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Abstract

Purpose—In many clinical procedures such as cryoablation that involves needle insertion, 

accurate placement of the needle’s tip at the desired target is the major issue for optimizing the 

treatment and minimizing damage to the neighboring anatomy. However, due to the interaction 

force between the needle and tissue, considerable error in intraoperative tracking of the needle tip 

can be observed as needle deflects.

Methods—In this paper, measurements data from an optical sensor at the needle base and a 

magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from 

the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. 

Bending model-based estimations and EM-based direct estimation are used as the measurement 

vectors in the Kalman filter, thus establishing an online estimation approach.

Results—Static tip bending experiments show that the fusion method can reduce the mean error 

of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of 

the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI 

entrance, respectively.

Conclusion—This work established a novel sensor fusion scheme that incorporates model 

information, which enables real-time tracking of needle deflection with MRI compatibility, in a 

free-hand operating setup.
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Introduction

Minimally invasive therapies such as brachytherapy, biopsy, anesthesia, radiofrequency 

ablation and cryoablation often involve the insertion of multiple needles into the patient [1–

3]. Accurate placement of the needle tip is the primary focus in these procedures, which can 

result in reliable acquisition of diagnostic samples [4], effective drug delivery [5] and/or 

target ablation [3,6]. Currently, the insertion of needles is usually performed free-hand with 

the guidance of a particular image modality [6,7] or utilizing the loss-of-resistance (LOR) 

technique in epidural puncture [8]. However, this workflow can be time-consuming and 

sometimes lead to improper needle tip placement. Mala et al. [6] have shown that in 28% of 

the cases, cryoablation of liver metastases was inadequate due to improper placement of the 

needles and unfavorable tumor locations. Therefore, we plan to develop a navigation system 

aimed at providing real-time guidance for accurate needle placement based on a two-stage 

scheme using both EM and optical tracker [9]. Nevertheless, as the clinicians maneuver the 

needle to the target location, the needle is likely to bend due to tissue inhomogeneity, tissue–

needle or hand–needle interaction, fluid flow and respiration, resulting in an error in 

estimating the tip position [2]. In this work, we propose to utilize a Kalman filter-based data 

fusion algorithm that fuses optical and EM sensor measurements, and a needle bending 

model to estimate the true needle tip position in the presence of a significant needle 

deflection. The estimated real-time needle tip position can be provided to a future navigation 

system for real-time needle guidance.

Many methods have been proposed to estimate the needle deflection in a wide range of 

medical procedures. The most popular class of estimation methods is the bending model-

based deflection estimation method [10–12]. The needle can be modeled as a cantilever 

beam supported by a series of virtual springs, which can perform even better than finite 

element-based models. However, because the model-based estimation is sensitive to 

parameter uncertainties and the needle-tissue interaction is stochastic in nature, needle 

insertions within the same setup can result in varying needle deflections and insertion 

trajectories [13]. The second type of estimation takes advantage of the optical fiber-based 

sensor [14]. Park et al. designed an MRI-compatible biopsy needle instrumented with 

embedded optical fiber Bragg gratings (FBG) to detect the needle shape in real time [4]. 

However, certain needles, such as the cryoablation and radiofrequency ablation needles, 

have the design and functionality that do not allow for the optical fiber-based sensor to be 

instrumented in the lumen of the needle. The third kind of estimation strategy was proposed 

by Sadjadi et al. [15], in which the Kalman filter and extended Kalman filter were employed 

to fuse the needle tip estimation data acquired from two electromagnetic (EM) trackers 

together with a needle bending model to estimate the true tip position. This approach can 

effectively compensate for the uncertainties in quantifying the needle model parameters. 

