh Azizi shazizi@ece.ubc.ca. 

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of 
the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable 
ethical standards.

HHS Public Access
Author manuscript
Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2019 February 06.

Published in final edited form as:
Int J Comput Assist Radiol Surg. 2016 June ; 11(6): 947–956. doi:10.1007/s11548-016-1395-2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Temporal ultrasound data; Deep learning; Deep belief network; Cancer diagnosis; Prostate cancer

Introduction

Prostate cancer (PCa) is the second leading cause of cancer-related death in North American 

men. According to the American and Canadian Cancer Societies, PCa accounts for 24 % of 

all new cancer cases and results in 33,600 deaths per year in North America.1 The PCa-

related death rate has declined significantly (almost 4 % per annum) between 2001 and 2009 

due to improved testing and better treatment options. The majority of the cases diagnosed 

today are the early-stage disease where several treatment options are available, including 

surgery, brachytherapy, thermal ablation, external beam therapy and active surveillance. 

Early detection and accurate staging of PCa are essential to the selection of optimal 

treatment options, hence reducing the disease-associated morbidity and mortality [25].

The current standard of care for diagnosis of PCa is the histopathological analysis of biopsy 

samples acquired under transrectal ultrasound (TRUS) guidance. The sensitivity of 

conventional systematic biopsy under TRUS guidance, for detection of PCa, has been 

reported to be as low as 40 % [5,9,25]. Significant improvement of TRUS-guided PCa 

biopsy is required to decrease the rate of over-treatment for low-risk disease while 

preventing the under-treatment of high-risk cancer [16]. Several methods that enable patient-

specific targeting have been proposed to improve the detection rate of PCa. Ultrasound 

(US)-based tissue typing techniques for characterization of PCa include analysis of single 

radio-frequency (RF) US frame data [8,22,27], elastography [18,21,24] and Doppler 

imaging [23,30]. A shortcoming of these methods that have limited their clinical uptake is 

the challenge of identifying a globally effective, tissue-associated threshold that can reliably 

identify cancerous tissue in the analyzed images, and be ubiquitously generalized to 

prospective patient data. For instance, determining such preset threshold for separation of 

cancer from benign tissue has been difficult for shear wave elastography, one of the most 

advanced imaging methods to date with large clinical feasibility studies [3]. Magnetic 

resonance (MR) imaging, an emerging approach for performing targeted biopsies, uses co-

alignment of multi-parametric MRI (mp-MRI) and TRUS and has reported negative 

predictive values as high as 94 % [26]. It has been shown that mp-MRI improves the 

detection of aggressive PCa, but it is not as sensitive for detection of low-grade cancers and 

smaller sizes of highgrade cancer. Moreover, mp-MRI leads to a high number of false 

positives and hence unnecessary biopsies [16,26].

Recently, temporal US data captured from a stationary tissue location have been proposed 

for tissue characterization in our group. In this technology, a series of US frames is obtained 

from a stationary tissue position without any intentional mechanical excitation. This 

approach is a significant departure from traditional US tissue typing techniques. Features 

extracted from the temporal US data have been used in a machine learning framework to 

1Canadian cancer society: http://www.cancer.ca/, and American cancer society: http://www.cancer.org/.
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predict labels provided by histopathology as the ground truth. This approach has been used 

successfully for depiction of cancerous and non-cancerous prostate tissue in ex vivo [19,22] 

and in vivo [12–15,20] studies.

In previous implementations of temporal RF data technology, features were heuristically 

determined from spectral analysis of US image sequences, rather than through a systematic 

approach [1,12,14,15]. Recently [1], we proposed an automatic feature selection framework 

for analyzing temporal US signals of prostate tissue. We addressed the so-called cherry 

picking of the features [15] by a deep learning-based feature selection framework. This 

framework exploits deep belief networks (DBN) [2] to automatically learn a highlevel latent 

feature representation of the temporal US data. We demonstrated that this approach is an 

effective method in identifying both benign and cancerous biopsy cores in TRUS-guided 

biopsy [1] in a preliminary study containing 36 biopsy cores. In this paper, in our largest 

clinical study to date involving 255 TRUS-guided biopsy cores, we investigate the factors 

that affect the classification accuracy within a targeted biopsy interface. Furthermore, we 

demonstrate that temporal US data can be used to accurately classify tissue labels that were 

identified in mp-MRI as suspicious for cancer. Our results indicate that temporal US analysis 

can complement mp-MR imaging and together they can be an effective tool for cancer 

detection.

