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Abstract
Purpose Accurate preoperative planning is crucial for the
outcome of total hip arthroplasty. Recently, 2D pelvic X-
ray radiographs have been replaced by 3D CT. However, CT
suffers from relatively high radiation dosage and cost. An
alternative is to reconstruct a 3D patient-specific volume data
from 2D X-ray images.
Methods In this paper, based on a fully automatic image seg-
mentation algorithm, we propose a new control point-based
2D–3D registration approach for a deformable registration
of a 3D volumetric template to a limited number of 2D cali-
brated X-ray images and show its application to personalized
reconstruction of 3D volumes of the proximal femur. The
2D–3D registration is done with a hierarchical two-stage
strategy: the scaled-rigid 2D–3D registration stage followed
by a regularized deformable B-spline 2D–3D registration
stage. In both stages, a set of control points with uniform
spacing are placed over the domain of the 3D volumetric
template first. The registration is then driven by computing
updated positions of these control pointswith intensity-based
2D–2D image registrations of the inputX-ray imageswith the
associated digitally reconstructed radiographs, which allows
computing the associated registration transformation at each
stage.
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Results Evaluated on datasets of 44 patients, our method
achieved an overall surface reconstruction accuracy of 0.9±
0.2mm and an average Dice coefficient of 94.4± 1.1%. We
further investigated the cortical bone region reconstruction
accuracy, which is important for planning cementless total
hip arthroplasty. An average cortical bone region Dice coef-
ficient of 85.1 ± 2.9% and an inner cortical bone surface
reconstruction accuracy of 0.7 ± 0.2mm were found.
Conclusions In summary, we developed a new approach for
reconstruction of 3D personalized volumes of the proximal
femur from 2D X-ray images. Comprehensive experiments
demonstrated the efficacy of the present approach.

Keywords Segmentation · Deformable registration ·
Reconstruction · 2D–3D · Random forest regression ·
B-spline

Introduction

Accurate and reliable preoperative templating is essential in
contemporary total hip arthroplasty (THA) as it aids the sur-
geon in the selection of appropriate implant geometry, size,
and position [1]. This is especially true for a cementless THA
as the endosteal fit of the femoral component is amajor factor
determining load transfer and, consequently, periprosthetic
bone remodeling. Several studies have shown that femoral fit
predicts not only radiographic changes following THA [2],
but also affects clinical results in terms of implant survival
[3]. Although two-dimensional (2D) plain radiographs are
the standard imaging means that are widely used in planning
THA, several studies have demonstrated that radiographic
assessment of femoral canal shape and geometry has limited
reliability [4,5]. A recent development was the introduction
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of computed tomography (CT) for three-dimensional (3D)
THA planning.

In comparison with plain radiograph, CT-based 3D plan-
ning of THA offers several advantages [1,6]. More specifi-
cally, CT has the benefits of avoiding errors resulting from
magnification and inaccurate patient positioning. Additional
benefits include the assessment in the axial plane, replace-
ment of 2D projections with 3D data, and the availability of
information on bone quality including accurate differentia-
tion between cortical and cancellous bone. The concern on
3D CT-based planning of THA, however, lies in the increase
in radiation dosage to the patients [6,7]. Even though it was
claimed in [6] that the increase could be justified, the dose
of a preoperative CT for THA was increased by at least 30%
compared to conventional radiographs. An alternative is to
reconstruct a patient-specific 3D volume data from 2D X-
rays.

Depending on the output, 2D–3D reconstruction meth-
ods can be largely classified into two categories: 3D surface
model reconstruction methods [8–10] and 3D volume recon-
struction methods [11–14]. The methods in the former
category compute 3D patient-specific surface models from
one or multiple 2D X-ray images. No intensity information
or information about cortical bone is available. The recon-
structed surface models may be used to plan cup component
in THA as shown in [15], but not for planning cementless
stem component due to the missing information about prox-
imal femur morphology and the intramedullary anatomy.