With less dependency on the model parameter identification, the estimation will be more 

reliable considering the complex situation of the percutaneous insertion. However, due to the 

use of MRI-unsafe sensors, this method is not feasible in the MRI environment in which 

many medical procedures would possibly take place, e.g., MRI-guided cryoablation.
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To tackle the problems revealed in above related work, the proposed approach is built upon 

our preliminary work [16]. We take advantage of an optical tracker at the needle’s base and 

an MRI gradient field-driven EM tracker attached to the shaft of the needle [17]. We adopt 

this dual-sensor approach to overcome the limitations of the individual sensors—noisy 

measurements of the EM sensor at the entrance of MRI scanner and line-of-sight problem of 

optical sensor [9]. By integrating the measurements from both sensors with either the 

angular springs model presented by Goksel et al. [18] or the quadratic kinematic bending 

model used in [15,19], the Kalman filter-based fusion model is established to estimate the 

needle deflection in real time. For free-hand insertion, the fusion method is more reliable 

than the analytical bending model-based estimation approach due to the increasing 

uncertainty of the model parameters [15].

Sensor coupling: a model-based sensor fusion scheme

Kalman filtering (KF) is a promising approach to optimally estimate the unknown state of a 

dynamic system with random perturbations and fuse data when multi-sensor measurements 

are available [20,21]. It was used for needle deflection estimation [22], where extended 

Kalman filter (EKF) estimates the model parameters of needle steering model online. Later 

in [15], two EM sensors were utilized to estimate the needle deflection using KF and EKF. 

In this paper, we will present a different way to couple two sensors and feed Kalman filter 

with model-based estimations.

Needle configuration

We have used a cone-tip IceRod 1.5 mm MRI Cryoablation Needle (Galil Medical, Arden 

Hills, MN), as shown in Fig. 1. A frame with four passive spheres is mounted on the base of 

the needle, and an MRI-safe EndoScout EM sensor (Robin Medical, Inc., Baltimore, MD) is 

attached to the needles shaft with 100-mm offset from the tip. The complete optical tracking 

system [23] is shown in Fig. 7. The EM tracker utilizes the instantaneous voltage in its coils 

induced by gradient fields in MRI to determine its pose [24]. Therefore, due to the highly 

nonlinear magnet field at the MRI tunnel entrance, EM sensor has less accuracy and 

susceptible to noise in its measurements. On the other hand, optical sensors are more 

accurate in tracking a rigid needle but will suffer from needle bending and line-of-sight 

issue. This setup will harness the benefits of both tracking modalities while estimating the 

needle bending robustly and accurately. Through pivot calibration [25], the optical tracking 

system provides the pivot point position. With manufacturing data, it can also compute the 

needle base position, thus the needle orientation. The EM sensor obtains the sensors position 

and orientation with respect to MRI gradient field.

Kalman filter formulation

In many insertion procedures, including cryoablation, the insertion speed is slow enough to 

be considered as a constant with acceleration variations [15,26], which is often referred to as 

continuous white noise acceleration model [27,28]. Therefore, the state vector is set as xk = 

[Ptip(k), Ṗtip(k)]T, and the process model can be formulated in the form of xk = Axk−1 + wk−1 

as follows:
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Ptip k

Ṗtip k
=

I3 TSI3
03 I3

transition matrix A

Ptip k − 1

Ṗtip k − 1
+

TS  2

2 I3

TSI3

Ṗtip k (1)

where Ts, I3, 03 represent the time step, third-order identity matrix and third-order null 

matrix, and Ptip(k), Ṗtip(k), P̈tip k  denote the tip position, velocity and acceleration, 

respectively. As we consider the insertion speed as constant, the acceleration element 

wk − 1 =
TS  2

2 I3, TSI3

T
P̈tip k  is taken as the process noise, denoted by wk  −1 𝒩 0, 𝒬 , 

where 𝒬 is the process noise covariance matrix.

Four sets of data are obtained in real time during needle insertion—optical sensor-measured 

needle base position POpt, needle axis orientation estimated by the optical sensor OOpt, EM 

sensor position PEM and the needle axis orientation estimated by the EM sensor OEM. Using 

these data, the needle tip position can be estimated in multiple ways, as shown in Table 1.