Materials

Data acquisition

The study was approved by the ethics review board of the National Cancer Institute, 

National Institutes of Health (NIH) in Bethesda, Maryland, and all subjects provided 

informed consent to participate. One hundred and fifty-eight subjects were enrolled in the 

study where they underwent preoperative mp-MRI examination with three pulse sequences: 

T2-weighted, diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) 

imaging. Prior to biopsy, suspicious lesions in mp-MRI were identified and scored by two 

independent radiologists, according to a previously published protocol [15,29]. In this 

protocol, an overall score in the range from 1 (no cancer) to 5 (aggressive cancer) is assigned 

to a suspicious area. Scores are grouped into three descriptors of “low” (score of ≤ 2), 

“moderate” (score of 3) and “high” (score of ≥ 4) and referred to as the MR suspicious level 
assigned to the area. Using the UroNav MR/US fusion system (Invivo Inc., a subsidiary of 

Philips Healthcare), targeted biopsy was performed with the identified mp-MRI lesions 

registered to the real-time 3D TRUS images [17,31]. The clinician navigates the prostate 

volume to identify the labeled target for acquiring a core and holds the TRUS transducer 

steady for about 5 s to obtain 100 frames of temporal US data. Two biopsies are then taken 

from a target, one in the axial imaging plane and one in the sagittal imaging plane. For each 

subject, temporal US data are collected from either one or two MR-identified targets only in 

the axial plane to minimize the disruption to the clinical work flow. Temporal US data were 

collected from 255 biopsy cores of 158 subjects for this study. Tissue biopsy is followed by 

histopathology analysis, and results are used as the ground-truth labels for evaluation of 

cancer detection as described below (Fig. 1).
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Histopathology and ground-truth labeling

The Gleason grade scale, ranging from 1 (resembling normal prostate tissue) to 5 

(aggressive cancerous tissue), is the most common system to describe the level of 

abnormality for prostate tissue. The Gleason score (GS) is reported as the summation of the 

two most common Gleason grade patterns in a specimen. Following histopathology 

examination of the 255 collected cores, 83 were cancerous and their GS were as follows: 26 

GS of 3 + 3, 26 GS of 3 + 4, five GS of 4 + 3, 21 GS of 4 + 4, and five GS of 4 + 5. The 

remaining 172 cores were non-cancerous with histologies including fibromuscular tissue, 

chronic inflammation, atrophy and prostatic intraepithelial neoplasia (PIN). As mentioned 

above, for each MRI-identified target in a patient, two biopsies are obtained from the axial 

and sagittal TRUS planes, respectively. For some cores, the histopathology reported from the 

two planes were not in agreement. Taking this into account, we only considered the 

histopathology of the axial plane for generating the ground-truth labels, the same plane as 

that of temporal US imaging. Among 255 cores from 158 patients, 55 cores from 45 patients 

have mismatches between axial and sagittal histopathology, where one biopsy is reported as 

benign and the other as cancerous tissue.

Data for model generation and testing

The reported registration accuracy for the Philips UroNav MR/US fusion system is 2.4 ± 1.2 

mm [31]. However, misregistration is usually more prominent for targets close to the 

segmented boundary of the prostate. For biopsy cores taken far away from the boundary, we 

assume that the target is in the center of the core. However, clinicians normally adjust the 

needle penetration depth for targets that are close to the boundary, especially in the anterior 

region, so that the core sample is not taken beyond the prostate. To generate our model, we 

aim to use homogeneous prostate tissue regions with reliable ground-truth labels. Therefore, 

we select cores for training if they meet all of the following three selection criteria, similar 

to our previous work [1]: (i) located more than 3 mm distance to the prostate boundary in 

TRUS images; (ii) have matching histopathology labels between axial and sagittal biopsies; 

and (iii) have a tumor length larger than 7 mm if cancerous. We select 32 cores from 27 

patients, which fulfill the above criteria, and use the temporal US data from them to generate 

our model. These 32 training cores are labeled as dataset D1, where 13 cores are cancerous 

and 19 cores are benign. The distribution of the histopathology labels of this data is 

presented in Fig. 1a.

