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Abstract

Purpose—We present a platform, GRAphical Pipeline Environment (GRAPE), to facilitate the 

development of patient-adaptive magnetic resonance imaging (MRI) protocols.

Methods—GRAPE is an open source project implemented in the Qt C++ framework to enable 

graphical creation, execution, and debugging of real-time image analysis algorithms integrated 

with the MRI scanner. The platform provides the tools and infrastructure to design new 

algorithms, build and execute an array of image analysis routines, and a mechanism to include 

existing analysis libraries, all within a graphical environment. The application of GRAPE is 

demonstrated in multiple MRI applications, and the software is described in detail for both the 

user and developer.

Results—GRAPE was successfully used to implement and execute three applications in MRI of 

the brain, performed on a 3.0 Tesla MRI scanner: (i) a multi-parametric pipeline for segmenting 

the brain tissue and detecting lesions in multiple sclerosis (MS), (ii) patient-specific optimization 

of the 3D fluid-attenuated inversion recovery (FLAIR) MRI scan parameters to enhance the 

contrast of brain lesions in MS, and (iii) an algebraic image method for combining two MR 

images for improved lesion contrast.

Conclusions—GRAPE allows graphical development and execution of image analysis 

algorithms for inline, real-time, and adaptive MRI applications.
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Introduction

Medical image analysis is an essential component of clinical research and healthcare 

decision making. It provides a wealth of information that characterizes and quantitatively 

assesses the disease state [1]. Notable advances in medical imaging and image analysis over 

the years have resulted in the development of several important analysis and visualization 

packages, algorithms, and libraries [2–7]. To support the increased use of these tools, 

frameworks that provide a graphical user interface (GUI) for the design of analysis pipelines 

have also emerged [8–12]. However, these frameworks are primarily designed for off-line 

data analysis; to date, integration with the magnetic resonance (MR) image acquisition 

system has not been considered as a factor in these frameworks. Thus, there is a need for a 

programming environment to enable the creation of image analysis pipelines that can be 

integrated with the magnetic resonance imaging (MRI) scanner and support an adaptive scan 

session. Real-time response will result in improved image contrast, immediate quantitative 

data, and same-session image quality control for minimizing the need for patient call-backs. 

The main requirements for such an environment are simplicity, computational efficiency, 

design flexibility, and extensibility.

Here, we present an extensible GRAphical Pipeline Environment (GRAPE) for the design 

and execution of a MR image analysis pipeline in an adaptive scan environment. GRAPE 

shares many similarities with other visual programming tools. However, GRAPE is designed 

with the goal to facilitate real-time feedback, synchronize image analysis with data 

acquisition, and provide a user-friendly framework for adaptive protocols. Therefore, 

GRAPE is built with flexibility to communicate data with the scanner, and perform MRI 

pulse sequence optimization and other non-image based calculations. GRAPE also provides 

a simple and flexible cross-platform algorithm development environment that allows users to 

generate new algorithms, analyses, and pipelines. In this manuscript we describe the 

software architecture in GRAPE and a selection of the programming tools available to the 

user and the developer. We also present three case studies, as examples, using GRAPE to 

design and run image analysis pipelines in MRI, including adaptive MRI scans where the 

results of the computations are used to adjust in pseudoreal time the scan parameters specific 

to the individual patient [13].

Methods

GRAPE Layout

The GRAPE graphical interface consists of the pipeline layout panel and the pipeline 

development toolbar (Fig. 1). The pipeline layout panel is an interactive canvas that allows 

the user to create and edit various modules of the analysis pipeline (as nodes), and control 

the data flow (as edges). The pipeline development toolbar includes basic drawing tools, 

execution buttons, and the module library. The module library shows all the available 

modules for the user, including both GRAPE built-in and user-created libraries. From the 

toolbar, the user can also start and stop the execution of the current pipeline.

An image analysis pipeline is built by selecting the desired modules from the available 

libraries and adding it to the canvas. For example, there are modules for reading data, 
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performing image processing tasks, and writing output. The nodes are connected according 

to the desired data flow plan of the pipeline. For each module, a property dialog is defined 

and can be accessed from the module context menu. Through the module property dialog, 

various attributes such as the legend, rendering options, and functional parameters can be 

modified.