The methods in the second category generate 3D patient-
specific volumes from a limited number of X-ray images.
When two or more C-arm/X-ray images are available, Yao
and Tayor [13] and Sadowsky et al. [12] proposed an iterative
registration process to estimate the pose, scale, and modes
of variation in a tetrahedral mesh-based Statistical Shape
and Intensity Model (SSIM) by minimizing the difference
between the simulated digitally reconstructed radiographs
(DRRs) and the real X-ray images. Mutual information was
used as the similarity measure. With leave-one-out tests, an
average registration error of 2.0mm was reported in [12].
Zheng [14] proposed to reconstruct a patient-specific 3D vol-
ume by matching independent shape and appearance models
that are learned from a set of training data to a limited number
of C-arm/X-ray images. An intensity-based nonrigid 2D–3D
registration algorithm was proposed to deformably fit the
learnedmodels to the input images.When two C-arm images
were used, a mean reconstruction accuracy of 1.5mm was
reported in [14].

In this paper, we propose a new control-point-based 2D–
3Dregistration approach for a deformable registrationof a 3D
volumetric template to a limited number of 2D X-ray images
and show its application to a personalized reconstruction of
volumes of the proximal femur. In comparison with previous
work, our contributions are as follows:

• We propose a novel control-point-based 2D–3D nonrigid
registrationmethod for a personalized reconstruction of a
3D volume of the proximal femur from 2DX-ray images.

• Our method is fully automatic due to the application of a
previously developed machine-learning-based technique
[16] for contour extraction and landmark-based initial-
ization.

• We conduct comprehensive experiments for a thorough
investigation of our approach.

• We evaluate not only the volume reconstruction accuracy
but also the cortical bone region reconstruction accuracy,
which is important for stem planning in cementless THA.

Materials and methods

Overview

Figure 1 shows an overview of the complete workflow of our
method. Here, without loss of generality, we assume that the
given pair of X-ray images, one acquired along the antero-
posterior (AP) direction and the other along the axial (AX)
direction, has been calibrated and registered with a common
reference space c. As we would like to match a 3D volumet-
ric template to the 2D calibrated X-ray images to derive a
3D patient-specific volume, we consider the 3D volumet-
ric template as the floating image {I (xf )}, where xf is a
point in the template volume, and the 2D is calibrated X-
ray images as the reference images. The template is aligned
to the X-ray reference space c by following forward map-
ping:

I(xc
(
Tg, Tl)

) = I
(
Tg · Tl · xf

)
(1)

where Tg is a similarity transformation and Tl is a local defor-
mation.

In order to compute Tg and Tl , our method starts with
X-ray image segmentation and template initialization. The
extracted femoral regions and the initialized volumetric
template are then used for an iterative control-point-based
2D–3D registration as detailed below.

X-ray image segmentation and template volume
initialization

Femoral contour in any one of the given pair of X-ray images
is fully automatically segmented using the approach that
we introduced in [16] (Fig. 2). In our method, a contour
is described by a set of ordered landmarks. We have cho-
sen to use L AP = 57 landmarks to express a contour in
an AP image and L L M = 54 landmarks to describe a con-
tour in an AX image (see Fig. 3a, for details about how the
landmarks are ordered in different views). Figure 3b, shows
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Fig. 1 Flowchart of the proposed 2D–3D volume reconstruction method

Fig. 2 A schematic illustration of the pipeline for the contour extraction in a given AP image. See [16] for details

several examples of the extracted femoral contours in AP
and AX views, respectively. The extracted contours in each
image are used to extract the region of interest (ROI) of the
proximal femur, which is done by setting the value for any
pixel outside the associated ROI to 0 (see Fig. 4 for exam-
ples).

From the extracted contours,we can use part of the ordered
landmarks as shown in Fig. 3b, to define projections of three
anatomical landmarks, i.e., the greater trochanter (GT), the
lesser trochanter (LT), and the center of the femoral head
(FH). More specifically, from the contour extracted from an
AP image, the projection of the greater trochanter and the
projection of the lesser trochanter are defined by landmarks

20 and 48, respectively. To estimate the projection of the
femoral head,we choose to do a circle fitting using landmarks
indexed in the range from 27 to 41 and the center of the
fitted circle is regarded as the projection of the femoral head.
Similarly, we can find projections of these three landmarks
in an AX image. From the corresponding projections of an
anatomical landmark in the given pair of images,we can use a
triangulation-based approach to calculate the position of the
landmark. Let’s denote the positions of the three anatomical
landmarks in the X-ray reference space c as GTc,LTc,FHc,
respectively.