For now the bending model can be formulated as in (2) and (3), respectively:

TIPEMOptOpt = g1 PEM, POpt, OOpt (2)

TIPOptEMEM = g2 POpt, PEM, OEM (3)

TIPEMOptOpt and TIPOptEMEM can provide better needle tip estimation in a significant 

bending situation, but relies heavily on the accurate registration of the optical sensor to the 

EM sensor, making them less accurate in small bending situation than TIPEM. Therefore, for 

zk = Hxk + vk, an appropriate vector zk should take care of both situation and thus comprise 

TIPEM, TIPEMOptOpt and TIPOptEMEM, which can be expressed as zk = [g1 (PEM, POpt, 

OOpt), g2 (POpt, PEM, OEM), TIPEM]T. This fusion scheme is illustrated in Fig. 2. Besides, H 
is defined as in (4):

H =

I3
I3
I3

O3
O3
O3

(4)

The measurement noise is referred to as vk 𝒩 0, ℛ , where ℛ is the measurement noise 

covariance matrix.
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Identification of noise covariance matrix 𝒬 and ℛ is a combination of empirical estimation 

and experimental quantification. We first assumed the covariance matrices only have values 

on their diagonal entries and estimate the process noise empirically. Then we held the needle 

in still, record the data from EM and optical sensor, assign variables representing the scaling 

factors between the process noise and measurement noise. In the end, we implemented 

Nelder-Mead method on the collected sensor data and identified the scaling variables that 

minimize the standard deviation of tip estimations [29].

This approach views each estimation method as a virtual sensor. Therefore, it provides a 

deeper coupling between sensors and a new way to estimate needle tip via multiple sensors. 

To roughly compare the effectiveness of this sensor fusion scheme with the method 

proposed in reference [15], we have conducted a simulation experiment assuming the 

bending models can perfectly represent the actual needle deflection. The sensor noise used 

in the simulation is obtained from the nominal noise variance of the sensors used in both 

methods. Statistical analysis shows no statistically significant difference between the two 

methods (with p value 0.4643). Therefore, while maintaining the effectiveness of estimation, 

the proposed sensor fusion approach provides a new way of needle deflection estimation 

feasible in more situations.

Two bending model options

In order to estimate the flexible needle deflection from the kinematic measurements, an 

efficient and robust bending model is needed. Many different models have been proposed 

and reviewed in [1,11,15,18]. In our work we assume the deflection is caused by orthogonal 

force acting on the needle tip and accordingly a planar bending. This assumption allows us 

to perform model-based sensor fusion with the two sensor inputs. Under this assumption, 

angular springs formulation is reported to outperform mechanics-based model [18]. The 

quadratic kinematic bending model was tested in real tissue insertion experiment with good 

results [15,19]. Therefore, these two models are chosen for our investigation.

Angular springs model

In this method, the needle is modeled as n rigid rods connected by angular springs with the 

same spring constant k. When an orthogonal force is applied on the needle tip, the needle 

will deflect causing the springs to extend. The insertion process is slow in real cases, so it 

can be considered as quasi-static. Therefore, the rods and springs are in equilibrium at each 

time step. Additionally, in the elastic range of deformations, each spring behaves linearly, 

i.e., τi = k · qi, where τi is the spring torque at each connecting joint and qi is the relative rod 

segment deflection angle with reference to the previous rod segment. The angular springs 

model with the simplification to 5 rigid rods is shown in Fig. 3, and the mechanical relation 

between each of the rigid rods is expressed in (5).
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kq5 − Ftipl

kq4 − Ftipl(1 + cosq5)
kq3 − Ftipl[1 + cosq5 + cos(q5 + q4)]
kq2 − Ftipl[1 + cosq5 + cos(q5 + q4) + cos(q5 + q4 + q3)]
kq1 − Ftipl[1 + cosq5 + cos(q5 + q4) + cos(q5 + q4 + q3) + cos(q5 + q4 + q3 + q2)]

(5)

where Ftip stands for the orthogonal force acting on the needle’s tip and l stands for the 

length of each segment rod. Equations (5) can be written in the form of k · Φ = Ftip · J(Φ), 

where Φ = [q1, q2,…, qn]T, and J is the Jacobian function calculating the force-deflection 

relationship vector. Besides, the magnitude of deflection can be computed from sensor 

measurements through either of the following equations:

dEM = l ⋅ sin q1 + sin q1 + q2 (6)

dbase = l ⋅ sin q3 + sin q3 + q2 (7)

where dEM represents the deviation of the EM sensor from the optical sensor-measured 

needle orientation and dbase stands for the relative deviation of the needle base from the EM 

sensor-measured needle orientation, which are both illustrated in Fig. 3.