Selecting the Play button puts the pipeline in the run mode. Once the pipeline is in the run 

mode, editing of the modules is disabled. During execution, the modules show color cues 

indicating the current progress of the pipeline, and time-stamped events are automatically 

written to a log file. The user can also include additional logging statements. Another 

feedback mechanism is available with image display modules programmed to display 2D, 

3D, or 4D images, allowing the user to review the pipeline outputs at various stages. This is 

particularly useful during the initial development stages of analysis algorithms. The pipeline 

periodically checks the status of each node, and re-executes the nodes when their input data 

are changed. This is useful for nodes that require, for example, input from two separate 

branches in the pipeline. The user may interrupt the execution of the pipeline at any time by 

pressing the Stop button.

GRAPE stores pipelines as extended mark-up language (XML[14]) scripts with all settings, 

parameters, and options embedded. These XML scripts can be executed on the command 

line or in the GRAPE GUI. The user may edit the file to directly change the parameters of 

the modules as well as through the GRAPE graphical environment. The pipeline files may 

also be saved, shared, and restored between users.

Pipeline Tools

GRAPE includes basic programming elements such as logical operations, list selection, 

branching, and looping. These are all implemented as modules that the user can modify and 

use directly without the need for programming, allowing quick prototyping of new pipelines. 

In addition, these tools are also useful for pipelines that perform batch processing of 

multiple datasets. Special Source and Sink nodes provide convenient means to generate test 

data and parameters, display analysis outputs, and manually debug pipelines.

Basic image operations are implemented to facilitate the development of new algorithms. 

The image library includes modules for image arithmetic, slicing, statistics, and comparison. 

Widely-used tools such as BET brain extraction [15], nonuniformity correction methods 

[16], image registration [17], and segmentation [18] are also available. Reading in and 

writing to popular image formats such as DICOM, Analyze and NIFTI is supported. Since 

the pipeline is implemented on Philips MRI scanner, read/write is supported for the Philips 

XML/REC research format. The latter is crucial for allowing data exchange directly between 

the Philips MRI scanner and the analysis pipelines.

External user programs and image analysis functionalities in third party applications are 

made available through command line calls to executable files. The GRAPE interface allows 

the user to create a customized system-call module to define the inputs and outputs to and 

from the executable program. This provides a high degree of flexibility for the user, avoids 
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the need for re-programming tasks, and allows the extension of the program with a moderate 

effort.

Scanner Integration

The GRAPE environment has been seamlessly integrated with an MRI scanner. A vendor-

specific software tool interfaces to the scanner database and performs automated extraction 

of the images immediately after the completion of data acquisition and image reconstruction. 

The vendor tool also initiates the transfer of data to the post-processing pipeline, and 

remotely launches GRAPE with the desired processing pipeline as an argument. GRAPE can 

be launched in both design and run modes, with the graphical display as an option. The 

Source node in GRAPE can be assigned to watch for input files for the pipeline. After the 

pipeline finishes execution (an End node is encountered in GRAPE), or when specific result 

files are written, the pipeline outputs are transferred back to the scanner, including data, 

images, and scan parameter files. The images are then automatically imported back into the 

patient database on the scanner, and are available for review by radiologist either on the 

scanner or via transfer to PACS. The whole process of data export, transfer, processing, and 

importing the results is fully automated. In principle, any vendor-specific software that can 

interface to the scanner database and execute external batch scripts can easily integrate with 

GRAPE, although this has not been tested. Unlike PACS workstations or PACS-like research 

platforms like XNAT [19], our framework integrates GRAPE with the scanner as early as the 

time of the data acquisition.

Module Development

GRAPE is implemented in the Qt 5.4.2 C++ application development framework. It uses 

elements from the open-source projects JADE (https://sourceforge.net/projects/jade-

diagram) used for diagram editing, and from the Template Image Processing Library (https://

www.nitrc.org/projects/tipl/) for handling DICOM, NIFTI, and Analyze image file formats. 