The remaining 223 biopsy cores (distributed as presented in Fig. 1b) are divided into three 

subgroups based on the distance of the target to prostate boundary and agreement between 

axial and sagittal histopathology labels: (1) dataset D2 − A, consisting of 156 cores from 

150 patients whose target distance to prostate boundary (d) is ≥ 3 mm; (2) dataset D2 − B, 

consisting of 117 cores from dataset D2 − A that also have agreement in histopathology 

labels of axial and sagittal biopsy cores; and (3) dataset D3, consisting of 67 cores whose 

target distance to prostate boundary is <3 mm. A flowchart summarizing the training and 

test data is shown in Fig. 2.
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Region of interest

We define regions of interest (ROI) in the TRUS image to associate histopathology of each 

biopsy core to temporal US data. Each ROI is an area of 2 × 10 mm2 in the lateral and axial 

directions, respectively, along the projected needle path centered on the biopsy target. The 

width of this area is close to the width of the biopsy core, but the length is approximately 

half of the typical biopsy core length. Given the very large variability of biopsy core lengths 

in histopathology, selection of ROI length was based on a reasonable assumption that the 

center of a cancerous tissue reported in histopathology should be close to the target 

identified in MR. The selected area is divided into 20 ROIs of size 1 mm2, resulting a total 

of 5100 ROIs from all biopsy cores. To build the feature extraction and classification model, 

we used 640 ROIs from 32 training cores in the dataset D1. The number of RF samples 

within an ROI varies between 90 and 480 due to scan conversion and the depth of biopsy 

cores, while the length of temporal RF data is 100 time points. Therefore, each ROI can be 

thought of as 90–480 signals each with 100 time samples. We analyze the spectral 

component of the temporal US data in order to determine the characteristics of the non-

cancerous and cancerous cores. To generate features for each ROI, we take the Fourier 

transform of the time course signals in the ROI, normalized to the frame rate. For each ROI, 

we generate 50 positive frequency components by averaging the absolute values of the 

discrete Fourier transform (DFT) of the zero-mean temporal US data [1,15].

Method

Figure 3 shows a schematic diagram of our method. In this framework, we use deep belief 

networks (DBN) [2] to automatically learn a high-level latent feature representation of the 

temporal US data that can detect prostate cancer. We then use the hidden activations of the 

DBN as the input features to a support vector machine (SVM) classifier to generate a cancer 

likelihood map. Details of the training and testing have been described previously [1].

Automatic feature learning

For automatic feature learning, we first pre-train a DBN using our training dataset, D1, by 

performing a greedy layer-wise unsupervised pre-training approach [2]. Initially, we set our 

DBN structure including the number of hidden layers and nodes configuration, as well as the 

numerical meta-parameters according to the default values of the DBN library [28]. We then 

heuristically searched for the number of hidden layers and node configuration so that lowest 
reconstruction errors with the default library parameters were obtained in the training data. 

Using trial and error, and the guidelines provided by [10,32], we can determine the 

metaparameters [10] of the deep network such as the learning rate, the momentum, the 

weight cost, the size of mini-batch and the number of passes to achieve lower reconstruction 

error in the training data. The finalized pre-trained DBN is composed of a real-valued visible 

layer with 50 units, and three hidden layers consist of 100, 50 and 6 hidden units, 

respectively. The learning rate is fixed at 0.001, minibatch size is 5 and the number of passes 

is 100 epochs. The momentum and the weight cost do not change from the default values 

(0.9, 2 × 10−4). This unsupervised pretraining guides learning to better generalize from 

training data [6]. Using standard training schemes based on random initialization, the AUC 
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for the test dataset, D2 − B, is dropped to 0.53, which suggests that we are unable to 

effectively learn the model. This model also leads to poor generalization.

Following the pre-training step, we perform a fine-tuning step using the same training set in 

a supervised manner. The fine-tuning is done by stacking another output node as the last 

layer of the DBN. This node is used to represent the class label of the input data. For 

supervised fine-tuning, we use contrast divergence approximation [11] to learn the weighted 

mixture of activations. The numerical meta-parameters are optimized according to 

reconstruction error. In the supervised fine-tuning step, we ran 70 epochs with a fixed 

learning rate of 0.01 and a mini-batch size of 10. After completion of the learning procedure, 

the last hidden layer of the DBN produces the latent feature representation.