Accordingly, we can also obtain the positions of the same
three landmarks in the space of the volumetric template.
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Fig. 3 a Ordered landmarks for defining the femoral contours in an
image acquired along the AP direction (top, 57 ordered landmarks)
and in an image acquired along the AX direction (bottom, 54 ordered

landmarks), and b Examples of fully automatic detection of contours
fromAPDRRs (top) and fromAXDRRs (bottom). Indexes for defining
important anatomical landmarks are shown

Fig. 4 Femoral ROI extraction. Please note that all images are cropped to save space. Left a given pair of X-ray images; middle-left after automatic
contour extraction; middle right after binary ROI mask generation; right the extract femoral regions

We denote the three points in the space of the volumetric
template as GTf ,LTf ,FHf , respectively. Thus, given the cor-
responding coordinates of these three anatomical landmarks,
we can estimate an initial similarity transformation T 0

g from
the space of the volumetric template to the reference space
of the given pair of X-ray images.

Control-point-based 2D–3D registration

Problem formulation

Given the extracted femoral ROIs and the initial estimation
of the similarity transformation, our goal at this step is to
estimate Tg and Tl as shown in Eq. (1) which should be inter-
preted as follows. Given a voxel xf in the template volume
space, the destination of this voxel under the forward trans-

formation is xc
(
Tg, Tl

) = Tg · Tl · xf . The aligned volume
at voxel xc

(
Tg, Tl

)
is set to the intensity I (xf ), which then

allows creating DRRs by simulating X-ray projections. To
avoid holes in the aligned volume, a backward warping as
follows is used.

xf
(
Tg, Tl

) = (Tl)
−1 · (

Tg
)−1 · xc (2)

It is straightforward to compute the inverse of the simi-
larity transformation Tg . However, it is time-consuming to
compute the inverse of the forward local deformation Tl . In
[14], the inversion of the forward local deformation is done
by using a fixed-point approach as introduced in [17].

In this paper, we solve the problem differently. The
nonrigid registration is done with a hierarchical two-stage
strategy as shown in Fig. 5: a scaled-rigid 2D–3D registration
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Fig. 5 A schematic illustration of the control-point-based 2D–3D registration process. See text for details

stage followed by a regularized deformable B-spline 2D–3D
registration stage. In the first stage, the similarity transforma-
tion Tg is estimated, while in the second stage, we directly
estimate (Tl)

−1, which is a deformation field from the X-ray
reference space to the floating template space. Obtaining this
deformation field will allow one to warp the floating volu-
metric template to the X-ray reference space. No inversion
of the forward deformation field is required. Details about
these two stages will be presented below.

Registration method

In both stages, a set of 3D control points with uniform
spacing are placed over the domain of the volumetric tem-
plate as follows (see Fig. 6 for a schematic illustration in
2D). Denote the domain of the volumetric template as � =
{(x, y, z) |0 ≤ x ≤ n1, 0 ≤ y ≤ n2, 0 ≤ z ≤ n3}, where
n1, n2, n3 denote the number of voxels along x-, y-, and z-
coordinate directions, respectively. Choosing three positive
integers s1, s2, s3 ≥ 1, describing the spacing between any
two control points along each coordinate, we can define a
mesh G of the control points by setting:

G := s1Zz1 × s2Zz2 × s3Zz3 (3)

with zi := ni
si

+1 ∈ N andZzi := {k ∈ Z|−1 ≤ k ≤ zi +1}.
Such setting guarantees that every voxel of the volumetric

template is surrounded by a local mesh cube of size 4×4×4
control points due to the fact that a control point is placed in
every corner of � and an extra layer of control points around
� is added. There are in total (z1 + 3)× (z2 + 3)× (z3 + 3)

control points. Below, we present the details about the two
registration stages.

Scaled-rigid 2D–3D registration stage
(stage-scaledRigid2D3D)

Given an initial estimation of the similarity transformation
T 0

g , the control-point-based scaled-rigid 2D–3D registration
will be executed as follows:

• Step 1: DRR Generation and Control Point Projection.
Based on an estimation of the scaled-rigid transforma-
tion T t

g obtained at the t th iteration, we generate DRRs
using Nvidia’s CUDA environment [18]. At the same
time, using T t

g , we transform all control points from the
floating volume space to the X-ray reference space. We
denote an arbitrary control point with index i, j, k as
Lsr,t

i jk . After that, we do a forward projection of all trans-
formed control point to the input X-ray images.

