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Abstract
Purpose For guidance of orthopedic surgery, the registration of preoperative images and corresponding surgical plans with
the surgical setting can be of great value. Ultrasound (US) is an ideal modality for surgical guidance, as it is non-ionizing, real
time, easy to use, and requires minimal (magnetic/radiation) safety limitations. By extracting bone surfaces from 3D freehand
US and registering these to preoperative bone models, complementary information from these modalities can be fused and
presented in the surgical realm.
Methods A partial bone surface is extracted from US using phase symmetry and a factor graph-based approach. This is
registered to the detailed 3D bone model, conventionally generated for preoperative planning, based on a proposed multi-
initialization and surface-based scheme robust to partial surfaces.
Results 36 forearmUS volumes acquired using a trackedUS probewere independently registered to a 3Dmodel of the radius,
manually extracted from MRI. Given intraoperative time restrictions, a computationally efficient algorithm was determined
based on a comparison of different approaches. For all 36 registrations, a mean (± SD) point-to-point surface distance of
0.57 (± 0.08)mm was obtained from manual gold standard US bone annotations (not used during the registration) to the 3D
bone model.
Conclusions A registration framework based on the bone surface extraction from 3D freehandUS and a subsequent fast, auto-
matic surface alignment robust to single-sided view and large false-positive rates from US was shown to achieve registration
accuracy feasible for practical orthopedic scenarios and a qualitative outcome indicating good visual image alignment.

Keywords Tracked ultrasound · Bone segmentation · Iterative refinement

Introduction

Orthopedic surgery is a branch of medicine that focuses on
injuries of the musculoskeletal system, gaining ever more
importance with increasing life expectancy and the elderly
being particularly prone to bone injuries [1]. Fractures are
a common case of orthopedic trauma, where the forearm is
highly vulnerable to injuries [1,2]. Twenty-five percent of
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fractures in pediatric population and 18% for the elderly are
those of the distal radius [2,3].

A common step in the preoperative planning of ortho-
pedic surgery is the acquisition of a computed tomography
(CT) scan, due to its suitability for visualizing bone tis-
sue. However, little information can be inferred from CT
images about soft tissue details (e.g., muscles, ligaments,
nerve fibers, and smaller blood vessels), which are poten-
tially relevant as structures at risk during intervention and/or
as soft tissue constraints on musculoskeletal function that
should ideally be taken into account for an optimal surgical
outcome. Ultrasound (US) can provide soft tissue informa-
tion for preoperative planning as well as real-time guidance
feedback for surgical navigation. Nevertheless, US allows
limited field of view, often in 2D slices, where the bones
also act as acoustic reflectors preventing visibility behind
their top surface. Therefore, given an accurate registration
technique, detailed and precise 3D bone models from other
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Fig. 1 Registration pipeline overview

imaging modalities can be enriched by ultrasonic soft tissue
information as well as aligned to intraoperative coordinates
for surgical guidance. We aim at such multi-modality fusion
in this work.

Given the limited field of view of individual US images/
volumes, more comprehensive information can be enabled
by panoramic reconstruction of many such images [4,5]. For
3D reconstruction from 2D freehand US, which are conven-
tionally acquired in clinics, image-based techniques [6] were
also proposed for relative tracking. Nevertheless, optically
tracked transducers [4,5] can provide a high reconstruction
accuracy required in orthopedic interventions. Additionally,
this absolute tracking enables use in surgical navigation.

US registration approaches in the literature can be divided
into two categories: Image-based and surface-based
approaches. Image-based approaches (e.g., [7–9]) directly
register pre-processed US slices to pre-processed CT slices
using a similarity metric between 2D images such as the Lin-
ear Correlation of Linear Combinations (LC2) [9]. While
image-based registration has the advantage that no bone sur-
face segmentation is necessary, it can take a long time and is
highly susceptible to noise in the images [10].