GRAPE uses the Qt build tool, QMake, and was successfully compiled for Windows, Linux, 

and Mac operating systems without modifications, and was run on both standalone 

computers as well as on the Stampede Dell PowerEdge Linux cluster at the Texas Advanced 

Computing Center (https://www.tacc.utexas.edu/stampede, Austin, TX, USA).

Users can implement new modules by defining a Node Interface descriptor in the node 

definition file. The descriptor specifies the number of inputs and outputs, the type and 

default values of the inputs and outputs, and which inputs are mandatory. The Node 
Interface is used to populate the library viewer in the toolbar and to dynamically generate 

the graphical representation of the node. The functional component of the module is 

implemented by a Node class. Each node implementation must define four basic methods: 

input assignment, output assignment, validation, and execution. A special Develop node is 

implemented in GRAPE for quick prototyping of new modules. The interface of this node is 

already implemented, and the user can directly insert the functional part of the algorithm.

The GRAPE source code is organized into three subdirectories, presenting the nodes, the 

graphical items, and core diagram handling. Separate subdirectories are added for other 

libraries. The module libraries are arranged in a tree structure under core GRAPE and user 
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modules. The core GRAPE modules are further subdivided into input/output, pipeline, and 

image operations. GRAPE currently includes 27 individual modules. Some of the modules 

(e.g. ImageArithmetic) handles a class of image operations, all grouped into a single 

interface allowing the user to select from the individual functions. New modules and 

libraries are currently under development and will be part of the first GRAPE release.

For the case reports to demonstrate the application of GRAPE, the MRI data were acquired 

on a Philips 3.0 Tesla MRI scanner. Analyses were performed on a local Windows computer 

with 3.2-GHz 8-core Intel Core i7 and 12 GB RAM.

Results

To demonstrate the use of GRAPE modules, Fig. 2 shows a pipeline used to test the effect of 

the value of the intensity threshold on BET brain extraction when applied to fat-saturated 

T2-weighted MR images. In this case, the user can visually experiment with the 

parameter(s) of interest and immediately see the results without the need for coding. The 

pipeline XML file of this pipeline is available as supplementary material.

We implemented three separate image analysis pipelines aimed at improving image contrast 

and quantitative MRI. The first application is a multi-parametric brain tissue pipeline for 

tissue segmentation and detecting brain lesions in multiple sclerosis (MS). The second 

application is a pipeline for patient-specific optimization of 3D fluid-attenuated inversion 

recovery (FLAIR) sequence. This pipeline optimizes the scan parameters during a single 

scan session in order to enhance the contrast of brain lesions in MS. The third application is 

implementation of an algebraic image method for combining two MR images to generate an 

image with improved lesion contrast.

Brain Tissue Segmentation in MS

MS is an autoimmune, inflammatory, and demyelinating disease of the central nervous 

system that affects 2–2.5 million worldwide [20]. MRI plays a key role in the diagnosis and 

management of MS [21]. A hallmark of MS is the presence of white matter (WM) lesions, 

which typically show up on MRI as hyper-intense regions on T2-weighted (T2w) and 

FLAIR images. Several automated techniques have been proposed to segment the WM 

lesions from MRI images (e.g. [22–25]). We used GRAPE to implement an advanced 

algorithm for the automated analysis of multi-channel MRI data [25].

The imaging protocol in this study included the acquisition of dual-echo fast spin-echo and 

FLAIR. The dual-echo data provided T2w and proton density (PD) weighted images. As 

described below, the preprocessing pipeline incorporated published standard methods. The 

analysis included the following steps. First, brain extraction was performed to remove extra-

meningeal tissues [15]. Second, all images were corrected for intensity non-uniformity [16]. 

Next, co-registration of FLAIR and T2w images was performed using affine transformation 

[3], orienting the three images in the same space. Finally, multi-parametric segmentation 

using the PD, T2w, and FLAIR images was performed to classify the brain into WM, grey 

matter (GM), cerebrospinal fluid (CSF), and WM lesions. The segmentation used in this 
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work employed a hybrid parametric and nonparametric approach [25]. The pipeline to 

execute this analysis was assembled in GRAPE and is shown in Fig. 3.

This pipeline demonstrates the capability of incorporating libraries from other sources 

through the command line interface module. In addition, integration of the pipeline into the 

scan environment allowed the implementation of acquisition-synchronized image analysis. 