• Step 2: 2D–2D Intensity-based Image Registration. At
this step, an intensity-based scaled-rigid 2D–2D registra-
tion between each 2D DRR and its associated 2D X-ray
image is performed using the intensity-based registration
toolbox “elastix” [19] to estimate a 2D similarity trans-
form, which is then used to update the localizations of
the 2D projections of all control points. For the intensity-
based scaled-rigid 2D–2D registration, we choose to use
Mattes mutual information [20] as the similarity metric
and the adaptive stochastic gradient descent optimization
[21] as the optimization method.
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Fig. 6 A schematic illustration of how to place control point grid
around a 2D image template

• Step 3: Triangulation-based Point Reconstruction. Given
the updated 2D locations of the projections of a 3D con-
trol pointwith index i, j, k in the input images, an updated
3D position Lsr,t+1

i jk of the control point Lsr,t
i jk can be

reconstructed from those updated 2D locations via a tri-
angulation strategy as shown in Fig. 7.

• Step 4: 2D–3D Registration. Given two sets of 3D posi-
tions {Lsr,t

i jk } and {Lsr,t+1
i jk } with known correspondences,

we can estimate an updated 3D similarity transformation
T t+1

g [22].

Repeat Steps 1–4 a few times (we empirically chose two
times) to get an estimationof the 3Dsimilarity transformation
Tg .

Regularized deformable B-spline 2D–3D registration
stage (stage-nonRigid2D3D)

The estimated transformation Tg allows one to align the
floating volume to the X-ray reference space. After that, the
control point-based deformable B-spline 2D–3D registration
stage will be executed.

• Step 1: DRR Generation and Control Point Projection. At
this step, we first generate DRRs from a warped volume{
It

c
}
obtained at the t th iteration.We then use Tg to trans-

form all control points from the floating volume space to
the X-ray reference space and do a forward projection
of transformed control point. We denote a transformed
control point with index i, j, k as Lnr,t

i jk .• Step 2: 2D–2D Intensity-based Image Registration. At
this step, we conduct an intensity-based deformable B-
spline 2D–2D registration of each X-ray image with the
associated DRR byminimizing a sequential combination
of Mattes mutual information [20] with residual com-
plexity [23]. The reason why we choose to do this is
because empirically we find that the residual complexity
helps to achieve accurate results, but it has a small capture
range, while theMattesmutual information has relatively
larger capture range, but it is less accurate. The obtained
2D deformation field will be used to update the locations
of the 2D projections of all control points. For details
about how to compute Mattes mutual information, we
refer to [20]. Below, we briefly present how to compute
residual complexity. For details, we refer to [23].
Residual complexity was originally introduced byMyro-
nenko and Song [23] as an efficient image similarity
measure for handling intensity nonstationarities and
complex spatially varying intensity distortions in mono-
modal settings. In this study, after a deformable B-spline
2D–2D registration of each X-ray image with the asso-
ciated DRR by minimizing Mattes mutual information
[20], we further conduct a deformable B-spline 2D–2D
registration by minimizing residual complexity. Assum-
ing that the qth X-ray image is Iq

X−ray and the associated

DRR is Iq
DR R , we can define the residual complexity Sq

RC
of these two images as:

⎧
⎪⎨

⎪⎩

rq = Iq
X−ray − Iq

DR R
cq = DCT (rq)

Sq
RC = ∑

log
(

(cq )2

α
+ 1

) (4)

Where DCT (·) is the forwardmultidimensional discrete
cosine transforms [24] and α is a trade-off parameter. For
all the experiments presented in this study,we empirically
chose α = 0.05.

• Step 3: Triangulation-based Point Reconstruction. Given
the updated 2D locations of the projections of a 3D con-
trol pointwith index i, j, k in the input images, an updated
3D position Lnr,t+1

i jk of the control point Lnr,t
i jk can be

reconstructed from those updated 2D locations via the
same triangulation strategy as shown in Fig. 7.