In surface-based registration, the anatomical structure
(e.g., bone surface) is extracted from both modalities, and
registration is performed on the two surfaces [11,12]. A
popular point cloud registration algorithm for rigid trans-
formations is Iterative Closest Point (ICP) [13]. This was
used for a joint bone detection–registration of the femur
between US and CT [14], in combination with morpholog-
ical operators and a connected components approach [15].
In [16], Gaussian Mixture Models (GMMs) were used for
modeling pelvic bone surfaces [17], where the CT surface
was manually cropped to a region of interest prior to regis-
tration, and the US surface extracted using 3D local phase
features. Statistical methods for the registration have also
been proposed, e.g., usingUnscentedKalman Filters [18,19],
statistical shape models and GMMs of vertebrae [10], as
well as statistical shape + pose + scale models of the lum-
bar spine [20]. But these require many observations to build
model statistics and may not generalize well to other popu-
lations or to pathologies.

A subsequent application of image- and surface-based
approaches has also been proposed to take advantage of each

method at a certain registration stage. In [21], US-to-CT
registration of the lumbar spine was proposed using first a
rigid intensity-based registration based on mutual informa-
tion similarity (using the BRAINS module [22]), followed
by Coherent Point Drift (CPD) [23] for surface-based regis-
tration. The US bone surfaces were extracted by applying the
method from [24] to phase-filtered US images. In [25], first
surface-based registration was employed using a simplex-
based minimization algorithm (Controlled Random Search),
which was then fine-tuned using an intensity-based approach
with a proposed Linear Correlation of Linear Combination
(LC2) similarity metric, also taking into account the soft
tissue deformation due to US transducer compression. To
extract bone surfaces fromUS, they introduced the bone con-
fidence localizer, using filtering and confidence maps [26].

In this work, we propose the extraction of approxi-
mate bone surfaces from tracked freehand US images using
phase-symmetry-based bone surface extraction followed by
a novel, factor-graph-based outlier removal approach. This
US-extracted point cloud is then registered to a 3D bone
model based on a point-set alignment algorithm.We adopted
a multi-initialization framework [14] and have extended it
by leveraging the US-physics-based fact that the bone sur-
faces have single-sided visibility in the images, which is
herein shown to render the method more robust. Because
this study is based on volunteer data, the 3D bone model
was created fromMRI instead of CT to avoid harmful radia-
tion. An overview of our proposed method is seen in Fig. 1.
Our algorithm was designed focusing on long bones and was
evaluated on forearm images.

Methods

3D freehand US acquisition

In our method, we assume that the 3D freehand US forearm
data have been acquired in a single sweep, starting distally
at the wrist and moving proximally toward the elbow. To
allow for a good registration, a good US response at the wrist
should be ensured. We used the surface of the radius for
the registration, as it offers more shape variability along its
elongation than the ulna.
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Bone surface delineation

As we perform surface-based registration, we have to extract
the bone surface from both, a preoperative imaging modality
(e.g., CT orMRI) yielding themodel surface, as well as from
US, yielding the US surface. Thereafter, the two extracted
surfaces are registered.

We extracted the radius from the forearmMRI volume by
manual segmentation, using theMedical Imaging Interaction
Toolkit (MITK), resulting in a bone volume. The single-voxel
thick layer extracted from it bymeans of morphological thin-
ning comprises the model point cloud we hereinafter denote
as PModel. This step is performed offline.

Extracting bone surfaces from US is one of the main chal-
lenges in surface-based registration. A popular method is
Phase Symmetry (PS) [27], which is based on phase congru-
ency [28]. While being fairly fast and reliably responding to
bone surfaces, themethod producesmany false positives, i.e.,
points that are not actually part of the bone surface. Morpho-
logical thinning and selection of detections farthest from the
transducer (denoted by PS↑) was proposed to reduce false
positives [29]. Due to its high speed, we first use PS↑ to
segment each frame individually, resulting in a point cloud
denoted by PUS. To remove the remaining many false posi-
tives, we added another step, described next.