Now we can use the set of Eqs. (5) (6) and (5) (7) to compute the tip estimation TIPEMOptOpt 

and TIPOptEMEM, respectively. The real system can be large when we model the needle into 

26 rods. However, as proposed in [18], the nonlinear system of (5) can be solved efficiently 

using Picard’s method, which is expressed in (8). Given the needle configuration Φt in prior 

step, we can use the function J to estimate the needle posture at the next iteration.

Φt + 1 = k−1J Φt Ftip (8)

However, a known tip force is required for the implementation of this Picard’s method. To 

identify the relationship between Ftip and dEM or dbase, simulation experiments are 

conducted and the results are shown in Fig. 4. This result is built upon a known angular 

springs constant, which is identified through force-deflection calibration experiment. The 

estimated spring constant is k = 6.37 × 106 (N · mm/rad) for a 26-rod model. The seemingly 

linearity is the result of large spring constant. In order to realistically model the force–

deflection function, a cubic polynomial is fitted with the recorded force–deviation data using 

the least squares method.
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Collectively, to estimate the tip using this model, the optimal cubic polynomial is used first 

to estimate Ftip from the measured dEM and dbase, and then the needle configuration 

equations are solved iteratively using (8).

Quadratic polynomial model

A kinematic quadratic polynomial model was used to estimate the needle deflection in 

[15,19,30]. This model is described as in (9):

y = ax2 + kax
0,

x ≥ 0
x < 0 (9)

where a is a model parameter and k, which is different from angular spring model’s spring 

constant k, is a constant estimated through needle bending experiment in “Bending model 

validation” section.

To compute TIPEMOptOpt, the parameter a can be first obtained by solving the model 

equation y0 = ax0
2 + kax0, where x0 and y0 stand for the EM sensor position in the needle 

base coordinate XOY as shown in Fig. 5. Then by needle length integration, the tip position 

can be found in XOY coordinate.

To compute TIPOptEMEM, we also need to identify the coordinate transformation between 

XOY and X′O′Y′ in Fig. 5. Assuming the needle base is at the point (x0′, y0′) in 

coordinate X′O′Y′ (EM defined coordinates) and the EM sensor is at the point (x0, y0) in 

coordinate XOY (needle base optical coordinates), the included angle between XOY and X

′O′Y′ is θ. Therefore, the following equations can be set up using the coordinate 

transformation matrix and kinematic relations:

cos θ −sin θ x0
sin θ cos θ y0

0 0 1

x0′
y0′
1

=
0
0
1

(10)

θ = arctan 2ax0 + ka (11)

y0 = ax0
2 + kax0 (12)

Given the input value of x0′, y0′, that can be obtained from POpt, PEM, OEM, Eqs. (10), (11), 

(12) can be solved using trust-region-dogleg algorithm [31]. The output of this method is the 

model parameter a and EM position in XOY coordinate (x0, y0). The needle tip position in 

XOY coordinate can be obtained using needle length integration.
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Experiments

Bending model validation

In order to initially validate the feasibility of our models, bending experiment was set up to 

obtain the gold standard needle bending profiles. The needle was coated with ink and was 

clamped at the base. First we printed the straight needle profile and then bent the needle by 

pressing the tip orthogonally. With the needle bent and held in position, the bending profile 

was recorded by pressing the needle on the scale paper. In the end we digitalized the bending 

profiles by picking discrete points and obtained a cubic polynomial curve as gold standard 

via least squares regression.

From each gold standard profile, we can obtain corresponding PEM, POpt, OOpt values. Using 

these values, model parameters can be computed and model predicted curve can be drawn. 

The results are shown in Fig. 6. The largest tip error is 2.42 and 1.16 mm for angular springs 

model and quadratic polynomial model, respectively.

It is worth noting that for the quadratic polynomial model, the constant k must first be 

identified. Through least squares regression, the optimal coefficients for the model y = ax2 + 

bx are obtained to fit the discrete gold standard bending profile points. For the 5 gold 

standard bending profiles, the value of b/a remains almost stable, with a mean value of 51.32 

and a range from 44.87 to 58.92. Therefore, we set k = 51.32 (1/mm).