• Step 4: 2D–3D Registration. Given two sets of 3D posi-

tions {Lnr,t
i jk } and

{
Lnr,t+1

i jk

}
with knowncorrespondences,
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Fig. 7 A schematic view of how to compute the updated position for a
control point. The same procedure can be applied to all control points.
On both images, we superimposed the contours (red) extracted from the
DRRs for purely visualization purpose. The yellow dot is the original
location of a control point, and its projection to each X-ray image is
shown as yellow cross. An intensity-based 2D–2D image registration

is then performed to estimate a 2D transformation to update the projec-
tion of this control point to a new location (green cross in each image).
Using a triangulation-based point reconstruction, we can reconstruct a
new 3D location of this control point (green dot) from those updated
projection localizations

we compute displacement vectors
{−→
dt

i jk = Lnr,t+1
i jk

−Lnr,t
i jk

}
on all control points.We then applied an adaptive

regularization on those computed displacement vectors
using the method introduced in [25]. After that, we use
the 3D tensor product of the familiar 1D cubic B-splines
to compute a free-form deformation

(
T t

l

)−1 at any posi-
tion of the X-ray reference space [26]. Together with
the inverse of the estimated scaled-rigid transformation(
Tg

)−1, we can use the computed deformation
(
T t

l

)−1 to
warp the template volume {I (xf )} to the reference space
of the X-ray images to obtain an updated volume

{
It+1

c
}

in the reference space of the given pair of X-ray images.

Repeat Steps 1–4 a few times (we empirically chose two
times) to get an estimation of the local deformation (Tl)

−1

and a warped volume {Ic}.

Experiments and results

Experimental setup and evaluation metrics

After a local institution review board (IRB) approval (Ref.-
Nr. KEK-BE: 265/2014), data of 44 patients were used
together with data of 49 cadaveric femurs with different
shapes to validate the present approach. The 49 cadav-
eric femurs were divided into two groups. Group I consists
of data of 39 cadaveric femurs that were obtained from
a previous study [27]. For each femur in this group, we

acquired a CT data with a uniform spatial resolution of
0.33 × 0.33 × 1.0mm3. The mean intensity model created
from the CT data of the 39 cadaveric femurs was used as the
volumetric template in this study. The mean intensity model
was created following the method introduced in our previous
work [14] where we introduced a two-stage method to com-
pute an unbiased mean intensity model. Group II contains
data from the remaining 10 femurs that were obtained from
another previous study [14]. For each femur in this group, we
acquired two calibrated images around the proximal femur
regionusing aSiemensSiremobil Iso-C3DC-Arm (Siemens,
Erlangen). All images were eight-bit gray scale, with a size
of 768 by 576 pixels. They were calibrated and registered to
the associated reference space using the method described
in [28]. Additionally, we used anonymized CT data of the
44 patients from a retrospective study investigating medium-
and long-term results after unilateral THA. For each patient,
CT data of the side without an implantation were used. The
intra-slice pixel size of the CT data ranges from 0.55 to
0.83mm, and their inter-slice spacing ranges from 1.7 to
2.5mm. We designed and conducted following experiments
to validate the present approach.

1. Experiment on 2D grid spacing selection
2. Experiment on 3D grid spacing selection
3. Experiment conducted on C-arm images of the 10 cadav-

eric femurs
4. Experiment conducted on anonymized data of the 44

patients
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Fig. 8 An example of manual
segmentation of a patient’s CT,
from left to right: the original
CT data, the segmented
proximal femur volume, and the
segmented cortical bone region
visualized in five 2D axial slices

In our experiments, we used following metrics.

(a) 2D root mean square (RMS) error—it is a metric used
only in experiment (1) and is defined as the RMS dis-
tance from the warped 2D landmarks to the associated,
ground truth landmarks.

(b) 3D Dice coefficients (DC) [29]—it is a metric defined as
follows: with L1 being the binary segmentation obtained
from the ground truth CT data and L2 being the binary
segmentation obtained from the reconstructed volume,
DC is defined as DC = 2 |L1 ∩ L2| / (|L1| + |L2|). The
binary segmentations were manually done with com-
mercial software Amira (www.vsg3d.com/amira). See
Fig. 8, middle, for an example.

(c) 3D average surface distance (ASD) —it is a metric
defined as the average distance between vertexes on the
surface of a ground truth volume to the outer surface
extracted from the binary segmentation of the recon-
structed volume.