As we focus on the forearm, the shape of the bone sur-
face to be extracted can be expected to be fairly elongated.
Furthermore, assuming that the US data have been acquired
using a single sweep, from its distal to its proximal end, PUS

can be expected to have a clear and distinct principal direc-
tion vpri. Moreover, since the shape of the forearm closely
follows that of the radius, the unknown principal direction
of only the true positives can be assumed to be fairly similar
to vpri. Thus, false positives can be removed by starting at a
small set of seed pointsPseed ⊂ PUS that are known to be part
of the bone surface, and then propagating that information
to other points in PUS along vpri. The propagation of infor-
mation from point to point can be achieved using graphical
models. Specifically, we use a factor graph for that purpose.

To generate Pseed, the user is asked to manually label
some bone surface points among the points in PUS in 2–4
frames, which span the 3D surface. The manually labeled
points within each frame are then interpolated using cubic
B-Splines, and all the points inPUS from the same frame suf-
ficiently close to the interpolated curve are considered bone
points as well and thus added to Pseed. Let us define binary
label li for point pi ∈ PUS to indicate that pi is regarded
as being part of the bone surface or not, i.e., li = 1 if pi is
on the bone surface. Hence, we have ∀pi ∈ Pseed : li = 1.
We now use the locations of points in PUS to form a factor
graph FG, whose purpose is the propagation of li = 1 from
Pseed along the remaining bone surface points in PUS. Pairs
of points that are close enough, and whose connecting vector

Fig. 2 Illustration of factor graph neighborhood

is sufficiently similar to vpri are neighbors in FG, so that they
are likely to share labels after optimization. In more detail,
FG is constructed as follows:

1. Compute the major extent of the long bone, vpri of PUS

using principal component analysis (PCA). Note that
‖vpri‖ = 1.

2. For each pi ∈ PUS, find its n nearest neighbors in
PUS and denote this point set as Ωi . For pi ∈ PUS

and p j ∈ Ωi , define distances di, j = ‖p j − pi‖,
di,max = max j {di, j } and direction vi, j = p j−pi

di, j
. See

Fig. 2 for an illustration.
3. For all pi ∈ PUS and each p j ∈ Ωi , compute the follow-

ing threshold:

ti, j = |vTi, jvpri|c1di,max (1)

where c1 is constant. As 0 ≤ |vTi, jvpri| ≤ 1, threshold ti, j
is a fraction of themaximum neighbor distance, based on
whether the given p j is a neighbor in the principal bone
direction.

4. For pi ∈ PUS and p j ∈ Ωi add an edge (i, j) if di, j ≤
ti, j . Thus, the bigger |vTi, jvpri| (and thus the closer vi, j
is to vpri), the farther away p j can be from pi to still be
connected to pi in FG.

We define unary potentials Ψ (i) and pairwise potentials
Ψ (i, j) as follows:

Ψ (i) =
{

|li − 1| if pi ∈ Pseed
1
2 otherwise

Ψ (i, j) =
{ di, j

di,max
if li = l j

1 otherwise
(2)

Unary potential values for points in Pseed as defined in Eq. 2
are set such that it is unlikely that their label is changed
during optimization. The pairwise potentials Ψ (i, j) encode
that pairs of points that are close to one another and whose
connecting vector is sufficiently similar to vpri (which is how
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Fig. 3 PModel (gray) and PFG (red) after various stages of our registration framework: a, d centered and aligned; b, e surfaces approximately
correctly rotated around vpri; c, f rotated as in b, e and translated before registration

we establish the neighborhood relations between the points in
the first place) should have the same labels. The cost function
of the factor graph is given by

C(FG) =
|PUS|∑
i=1

Ψ (i) + μ

|PUS|∑
i=1

∑
j :p j∈Ωi ,di, j≤ti, j

Ψ (i, j) (3)

where μ is the pairwise weighting constant. Eq. 3 is min-
imized using Tree-Reweighted Message Passing (TRW-S),
and the resulting labels determine the extracted bone surface
PFG.