An essential point in using DBN is to build models that generalize well to unseen data. The 

greedy layer-wise learning algorithm is a powerful tool that enables us to identify the 

parameters of our model fast, even in this deep network configuration [11]. Bengio et al. [2] 

report that using this approach, weights are initialized near a good local optimum, leading to 

a better generalization of the model. The key concept is to train one layer at a time and to 

use the representation of the previous hidden layer as the input to the next hidden layer. 

Following fine-tuning through back propagation, the weights of the deep network are 

optimized to their final values.

In order to test the generalization of the trained DBN, we make certain that testing data are 

never used to pretrain or fine-tune the network parameters. In addition, we visualize the 

activation of hidden neurons in different layers [32] after training (see “Results and 

discussion” section). If only a small fraction of the connections is active, then we can 

indicate that our network requires few parameters for classification.

Classification

We use training dataset D1 to obtain the learned features from the last hidden layer of the 

trained DBN. Then, we use these features as inputs to a nonlinear SVM classifier. We have 

six learned features corresponding to the activations of the six hidden units in the last hidden 

layer. The SVM classifier uses a radial basis function (RBF) kernel; we determine the 

parameters of the classifier through a grid-search approach [15]. Following training, we use 

the SVM classifier on the test data to derive the tissue type labels for each ROI.

Feature visualization

To determine the characteristics of the non-cancerous and cancerous cores in the temporal 

US data and their correlation with learned features, we propose a feature visualization 

approach (Fig. 4). This approach is used to identify the most discriminative features of the 

time series (i.e., frequency components as introduced in “Region of interest” section), as 

learned by the classifier. We implement feature visualization for both training and testing 

data. First, data are propagated through the trained DBN and the activations of the last 

hidden layer, i.e., the learned latent features are computed. To examine the significance of an 

individual learned latent feature, the activations of all other hidden units in the third layer are 

set zero. The activation of the nonzero learned feature is back-propagated to the input layer. 

The resulting signal, displayed in the input layer as a series of frequency components, 
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highlights those components that contribute to the activation of the nonzero learned feature. 

By comparing the components activated for benign and cancerous cores, we can identify 

those frequency ranges that are different between two tissue types. This process is performed 

for all latent features.

Results and discussion

To assess the performance of our method, sensitivity, specificity and accuracy were 

calculated. We also report the overall performance using the area under the receiver 

operating characteristic curve (AUC). To define the sensitivity and specificity, we consider 

cancerous cores as the positive class and the no-cancerous cores as the negative class. The 

sensitivity or recall is the percentage of cancerous cores that are correctly identified as 

cancerous, and the specificity is the percentage of non-cancerous cores that are correctly 

classified. The accuracy is the proportion of true results (both true positives and true 

negatives) among the total number of cores. Receiver operating characteristic curves (ROC) 

are two-dimensional graphs in which sensitivity is plotted on the y-axis and (1-specificity) is 

plotted on the x-axis. An ROC graph depicts relative trade-offs between sensitivity and 

specificity, where accuracy is reported based on a specific threshold. The maximum AUC is 

1, where larger AUC values indicate better classification performance [7]. Table 1 shows the 

classification results for test dataset D2. Our results indicate that dataset D2− B has 

consistently higher classification results than dataset D2 − A across all MR suspicious 

levels. A closer look at cores in dataset D2 − A also shows that for those samples that are 

farther from the prostate boundary (at least 5 mm away) and have moderate MR suspicious 

level (53 cores), we achieve AUC of 0.89, irrespective of mismatch between axial and 

sagittal histopathology. In comparison, only 26 % of those cores are identified as cancerous 

after biopsy which means our approach can effectively complement mp-MRI to reduce the 

number of false positives for those targets with moderate MR suspicious level.