(d) 3D cortical bone region Dice coefficients (CBRDC)—it
is a metric used in experiments (2) and (4). To calculate
such a metric, we first manually segmented the cortical
bone region from the ground truth CT data (see Fig. 8,
right, for an example), which was regarded as the ref-
erence cortical bone region. Furthermore, we manually
segment the volumetric template to get a binary mask of
the cortical bone region. After the control-point-based
2D–3D registration, we will obtain a deformation field
between the volumetric template and the reference space
of the 2D X-ray images. We can use the obtained defor-
mation field to warp the binary mask of the cortical bone
regionof the volumetric template to get the reconstructed
cortical bone region, which was then compared with the

reference cortical bone region. CBRDC is calculated as
the DC between these two binary masks.

(e) 3D cortical bone region ASD (CBRASD)—it is a metric
used in experiments (2) and (4), and is defined as the
ASD between the inner cortical bone surfaces extracted
from the two binary masks of the segmented cortical
bone regions.

Experiment on 2D grid spacing selection

This experiment is conducted on simulated data with the aim
to investigate the 2Dgrid spacing selection on the accuracy of
the intensity-based deformable B-spline 2D–2D registration
step, which is an important step in determining the accuracy
of our 2D–3D reconstruction method. Since the 2D–2D reg-
istration at the AP view was independently conducted from
the one at the AX view, we have to create two different sim-
ulation environments, one for the AP view and the other for
the AX view. Below, we focus on the creation of a simula-
tion environment for the AP view, and the same procedure is
applied to create a simulation environment for the AX view.

In order to create the training dataset for the automatic
contour extraction using the method introduced in [16], we
manually annotated the contours of all AP DRRs created
from the CT data of the 44 patients. To establish landmark
correspondences, we randomly chose one image as the ref-
erence and other images are floating images. We evenly
sampled a set of 57 landmarks along the contour of the ref-
erence image, and the corresponding landmarks in floating
images were found by an expectation conditional maximiza-
tion (ECM)-based deformable shape registration method
[30]. In this way, we had established 57 landmark correspon-
dences across all AP DRRs. The same procedure was also
applied to the AX DRRs created from the CT data of the 44
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Fig. 9 Results of the experiment on 2D grid spacing selection. Left results of the test conducted at the AP view; right results for the test conducted
at the AX view

patients to establish 54 landmark correspondences across all
AX DRRs.

With the known landmark correspondences across all AP
DRRs, we found the first 10 pairs of AP DRRs with the
biggest RMS distances between the corresponding land-
marks, which were then used to create the simulation
environment for the AP view. For each chosen pair of AP
DRRs, we compute a 2D thin plate spline (TPS) [31] trans-
form based on the corresponding landmarks to warp the
femoral region extracted from one DRR as well as the land-
marks to the space of the other DRR. The warped images and
landmarks together with the original images and landmarks
before warping were then used to create a simulation envi-
ronment to investigate the influence of the 2D grid spacing
selection on the accuracy of the intensity-based 2D–2D reg-
istration conducted at the AP view. The same procedure was
also used to create a simulation environment for theAXview.

For the 2D–2D registrations conducted in both views, we
adopted a four-resolution-level image pyramid and a four-
level grid spacing pyramid. Thus, the same image pyramid
and the same grid spacing pyramid were used in this exper-
iment. Here, the only parameter that we investigated is the
size of the final grid spacing. Each time after the intensity-
based deformable B-spline 2D–2D registration, we used the
obtained deformation field to transform the warped land-
marks back to the original space. In this way, we could com-
pute the 2D RMS distance between the warped landmarks
and the original landmarks. Figure 9 shows the results when
different sizes of 2D grid spacing were used. It was found
that for the AP view, a grid spacing of 16 pixels generated the
lowest registration error, and for the AX view, a grid spacing
of eight pixels generated the lowest error. We thus chose to
use these values for other experiments reported in this paper.

Experiment on 3D grid spacing selection

The aim of this experiment was to investigate the 3D grid
spacing selection on the 2D–3D reconstruction accuracy. For
this purpose, we randomly selected CT data of 10 patients

out of the 44 patients. For each selected patient’s CT data,
two DRRs are generated as the input for this study. As the
DRRs were generated from the selected patients’ CT data,
we can take the patients’ CT data as the ground truth to eval-
uate the 2D–3D registration accuracy when different sizes of
3D grid spacing were used. Each time, in addition to estimat-
ing DC and ASD between the ground truth CT data and the
reconstructed volume, we further calculated CBRASD and
CBRDC to estimate the cortical bone reconstruction accu-
racy. Figure 10 shows the results when different sizes of 3D
grid spacing were used. It was found that a 3D grid spacing
of 4 mm generated the best 2D–3D reconstruction results.
We thus chose to use a 3D grid spacing of 4 mm for the
experiments described below.