Static tip estimation with needle bending

To evaluate the overall performance of our method, we designed the static tip bending 

experiment, which was conducted in two steps: First, the needle tip was placed at a fixed 

point, with optical and EM sensor recording for 10 s; second, the needles tip remained at the 

fixed point and needle was bent by maneuvering the needle base. Similarly, for this dynamic 

process, sensor measurements were collected for 20 s.

The needle tip position can be estimated from the data collected in the first step. Because 

EM sensor was closer to the tip and less variation (0.23 mm) was observed, we chose to use 

PEM and OEM to compute the average tip position as gold standard TIPgold. With the data 

collected in the second step, we can evaluate the performance of each estimation method. 

The experimental setup and illustrative result are shown in Figs. 7 and 8, respectively.

To further evaluate our method, we conducted extensive experiments with different setups: at 

MRI isocenter or MRI entrance; small bending or large bending; x–y plane bending or x–z 

plane bending.

• MRI isocenter versus MRI entrance While the needle insertion procedure is 

generally done at the MRI entrance due to the ergonomics, the accuracy of EM 

sensor is higher at the isocenter. Therefore, isocenter experiments are also 

conducted to help us better evaluate our method. At either entrance or isocenter, 

gold standard positions are also changed frequently to avoid local bias.

• Small bending versus large bending Our initial insertion experiments in a 

homogeneous spine phantom using the cone-tip cryoablation needle 
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demonstrated a needle bending of over 10mm. Accordingly, in the second step of 

this experiment, we attempt to simulate a larger bending that can be anticipated 

when the needle is inserted through heterogeneous tissue composition, which is a 

tip deviation of about 40 mm. However, an extra set of static tip estimation 

experiments was conducted with a relatively small needle deflection of less than 

20mm to further validate our approach.

• x–y plane bending versus x–z plane bending versus random bending. EM sensor 

accuracy is often anisotropic, which is also true for our sensor. During 

experiments, we bent the needle in three patterns: in the x–y plane of the MRI, in 

the y–z plane and in all directions.

Results analysis

First we look at the result within a single experiment, as shown in Fig. 8. TIPOpt is the most 

dispersed due to the lack of deflection compensation. If the estimation depends solely on 

EM sensor, i.e., TIPEM, it will result in a much better estimation since the EM sensor is 

placed closer to the needle tip and the section from the EM sensor to the needle tip has less 

bending as models suggested. The TIPOptEMEM (red) demonstrates the best needle tip 

estimation among non-fusion method, whereas the TIPEMOptOpt approach fails to give a 

consistent estimation because small errors in OOpt measurement will have large effects on 

TIPEMOptOpt. The optical-MR registration error and the nonorthogonal tip force introduced 

by the needle base maneuvering exacerbate the situation. However, better fusion result is 

observed using TIPEMOptOpt as a fusion element. This can be explained using the directional 

lines in Fig. 8. The green line that represents the TIPEMOptOpt approach at a particular time 

step deflects to the left side of the gold point (center of the black sphere), whereas the other 

four (TIPOptEMEM, TIPOptEM, TIPEM and TIPOpt) deflect to the right side. This relationship 

holds true for most time steps. Due to the opposite direction of the error vectors TIPEMOptOpt 

– TIPgold and TIPEM – TIPgold, the fused estimation will be closer to the gold point. Though 

TIPOptEM can provide certain amount of deflection compensation and exhibit smaller mean 

estimation error than TIPEMOptOpt, it does not preserve such directional property as 

TIPEMOptOpt. As a result, it is not included in our fusion approach.

Now we look at the performance variations across different experimental setups as shown in 

Fig. 9. At both the MRI isocenter and tunnel entrance (650-mm offset from isocenter), we 

have conducted 15 sets of static tip bending experiment for large bending validation and 15 

sets for small bending validation. Within each 15 sets, 5 sets of the needle were bent in the 

x–y plane of the MRI, 5 sets in y–z plane and 5 sets with motion in all directions.