In other words, instead of postponing processing until all data has been acquired, the scan 

integration allowed processing part of the data while the MRI was actively acquiring other 

data. This approach was demonstrated here by processing the dual-echo images (Fig. 3, left 

branch) while the scanner was still acquiring the FLAIR data (Fig. 3, right branch). As soon 

as the FLAIR acquisition was completed, the FLAIR images were automatically imported in 

the pipeline, co-registered with T2w, and processed. Finally, brain tissue segmentation was 

performed to generate the tissue maps, including WM lesion, and the maps were 

automatically imported back into the MRI scanner, and subsequently added to the patient 

database. This technique reduced the waiting time by almost 50% (from 119 sec to 61 sec) 

and removed the necessity for human intervention to initiate the analysis. Fig. 4 shows 

representative images from the segmentation pipeline. A combined image showing all maps 

is color-coded for better visualization. In this example, the real-time segmentation data 

quality is identical to what would typically be computed off-line after the patient has left the 

scanner. Thus, the real time processing did not appear to compromise the quality of this 

result.

Patient-specific FLAIR Optimization

Recent work shows that patient-specific optimization of the scan parameter may improve the 

image contrast. This was shown for both double inversion recovery [13] in healthy subjects, 

and for FLAIR in patients with MS [26]. In patient-specific FLAIR, the parameters inversion 

time (TI) and echo time (TE) were optimized for each individual patient based on fast 

mapping of PD and the T1 and T2 relaxation times of the brain tissues. The graphical 

pipeline that demonstrates the data flow in FLAIR optimization is show in Fig. 5. Notably, 

this particular pipeline was originally implemented as a command-line script. The 

executable files used to perform the PD/T2 mapping, T1 mapping, and the optimization of 

the scan parameters of FLAIR were included in the graphical pipeline using the command 

line module, avoiding the need for reprogramming.

Similar to the brain segmentation pipeline, by processing the PD/T2 data during the 

acquisition of the T1-mapping pulse sequence, a reduction in the perceived processing time 

by approximately 46 sec (25%) was achieved. The optimized scan parameters were applied 

to acquire FLAIR, and the improved lesion-brain contrast resulting from the patient-specific 

tuning of the sequence parameters is shown in Fig. 6.

Algebraic Image Combination

Due to physiological constraints, no single MRI pulse sequence can generate all the desired 

tissue contrast characteristics. However, it is possible that post-acquisition combination of 

images acquired with different pulse sequences can produce images with improved contrast 

or accentuated features compared to the images from the individual pulse sequences. For 
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example, combination of 3D T2w and 3D FLAIR images produces new images with 

enhanced lesion-brain contrast and low signal from the cerebrospinal fluid [27, 28]

A pipeline to perform this technique and representative images are shown in Fig. 7. This 

pipeline constructed the FLAIR3 image from the T2w and FLAIR images using the formula 

[28]: FLAIR3= (FLAIR1.55)×(T2w1.45). Image arithmetic was performed with built-in 

GRAPE modules. This pipeline also enables the user to experiment with different 

parameters of the image combination, while immediately visualizing the results.

Discussion

MRI produces high quality 2D and 3D images with a wide range of user-selectable contrast 

mechanisms. This flexibility makes MRI a powerful tool in research as well as in clinical 

applications. With careful selection of the scan parameters, superior image contrast can be 

realized to reflect subtle differences in tissue properties, such as proton density, relaxation 

times, perfusion state, metabolite levels and diffusion. Selection of the scan parameters is 

typically based on empirical approaches, or on the expected values of the tissue properties 

[29, 30]. However, the MRI protocol for a given patient population is usually fixed, and does 

not change from patient to patient. This approach is suboptimal at an individual patient level, 

and may result in a loss in sensitivity that would not otherwise occur if the protocol was 

optimized specifically for the patient.