We also perform similar analysis for dataset D3, where we achieve AUC of 0.36. There are 

various factors that may have contributed to this drop in classification accuracy, including 

higher registration error among mp-MRI, TRUS and histopathology for targets close to the 

segmented prostate boundary, and the inclusion of US signal from tissue outside the 

prostate. Moreover, based on the clinical protocol, for targets that are close to the prostate 

boundary, the biopsy core is not centered on the target location to minimize the penetration 

of needle in tissue surrounding the prostate. A more accurate ground-truth data needs to be 

obtained to further validate our approach on targets that are close to the prostate boundary.

Moreover, we perform analysis on dataset D2− A without the elements of D2 − B. This 

analysis was done on 39 cores from 34 patient whose target distance to the boundary is more 

than 3 mm and has the disagreement in histopathology labels of axial and sagittal biopsy 

cores. Our results show that by using axial plane histopathology as the ground-truth label, 

we achieve an AUC of 0.73. On the other hand, by using sagittal plane histopathology as the 

ground-truth label, we obtained an AUC of 0.60. One of the factors that may have 

contributed to this performance is the fact that temporal US data, which carries tissue typing 

information, are obtained from the axial plane.
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We also investigate the performance of our model on dataset D2 − A and D2 − B across 

various Gleason scores (Fig. 5). Results show that 59/83 of benign cores and 26/34 

cancerous cores in dataset D2 − B are correctly identified. Most importantly, all cases of 

clinically aggressive cancer grades with GS of 4 + 5 are correctly labeled. The accuracy of 

our method in detection of lower grade cancer with GS of 3 + 4 and 3 + 3 is 82 % in dataset 

D2 − B. It should be noted that in some GS categories there is not a sufficient number of 

samples for definitive conclusion.

Figure 6 shows examples of the cancer likelihood maps from dataset D2 − B, derived from 

the output of SVM, overlaid on B-mode US image. We use the approach described in our 

earlier publication [22] for this purpose. In the colormaps, red regions belong to ROIs for 

which the cancer likelihood are more than or equal 70 %. We found that with this threshold, 

the visualized maps demonstrated all the major tumors in the dataset without a large number 

of false positives.

To investigate the effect of the size of the tumor on our detection accuracy, we analyze the 

AUC against the greatest length of the tumor in MRI (ranging from 0.3 to 3.8 cm) for D2 − 

B. We obtained average AUC of 0.77 for cores with MR tumor size smaller than 1.5 cm and 

average AUC of 0.93 for cores with MR tumor size larger than 2 cm. The results show our 

method has a higher performance for larger tumors.

We also performed an additional sensitivity analysis by permuting the training and testing 

data. To create new training and testing sets, in each permutation, we exchanged a randomly 

selected cancerous or benign core in the training and testing data. The cores are selected 

from dataset D2 − B. This resulted in 32 different permutations given the distribution of 

cores in our training data. On average, we achieved AUC, accuracy, sensitivity and 

specificity of 0.70, 71, 68, and 70 %, respectively. In another experiment, to ensure that the 

classification model does not over-fit to the training data, we trained our SVM classification 

model using dataset D2 in a fold validation manner. We obtained AUC of 0.71 for D2 − A 
and AUC of 0.73 for D2 − B in a leave-one-out cross-validation analysis. We also obtained 

AUC of 0.71 and 0.70 for D2 − A in threefold and 13-fold cross-validation analysis, 

respectively. The averaged AUC of leave-one-out cross-validation analysis follows our 

previous performance results, which supports the generalization of the classification model 

(Table 2).

We visualize the hidden activation of neurons in different layers in the testing dataset. As 

seen in Fig. 7, only a small fraction of the connections (less than 10 %) in the first and 

second hidden layers of the deep network are highly probable to be activated.

For the feature visualization experiment, by subtracting the distributions of benign and 

cancerous tissue in the input layer as discussed in “Feature visualization” section, we found 

that feature six, corresponding to hidden activity of the sixth neuron of the third layer, along 

with features one and four, is those that maximally differentiate cancerous and benign tissue, 

especially in lower frequency range. Figure 8 shows the visualization of distribution 

differences for cancerous and benign tissue related to the first and sixth learned features of 

the third hidden layer, back- propagated to the input layer.
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Conclusion and future work

In this paper, we presented an approach for accurate classification of tissue labels obtained 

in MR-TRUS-guided targeted prostate biopsy using temporal US data. We utilized a DBN 

[1] for systematic learning of discriminant latent features from high-dimensional temporal 

US features for characterizing prostate cancer. We then applied an SVM classifier along with 

the activation of the trained DBN to characterize the prostate tissue. In our largest clinical 

study to date, in 255 TRUS-guided biopsy cores, we identified two important factors that 

affect our classification performance: (i) distance of the target to the segmented prostate 

boundary which is correlated with the registration error between mp-MRI, TRUS, and 

histopathology, and (ii) disagreement between the axial and sagittal histopathology results.