In general, the estimation error is larger at the 650-mm offset than at the isocenter, which is 

probably due to the large noise and nonlinearity of the magnetic gradient field around the 

site. For large bending situation, the estimation accuracy improves from 39.96 mm of the 

optical sensor-based approach to 6.90 mm of the fusion-based approach using angular 

springs model (angular) and from 39.96 to 8.42 mm using quadratic polynomial model 

(quad). Although the reduced error is still large, it should be noted that the large magnitude 

of the tracking error is due to the significant bending introduced by the needle base 
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maneuvering. For small bending situation, which will take place more often, the error at the 

MRI entrance is reduced from 16.54 to 4.20 and to 3.62 mm using angular and quad model, 

respectively. We compare TIPfused to TIPOpt mainly because optical tracking is current 

standard in OR setting.

We can also observe the variation of the EM sensor accuracy with respect to the bending 

orientation. As shown in Fig. 9, the green dots, which stand for bending in x–y plane, exhibit 

much higher accuracy of the EM sensor, thus resulting in a better fusion result. For large 

bending in x–y plane at the entrance, the tracking error reduces from 28.22 to 3.40 mm and 

4.45 mm using angular and quad model, respectively, while the TIPEM error is 5.76 mm at 

the same time. This result indicates that by maneuvering the needle in the x–y plane, the 

accuracy of needle placement can be significantly improved.

The comparison of two bending models is made in two parts: accuracy and efficiency. For 

accuracy, the result shows that the angular springs model can do better than the quadratic 

polynomial model, but the difference is not large. However, for efficiency, the angular model 

is far better than the quad model. For a data set of 704 time steps, the cost of angular springs 

model post-processing is 1.339 s, while the cost for quad model is 30.651 s. It is caused by 

using the trust-region algorithm to solve the analytical model equations.

Discussion and conclusion

In this paper, we have proposed a model-based multi-sensor fusion scheme to estimate the 

flexible needle deflection and we studied the feasibility of two needle bending models. In 

static tip bending experiment, compared to the optical sensor-based navigation approach, 

which is the current OR standard and generally more reliable in surgical navigation [32], the 

data fusion method largely reduced the tip estimation error under all circumstances. Besides, 

comparing to other methods, the approach in this work demonstrates three major 

advantages: robustness, device compatibility and MRI compatibility.

The bending experiments were done in very different scenarios with purely free-hand 

manipulation, where significant noise changes will occur. Despite using the same noise 

matrix, due to Kalman filter’s great capability in capturing the stochastic nature of insertion 

process, the estimation results tend to show consistent performance. Similar observation is 

also reported in [15]. This is one advantage of stochastic modeling over other methods 

relying on exact modeling of needle bending. Besides, the bending model used is also robust 

to less accurate calibration. For the angular springs model, within the same degree of 

magnitude of k, parameter changes will lead to needle tip deflection changes less than 0.5 

mm.

Our approach does not need instrumentation inside needle lumen, such as FBG sensor or 

small EM sensor, which is not feasible for functional needles used in procedures like 

cryoablation. Furthermore, it is also suitable when nonbevel tip needles are involved. Notice 

that nonbevel tip needles are not “expected” to bend, but bending occurs nonetheless during 

free-hand operation. Our method shows a “backwards compatibility” as shown by 

experimental results: When no bending or small bending occurs, the estimation error using 
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our method will be greatly reduced, thus asymptotically approaching current standard 

tracking scheme without fusion. Free from robotic close-loop actuation also makes our 

approach feasible in free-hand operation.

One important point of this study is our investigation of an MR-gradient field-driven EM 

sensor-based implementation. The results demonstrated the possibility to integrate an EM 

sensor into image-guided surgery with intraoperative MRI. Although replacing the EM 

sensor with another optical sensor may also allow the needle deflection estimation using our 

approach, but this EM sensor is crucial in our overall setup because we rely on the EM 

sensor to complete the final insertion inside the MRI bore when optical tracker fails due to 

line-of-sight issue [9].