Robust, multi-initialization registration scheme

Registration algorithms often suffer from local minima, lead-
ing to poor registration results if the two input surfaces are
poorly aligned.We thus devised amulti-initialization scheme
that runs a registration algorithm from different initial align-
ments of the two surfaces, with the aim to provide at least one
which is sufficiently close to enable a good final result. For
registration, we considered three algorithms: point-to-plane
ICP [30], CPD [23], and the GMM-based algorithm as intro-
duced in [17], which we will hereinafter denote as GMM.
We found that, depending on which algorithm is used within
our framework, different steps have to be taken to achieve
good results within a reasonable time frame. In this section,
we focus on registration using ICP, which is fully automatic
and robust.

PCA Alignment. Long bones have a fairly straight and
elongated surface (see Fig. 3). We thus obtain a first, crude
alignment of PFG and PModel by centering the two surfaces,
and aligning their main principal axes extracted via PCA.
Let us denote the direction of those aligned, principal axes
as vpri. An example alignment using these steps can be seen
in Fig. 3a, d.

Multi-initialization.After aligning the two surfaces with
vpri, their individual rotation around vpri is arbitrary. If these
individual angles are too far apart, a registration algorithm
may converge to a poor alignment. To avoid this, we use a
multi-initialization scheme, in which we run a registration
algorithm after rotating PFG around vpri by α = i2π/nrot
for i = 1, 2, ..., nrot. Among these nrot registration results
Tα , the one with the lowest surface registration error (SRE)
E is chosen, i.e., E(A,B) = 1

|A|
∑|A|

a minb{dab} for pa ∈
A, pb ∈ B and T = argminTα E(Tα(PFG),PModel). An
example alignment resulting from such nrot iterations can be
seen in Fig. 3b, e, where the rotation around vpri of the two
surfaces is approximately correct.

Data-based translation. In US, only the part of the bone
surface facing the transducer is visible. Because ICP estab-
lishes hard point correspondences between the two surfaces
on a nearest-neighbor basis, ICP may snap PFG to the part
of PModel which is invisible in US. To handle this, we trans-
late PFG, prior to running the multiple-initialization scheme
described above, as follows:
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Fig. 4 Registration pipeline overview

1. Leveraging the information from US physics, translate
PFG in the opposite of the average direction of the US
scanlines for a specific distance dup. This moves PFG

toward the location of the US transducer during imaging,
and for correct rotations of PFG around vpri this brings
PFG closer to a part of PModel which is visible on US.

2. As stated in the “3D freehand US Acquisition” section, a
good US response at the wrist should be ensured. Thus,
the most distal point of PFG is likely to be near the wrist.
As a consequence, we align the two distal ends of the
two surfaces by translating PFG along vpri, which can
improve the convergence rate of ICP.

The initial alignment for the selected registration result,
including the translation of PFG, can be seen in Fig. 3c, f.

Point Cloud Registration. A major issue in any regis-
tration algorithm is the presence of noise in the point clouds.
While CPD and GMM are both designed to handle substan-
tial amounts of noise and outliers (e.g., false positives), ICP is
not. Hence, even small numbers of false positives can lead to
suboptimal alignments with ICP if left unhandled. However,
if PFG is sufficiently clean, ICP with multiple initializations
as described abovewill provide a reasonably good first align-
ment. As the true positives (i.e., points correctly identified as
bone surface points) outnumber the false positive inPFG, they
dominate the registration, so that they end up in good align-
ment with PModel and consequently have a smaller distance
to PModel than the false positives. Based on this observation,
registration using ICP is performed in two stages:

S1. Run ICP (inside the multi-initialization approach, see
above) using a high inlier ratio 0 < r ≤ 1, such that
only the point correspondences with a nearest-neighbor
distance below the r th percentile will be considered for
the least-squares estimation of the aligning transforma-
tion.

S2. Post-processing: Starting at the alignment as computed
in S1, repeat ICP,while gradually lowering r in between
repetitions.

Stop when the Hausdorff distance between the two sur-
faces after the refined alignment is below a specified
threshold din.

Re-running ICP with a gradually smaller inlier ratio r in S2
will start to ignore points from PFG which are farther away
from PModel and hence are likely false positives, thereby
improving the registration.