We built our classification model using a fixed training data set consisting of temporal US 

data of 32 biopsy cores assessed the performance of the model on the remaining 223 biopsy 

cores. The latter is divided into three subgroups according to the distance of the target to the 

prostate boundary and agreement between axial and sagittal histopathology labels. We 

achieved an AUC of 0.73 for D2 − A and 0.77 for D2 − B. For cores from targets with 

moderate MR suspicious level in D2 − B, we achieved AUC of 0.80, where mp-MRI has low 

positive predictive value. Our results show that analysis of temporal US data is a promising 

technology for accurate classification of tissue labels that were identified in mp-MRI as 

suspicious and can potentially complement mp-MRI for TRUS-guided biopsy.

While the physical phenomenon governing temporal ultrasound/tissue interaction is the 

subject of ongoing investigation in our group, several hypotheses have been explored so far. 

It has been proposed that the acoustic radiation force of the transmit US signal increases the 

temperature and changes the speed of sound in different tissue types [4]. It has also been 

suggested that a combination of micro-vibration of acoustic scatters in microstructures and 

the density of cells play a role [21]. Our results showed a consistently high classification 

accuracy in a large dataset in this paper. These results suggest that the phenomenon is 

consistent for the two independent training and test datasets in clinical settings. Interestingly, 

the range of frequencies that we have identified as most discriminative between cancerous 

and benign tissue (0 − 2 Hz in Fig. 8) is also consistent with the ranges we have observed in 

our previous independent studies [14,15]. Currently, we are performing controlled laboratory 

experiments to further investigate this phenomenon.

Since DBN is a computationally expensive method, we plan to use graphics processing unit 

(GPU) parallelization to optimize our proposed method for real-time display of cancer 

likelihood maps. Currently, the execution time for generating a cancer probability map 

overlaid on a B-mode US image using an Intel Core i7 CPU with 16 GB RAM is 

approximately 6 minutes. Integration with the UroNav targeted biopsy interface is also 

underway to run a prospective clinical study for cancer localization.
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Fig. 1. 
a Training data set: 32 biopsy cores from 27 patients used for model generation. b Test data 

set: 223 biopsy cores from 138 patients used for analysis of the temporal US approach
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Fig. 2. 
Flowchart of data division to training data and four subgroups of test data
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Fig. 3. 
An illustration of the proposed framework for prostate cancer detection using temporal US 

data

Azizi et al. Page 14

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2019 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
An illustration of the proposed feature visualization method
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Fig. 5. 
Performance of the proposed method across Gleason scores in dataset: a D2 − A, b D2 − B
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Fig. 6. 
Cancer probability maps overlaid on B-mode US image, along the projected needle path in 

the temporal US data and centered on the target. The ROIs for which the cancer likelihood 

are more than 70 % are colored in red; otherwise, they are colored as blue. Green boundary 
shows the segmented prostate in MRI projected in TRUS coordinates, dashed line shows 

needle path and the arrow pointer shows the target: a correctly identified benign core; b 
correctly identified cancerous core
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Fig. 7. 
Hidden neuron activation probabilities (p) for 100 neurons and 2200 test data points after 

training. Black represents p = 0 and white, p = 1. Each row shows different neurons 

activations for a given input example, and each column shows a given neurons activations 

across many samples
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Fig. 8. 
Differences of distributions between cancerous and benign tissue back projected in the input 

neurons: a corresponds to the first neuron in the third hidden layer; b corresponds to the 

sixth neuron in the third hidden layer. Results are shown in the frequency range of temporal 

ultrasound data analyzed in this paper. It is clear that frequencies between 0 and 2 Hz 

provide the most discriminative features for distinguishing cancerous and benign tissue
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