Experiment conducted on C-arm images of 10 cadaveric
femurs

In this experiment, since there are no surrounding struc-
tures around these femurs, for each femur we can directly
apply the control-point-based 2D–3D registration algorithm
to derive a patient-specific 3D volume from a pair of C-arm
images without the requirement to extract the contours first.
The reconstruction accuracies were evaluated by randomly
digitizing dozens points (see Table 1 for the exact number
of points for each case) using a tracked pointer from the
surface of each femur and then computing the shortest dis-
tances from those digitized points to the associated surface
model which was segmented from the reconstructed volume.
Table 1 presents for each femur the ASD, which was com-
puted as the average of all shortest distances, and the 95%
percentile error, which was computed after sorting all short-
est distances. A mean ASD of 1.29 mm was found, and it
took on average four minutes to finish a reconstruction when
running on a laptop with 2.5 GHz Intel Core i5 processor and
Nvidia GeForce GT 750M graphics card. Figure 11 shows a
2D–3D reconstruction example when the present approach
was applied to a pair of calibrated C-arm images.
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Fig. 10 Results of the experiment on 3D grid spacing selection. Top-left 3D ASD results; top-right DC results; bottom-left CBRASD results; and
bottom-right CBRDC results

Table 1 Accuracy of reconstructing volumes of 10 cadaveric femurs from calibrated C-arm images

Metrics #1 #02 #03 #04 #05 #06 #07 #08 #09 #10 Mean

Number of digitized points 96 99 99 99 99 99 99 99 99 99 –

ASD (mm) 1.39 1.03 1.23 1.34 1.14 1.57 1.28 1.43 1.06 1.41 1.29

95% Percentile error (mm) 3.75 2.13 3.52 3.14 2.41 4.20 2.65 2.99 2.70 3.30 3.08

Experiment conducted on anonymized data of 44
patients

For each patient’s CT data, two DRRs are generated as the
input for this experiment. Thus, in total we have 44 DRRs
generated along each orientation (AP or AX). For DRRs of
one orientation, after establishing landmark correspondences
across all 44 DRRs, a leave-one-out study was conducted
to extract femoral contours using the method introduced in
[16]. In addition to estimating DC and ASD between the
ground truth CT data and the reconstructed volume, we
further calculated CBRASD and CBRDC to estimate the
cortical bone reconstruction accuracy. The volume recon-
struction errors and the cortical bone region reconstruction
errors of the present approach are shown in Table 2. The
mean ASD, the mean DC, the mean CBRASD, and the mean
CBRDC achieved by the present method are 0.9 ± 0.2mm,
94.4 ± 1.1%, 0.7 ± 0.2mm and 85.1 ± 2.9%, respec-

tively. Figure 12 shows a comparison of the reconstructed
volumes with the associated ground truth volumes. From
this figure, one can see that our approach accurately recon-
struct the proximal femurmorphology and the intramedullary
anatomy.

Discussion and conclusion

In this paper, we proposed a new control-point-based 2D–3D
volume reconstruction approach and showed its application
to a personalized reconstruction of 3D volumes of the prox-
imal femur. With simulated environments, we investigated
2D grid spacing selection. We further investigated the influ-
ence of 3D grid spacing selection on the accuracy of the
present 2D–3D reconstruction method. The efficacy of the
present 2D–3D reconstruction method was finally evaluated
on calibrated C-arm images of 10 cadaveric femurs and sim-
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Fig. 11 An example of
applying the present 2D–3D
reconstruction approach to a
pair of C-arm images of a
cadaveric femur. Top row the
DRRs generated from the
reconstructed volume; bottom
row the input C-arm images
overlapped with edges extracted
from the DRRs shown in the top
row

Table 2 Volume and cortical bone region reconstruction accuracy of
our approach when evaluated on anonymized data of the 44 patients

Metrics Mean ± STD Median Min Max

ASD (mm) 0.9 ± 0.2 0.9 0.6 1.4

DC (%) 94.4 ± 1.1 94.5 90.6 95.9

CBRASD (mm) 0.7 ± 0.2 0.7 0.4 1.5

CBRDC (%) 85.1 ± 2.9 85.0 77.2 88.7

ulated X-ray images of 44 patients. Our experimental results
showed that ourmethod achieved higher accuracywhen eval-
uated on the simulated X-ray images than on the calibrated
C-arm images, suggesting a negative impact of the image
calibration error (e.g., Hofstetter et al. [28] reported a mean
calibration error of 0.55 ± 0.47mm when a different C-arm
was used) on the reconstruction accuracy.