Figure 4 shows an overview of the entire pipeline.

Results and discussion

Dataset

Weacquired36 tracked freehand in-vivoUS-image sequences
of the left radius from two volunteers. For acquisitions, an
L14-5 linear-array US transducer was usedwith Sonix Touch
and Tablet machines (UltrasonixMedical Corporation, Rich-
mond, BC, Canada). Imaging depths varied between 40 and
50 mm, at an imaging frequency of 6.66 or 10 MHz. The
recording time of the sequences was within [19, 33] s, with
a mean of 28 s; at a frame rate of [10.0, 23.2] fps, with a
mean of 13.7 fps. Twenty sequences were recorded from a
volar aspect, and 16 from a dorsal aspect. With these dif-
fering parameters, we aimed to capture a wide range of
imaging settings and options for testing the generalization
of our methods. US frames had an isotropic pixel resolu-
tion in the range of 65 and 81µm. For the optical tracking
of the US transducer, we used the Atracsys Easytrack 500.
The calibration of the tracker was performed using the PLUS
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Table 1 Parameter settings
during grid searches

Grid search PModel N nrot dup (mm) n c1 w s

ICP factor graph Full All 18 15 10–500 2.5–20 – –

ICP multi-init. Full All 1–18 0–20 100 10 – –

CPD Partial 100–2000 1 0 100 10 0–0.99 –

GMM Partial 100–2000 18 15 100 10 – 0.01–10

toolkit [31]. US images were acquired using a custom C++
script running on the US machine.

The model surfaces were created using the respective
volunteer’s water saturated Dixon MR sequence having an
isotropic spatial resolution of 0.9 mm. The bone surface was
extracted by manually annotating every third axial in-plane
slice and converting these into a mesh through geometric 3D
interpolation via MITK. Quality of the segmentations was
ensured by visual inspection.

Evaluationmetrics

Our goal was to assess the quality of registration by means of
bone surface points that were not used in the registration pro-
cess. To this end, for each recorded US-image sequence, we
manually labeled the bone surface in 50 frames distributed
across the entire elongation of the bone, which serve as the
gold standard bone surface points in US, PGS. For this label-
ing, we used the Stradwin software.1 After performing a
registration, we align PGS with PModel using the resulting
transformationT and refer to E(T(PGS),PModel) by SREGS.
Denoting the nearest-neighbor distances between the surface
points pa ∈ T(PGS) and pb ∈ PModel as da,b, we also deter-
mined the 95%ile and maximum of {da,b}, referred below as
dGS,95 and dGS,max, respectively.

Finally, we measured the registration time, where we
exclude the US sequence segmentation time and the label-
ing time for the bone seed points, as they are identical
for all considered registration methods. The mean segmen-
tation time of the in-vivo US sequences (250–750 slices)
by PS↑ was 76.76 s (standard deviation ± 33.34 s). Man-
ually labeling the bone seed points typically required less
than 30 seconds. The mean time for creating and optimiz-
ing the factor graph was 2.10 (± 0.14) s and 1.01 (± 0.08) s,
respectively.

Method parameters

To assess the robustness of our registration framework, we
conducted a grid search over different subsets of parameters,
which are summarized in Table 1. To obtain lower bounds on
registration performances, the search was performed using

1 http://mi.eng.cam.ac.uk/~rwp/stradwin/.

all datasets. To measure the influence of factor graph-related
parameters on ICP-based registration, we performed a search
over the parameters (n, c1), as shown inFig. 5a,while keeping
the values of nrot and dup fixed at 18 and 15mm, respectively,
which were empirically determined to be viable values. In
all experiments, we set μ = |PUS||E| , where |E| represents the
number of edges in the factor graph. This gives equal weight
per unary and pairwise potentials in Eq. (3). Figure 5b shows
the influence of the parameters (nrot, dup) on ICP-based reg-
istration, with n and c1 set to 100 and 10, respectively. ICP
was performedwith an initial inlier ratio r = 0.99,whichwas
decreased in steps of 0.01 during post-processing. Finally, we
used din = 2mm as stopping criteria.