A strong assumption of tip force-initiated needle bending is adopted during the development 

of this method; however, it should be justifiable especially in our application scenario. First, 

for cryoablation in the spine region, the insertion depth is shallow compared to the full 

length of the needle, which means only a small of the needle is interacted with the tissue that 

the force can be roughly modeled as a point force. Second, the needle used is semi-rigid that 

the bending profile of which is much more predictable than other soft needles. Third, we do 

not rely on the needle deflection estimation ability to send the needle to the target. Instead, 

we rely on the image guidance of a needle which is expected to be straight. Therefore, given 

that the needle tip force assumption is a stable assumption when no or small bending 

happens, it can improve the overall image-guided procedure.

This study is served as a pioneer investigation to this new kind of model-based sensor 

fusion. The static tip bending experiment has demonstrated that given correct bending 

model, the estimation result will be promising. The complexity of bending model is limited 

by the availability of measurement inputs; therefore, more sensors involved will enable us to 

do more realistic model-based estimation, which is one of our future work. Besides, we will 

attempt to use the new registration method, i.e., using the sensor measurements to do direct 

registration, instead of the current phantom marker approach which uses traditional least 

square registration method, to improve the alignment of the EM and the optical sensor. Since 

our primary objective is to develop a navigation system aimed at providing real-time 

guidance for accurate needle placement, this work lays the basis for tracking the flexible 

needle in the presence of significant needle deflection. As part of our future work, we will 

integrate the data fusion algorithm with our 3D Slicer-based navigation system [33].
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Fig. 1. 
Cryoablation needle mounted with optical and EM sensor. The EM sensor is located 10cm 

from the needle’s tip using a depth stopper (white)
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Fig. 2. 
The Kalman fusion process, with 3 measurement inputs, constitutes measurement vector in 

the Kalman filter
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Fig. 3. 
Angular springs model, using 5 rigid rods model for an example
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Fig. 4. 
Tip force and deflection relation: Tip force is increasing from 0 to 1000 mN with 50-mN 

intervals
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Fig. 5. 
Quadratic polynomial model implementation and coordinates setup
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Fig. 6. 
Model validation with gold standard bending profile
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Fig. 7. 
The static tip bending experimental setup at the MRI tunnel entrance
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Fig. 8. 
Single experimental result: Each scattered point stands for a single time step record. The 

left-side points are the estimated tip position using different methods, and the right-side 

points represent the raw EM or optical measurements. The black sphere is centered at the 

gold standard point and encompasses 90% of the fusion result points (black points). The 

lines in the figure illustrate the correlation between different methods at a single time step. 

They link the estimated tip position to the measured EM or needle base (optical) locations. a 
Diagram representation of needle bending experiment. b Numerical representation of needle 

bending experiment
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Fig. 9. 
Bending experimental result: For x-axis, numbers from 1 to 6 stand for TIPfused, TIPEM, 

TIPOptEMEM, TIPEMOptOpt, TIPOptEM, TIPOpt, respectively. Y-axis is the distance (mm) from 

the estimated tip position to the gold standard tip position. Each bending experiment is 

represented by a colored dot, which follows three bending patterns, i.e., in the x–y plane, y–

z plane and all directions. The mean error improvement is comparing the fused estimation 

with TIPOpt and TIPEM. a Large-iso-quad: Opt error: 29.23 mm, Fusion error: 3.64 mm, EM 

error: 6.29 mm. b Large-iso-angular: Opt error: 29.23 mm, Fusion error: 3.15 mm, EM 

error: 6.29 mm. c Large-entrance-quad: Opt error: 39.96 mm, Fusion error: 8.42 mm, EM 

error: 9.77 mm. d Large-entrance-angular: Opt error 39.96 mm, Fusion error: 6.90 mm, EM 

error: 9.77 mm. e Small-iso-quad: Opt error: 21.00 mm, Fusion error: 2.24 mm, EM error: 

3.70 mm. f Small-iso-angular: Opt error: 21.00 mm, Fusion error: 2.20 mm, EM error: 3.70 

mm. g Small-entrance-quad: Opt error: 16.54 mm, Fusion error: 3.62 mm, EM error: 5.41 

mm. h Small-entrance-angular: Opt error: 16.54 mm, Fusion error: 4.20 mm, EM error: 5.41 

mm
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