Recent developments have shown the feasibility of optimizing the selection of scan 

parameters for the pulse sequence for each patient [13, 26]. Optimized scan parameters 

enhance image contrast and can contribute positively to the early identification of lesions 

and assessment of the state of disease. We anticipate that new scan protocols will emerge to 

take advantage of the ability to perform on-the-fly adjustments to the MRI pulse sequence 

parameters to better match the individual patient. The development of algorithms to perform 

such adjustments is facilitated by the availability of several image analysis packages. 

However, these packages are almost exclusively intended for off-line data analysis. 

Moreover, no single package is sufficient to handle all possible protocols. GRAPE addresses 

these problems by providing an environment that facilitates interfacing with the MRI 

scanner, integration of the available image analysis packages, and a flexible graphical 

programming environment.

Although scripts can offer similar pipeline implementation, and sometimes provide a high 

degree of flexibility and efficiency, visual programming offers many advantages. The ease of 

use and the speed of developing new algorithms are greatly enhanced, especially with the 

availability of a rich library of analysis modules. This is particularly beneficial for users with 

clinical insight (e.g. radiologists and physicians) to test new concepts. Moreover, the 

visualization afforded by the pipeline greatly facilitates the inspection of outputs, detection 

of execution bottlenecks, and the debugging of execution problems.

While the supported image operations built into GRAPE are still limited, GRAPE is an open 

source project and the code base will continue to grow with user contributions. The built-in 

command line interface allows the extension of GRAPE by incorporating functionalities 
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from other libraries. GRAPE is implemented in Qt C++, which requires learning for users/

developers who are not familiar with Qt. However, the Qt C++ framework provides a 

platform-independent implementation, and is more efficient compared to virtual machine-

based platforms such as JAVA. Users can also prototype new pipelines from existing 

modules or template pipelines with no programming experience.

GRAPE is still under active development, and new tools are being continuously added to 

improve the user experience. These include the powerful ITK [6] library and Slicer 

command line interface (CLI) modules [5]. We will also investigate the potential of GRAPE 

to run as a server application on high-performance hardware, such as the Stampede Linux 

cluster, and we will pursue further integration of GRAPE into the design process of MRI 

protocols. With the proof-of-concept implementation of adaptive MRI on Philips MRI 

systems, we anticipate its extension to other MRI manufacturers will follow. Propriety 

application software from the scanner manufacturers will be needed to allow proper scanner 

integration.

Rigorous testing is needed to assure robust performance of GRAPE under different 

pipelines. Unit testing of all modules has been manually performed using custom-built 

pipelines. In addition, the cases presented in this work provide additional testing. GRAPE is 

anticipated to be publically available in 2017 as an open source project, and will be released 

under the GNU General Public License version 3.0.

In summary, we present GRAPE, a graphical pipeline programming environment that allows 

the user to develop and execute image analysis algorithms for inline, real-time, adaptive MR 

imaging applications. Detailed user and developer documentation will be available to 

facilitate the installation and use of GRAPE, and to advance applications of adaptive 

scanning by the imaging community.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Elements of the graphical user interface in GRAPE. The pipeline development toolbar (left) 

lists available modules and allows users to start and stop analysis. The pipeline layout panel 

(right) is a canvas in which users can build or view pipelines.
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Figure 2. 
This pipeline (A) compares the performance of BET with different values of the intensity 

threshold (th) when applied to fat-saturated T2-weighted image (acquired with a dual-echo 

turbo spin echo protocol). The intensity threshold was adjusted on the module property 

dialog (B), and the resulting images were displayed using the image display function in the 

Sink node, showing errors in the brain extraction done with the default threshold of 0.5 (C), 

compared to a better selection of the threshold at 0.3 (D).
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Figure 3. 
Analysis pipeline for automated brain tissue classification in multiple sclerosis.
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Figure 4. 
Multi-parametric tissue classification obtained in 2 MS patients with an integrated analysis 

pipeline. In this case, GRAPE reduced data processing time by 50%.
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Figure 5. 
The graphical pipeline for patient-specific optimization of FLAIR.
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Figure 6. 
The patient-specific FLAIR image (right) shows improved lesion conspicuity compared to 

the image acquired with the fixed FLAIR protocol (left).
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Figure 7. 
Analysis pipeline of the FLAIR3 method for enhancing the visualization of MS lesions (top) 

and representative images showing the improved lesion contrast (bottom).
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