For rigid transformations, CPD and GMM both offer one
free parameter. For CPD, w denotes the weight for noise and
outliers, and for GMM, s defines the bandwidth of the Gaus-
sian kernel used for the registration. For CPD and GMM, we
considered only half of the model surface that corresponds
to the US imaging direction (volar or dorsal), marked as
“partial” in Table 1, since taking the entire model yielded
significantly lower registration accuracy for these two algo-
rithms, with their results incomparable to ICP. Under these
circumstances, we found CPD to be sufficiently robust so
that multiple initializations were not necessary. In contrast,
our preliminary experiments had shown that GMM per-
formspoorlywithoutmulti-initialization; thus,weperformed
GMM-based registration, similarly to ICP-based registration,
with (nrot, dup) set to (18, 15 mm). Due to the high time
complexities of CPD and GMM, it was necessary to down-
sample PFG and PModel to obtain results within reasonable
computational times. Assuming smooth bone surfaces, we
used farthest point sampling to accurately capture the sur-
face shape as follows: starting with a subset consisting of
the two points with the maximum distance from each other,
the subset is iteratively increased by greedily choosing the
point that is the farthest away from the current subset. With
this, both surfaceswere downsampled to N number of points.
Thus, the grid searches for GMM and CPD were performed
over N , as well as their respective free parameter, as shown
in Fig. 5c, d.

To reduce the time and memory requirements of the regis-
trations, PUS was randomly downsampled to 90,000 points,
while themodel surfaces of the two subjects contained23,320
and 20,435 points, respectively.
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Fig. 5 Mean surface registration errors (top row) and registration times (bottom row) for varying parametrizations of a factor-graph outlier removal,
applied prior to ICP, b ICPmulti-initialization stage, c CPD, and dGMM. It is seen that ICP exhibits large regions that are robust to parametrization.

Table 2 Registration framework
performance (mean ± standard
deviation), where bold numbers
indicate best results for each
metric

Algorithm SREGS (mm) dGS,95 (mm) dGS,max (mm) Time (s)

ICP 0.57 ± 0.08 1.09 ± 0.27 1.87 ± 0.60 15.00 ± 5.24

CPD (N = 2000, w = 0.03) 0.60 ± 0.1 1.24 ± 0.45 2.58 ± 1.78 226.89 ± 118.11

CPD (N = 500, w = 0.01) 0.71 ± 0.23 1.76 ± 1.22 4.01 ± 2.44 9.39 ± 3.14

GMM (N = 1000, s = 3) 0.73 ± 0.25 1.96 ± 1.67 4.46 ± 4.08 89.87 ± 51.49

Fig. 6 Box plots showing the registration error (a, b) and run-time distributions (c) for parameters selected via grid search (CPD1: N = 500w =
0.01, CPD2: N = 2000w = 0.03). a dGS,95. b dGS,max. c Registration time

All experiments were conducted on a computer with an
Intel i7-2600KCPU@3.40GHzand16GBRAM.The regis-
tration pipeline was implemented in MATLAB (r2017a). We
used the open-source implementation by Myronenko2 [23]
for CPD and the implementation by Jian3 for GMM [17].
The factor graph was implemented using OpenGM.4

2 https://sites.google.com/site/myronenko/research/cpd.
3 https://github.com/bing-jian/gmmreg.
4 http://hciweb2.iwr.uni-heidelberg.de/opengm/.

Results

Figure 5 shows the results of the grid searches for the ICP-,
GMM- and CPD-based registration. Table 2 states the per-
formances of the ICP-based registration, along with selected
configurations of the CPD- and GMM-based registration,
while Fig. 6 shows registration error and time distributions
of the same configurations. For CPD, the configurations
resulting in the lowest mean SREGS for 2000 (best per-
formance) and 500 points (best performance while being
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Fig. 7 (left) Example registration results with US, MRI, and overlaid
slices of corresponding locations with the proposed ICP-based align-
ment. (right) A tendon insertion (pronator teres) visible in US (top) is