It is worth to discuss the differences between the present
work and other state-of-the-art work on 2D–3D volume
reconstruction [11–14]. Unlike previously introduced
approaches [11–14] where statistical models are constructed
first from a given population of training data and then fitted to
the input images, our approach reconstructs a patient-specific
3D volume by fitting one 3D volumetric template to the input
images. Although it is difficult to compare the performance
of different methods due to the fact that different datasets
were used in different studies, both the method introduced in
[14] and the present approach have been evaluated on C-arm
images of the same 10 cadaveric femurs, which allows us to
compare the performance. An average mean reconstruction
accuracy of 1.5 mm was reported in [14] while the present

approach achieved an average reconstruction accuracy of
about 1.3 mm. Although further evaluation is needed before
we can draw a definitive conclusion, the evaluation results
suggest that the present method is more accurate than the
method introduced in [14]. Another advantage of the present
method over other state-of-the-art methods [11–14] is that
our method is fully automatic and does not need a super-
vised initialization.

B-spline free-form deformation-based nonrigid registra-
tion has been applied to 2D–3D registration tasks before
but within different contexts from what has been reported
in this study. Shechter et al. [32] reported a 3D method for
tracking the coronary arteries through a temporal sequence of
biplane X-ray angiography images. Besides the context dif-
ference, the work presented in [32] used a different method
to find the “best” transformations during motion tracking,
i.e., they computed analytical derivatives in 3D and found
the solution with a gradient descent method. Another related
work was reported in [33] where a triangulation-based 3D
point reconstruction scheme was used to facilitate a non-
rigid 2D–3D registration of coronary artery models with
live fluoroscopy for guidance of cardiac interventions. In
order to calculate a reconstructed point for every point
in the 3D centerline model, a matching and reconstruc-
tion process was used. It was based on a search conducted
on the 2D centerlines extracted from X-ray images in the
directions that were perpendicular to the projection of the
3D centerline models. The reconstructed points and the
associated points in the 3D centerline model were then
used to compute a set of 3D displacement vectors for
a nonrigid transformation. In contrast, our matching and
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Fig. 12 Comparison of the reconstructed volumes with the associated
ground volumes extracted fromCT data. Top two rows slice views of the
ground truth volumes and the reconstructed volumes of five different

patients; bottom row surface models of the same five patients extracted
from the reconstructed volumes with color-coded error distributions

reconstruction process was based on image-based 2D–2D
registration.

It is important to note the limitations of the present
study. First, due to the usage of a machine-learning-based
approach [16] for contour extraction and algorithm initial-
ization, our method requires two calibrated X-ray images
acquired from two standard orientations. Despite the fact
that we have shown in our previous work [16] that our
approach can handle certain deviation from the standard AP
orientation, it may fail if the deviation becomes too large.
Second, although we conducted comprehensive experiments
to evaluate the performance of the present 2D–3D recon-
struction method, the method was only evaluated on C-arm
images of cadaveric femurs and on simulated X-ray images
of patients. Part of our future work will be to investigate its
performance on patients’ real X-ray images. Nonetheless,
the results obtained from the comprehensive experiments
demonstrate the efficacy of the present approach. Finally,
though for the 2D–3D volume reconstruction experiments
reported in this paper we used the mean intensity model cre-
ated from the CT data of the 39 cadaveric femurs as the
volumetric template, in principle our method should work
with any volume data of the target anatomy. Then, it is worth

to investigate the template selection strategy and its effect
on the volume reconstruction accuracy. In this paper, we did
not conduct such an investigation, but it is part of our future
study.

In summary, we presented a fully automatic approach for
personalized reconstruction of 3D volumes of the proximal
femur. Comprehensive evaluation demonstrated the efficacy
of the present approach. In the future, we will investigate
the application of the present methods to other anatomical
structures.
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