projected onto the 3D model (below) using the proposed ICP-based
alignment, e.g., to facilitate preoperative planning

faster than ICP) are shown, while for GMM, the one con-
figuration resulting in the lowest mean SREGS is shown. As
can be seen, the best GMM result is roughly 20% worse
than both, ICP and CPD. While ICP and CPD yielded sim-
ilar registration accuracies, it was necessary to manually
reduce the 3D bone model to the aspect imaged in US to get
good alignments using CPD. Also, CPD approaches the ICP
registration accuracy only with less downsampling, which
drastically increases run-time. The best CPD performance
with a registration time below that of ICP was obtained with
downsampling to 500 points, which leads to a roughly 20%
reduction in mean accuracy. More striking differences in
terms of registration accuracy can be seen in Fig. 6b, which
shows that dGS,max for GMMandCPD2 (N = 2000,w = 0.03)
can go as high as 17 and 8 mm, respectively, while the worst
dGS,max for ICP is 3.6 mm. Given registration run-times in
Fig. 6c, only ICP and CPD1 (N = 500, w = 0.01) are found
suitable for near real-time performance, where their median
dGS,max are 1.7 and 2.9mm, cf. Fig. 6b, indicating substantial
improvements of ICP over the other two registration meth-
ods. Indeed, a registration error of 2 mm was considered
sufficiently accurate in [10]. Thus, from all the investigated
registration algorithms, ICPwas the only one providing good
registration accuracy within a reasonable time frame [32].

Additional initializations with axial translations of the US
bone surface points along the long axis of the model surface
may improve the results. However, we found such improve-
ment to be minor and dependent on parametrization, and
thus we excluded this computationally-costly step from our
method.Resultswere not sensitive to themanual annotations,
as mean SREGS varied by less than 0.01 mm when results
from two independent annotators were compared on a subset
of 15 datasets.

We are confident that the obtained accuracies would have
been even better, if we had access to forearm CT scans as
opposed to MRI, as CT has typically a higher resolution and
allows for amore reliable, automated bone surface extraction.

Example qualitative results obtained using ICP are shown
in Fig. 7. It can be observed that lower parts of the regis-
tered MRI and US slices exhibit excellent correspondence,
while doing less so in upper parts. This is due to pressure
applied by the US transducer on the imaged forearm, which
mainly deforms soft tissue structures near the transducer sur-
face. Fig. 8 shows a qualitative comparison between ICP- and
GMM- or CPD-based registrations. The results are seen to
differ substantially, where largemisalignments of anatomical
structures are visible for GMM and CPD.
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Fig. 8 Illustrations of differences between methods via overlays of registered images. Top: GMM and CPD (N = 2000, w = 0.03). Bottom: ICP
for the corresponding US slices. Green arrows indicate the US response of the radius

Conclusions

We have proposed a novel, robust registration pipeline from
3D freehand US to a 3D bone model. To extract large parts
of the imaged bone surface from US, we use a factor graph-
based approach that utilizes the expected shape of the imaged
bone, along with few manual initializations by the user.
We then register the two surfaces by means of a multiple-
initialization approach, that utilizes the physics of US to find
a good initial alignment between them, thereby avoiding
local minima registration algorithms typically suffer from.
We evaluated our pipeline on 36 US sequences of in-vivo
data of the radius from two volunteers, comparing three reg-
istration algorithms: point-to-plane ICP, CPD andGMM.We
obtained a gold standard SRE (mean ± standard deviation)
of 0.57± 0.08mmusing ICP,which outperforms registration
using CPD or GMM, particularly with respect to robust-
ness. Furthermore, a qualitative evaluation of our registration
confirmed excellent results.We therefore believe that the pro-
posed robust registration framework can be used successfully
in the clinical setting. The alignment of US images can help
augment 3D bone models with information available only
from US [e.g., the tendon insertion shown in Fig.7 (right)],
e.g., for preoperative planning. Additionally, the fast run-
time would enable near real-time application of the method,
such as for surgical guidance of osteotomies and excision of
soft tissue sarcomas.
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