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Abstract

Purpose: In coronary angiography the condition of

myocardial blood supply is assessed by analyzing 2-D

X-ray projections of contrasted coronary arteries. This

is done using a flexible C-arm system. Due to the X-

ray immanent dimensionality reduction projecting the

3-D scene onto a 2-D image, the viewpoint is critical to

guarantee an appropriate view onto the affected artery

and, thus, enable reliable diagnosis. In this work we in-

troduce an algorithm computing optimal viewpoints for

the assessment of coronary arteries without the need for

3-D models.

Methods: We introduce the concept of optimal view-

point planning solely based on a single angiographic

X-ray image. The subsequent viewpoint is computed

such that it is rotated precisely around a vessel, while
minimizing foreshortening.

Results: Our algorithm reduces foreshortening sub-

stantially compared to the input view and completely

eliminates it for 90◦ rotations. Rotations around iso-

centered foreshortening-free vessels passing the isocen-

ter are exact. The precision, however, decreases when

the vessel is off-centered or foreshortened. We evaluate

worst case boundaries, providing insight in the maximal

inaccuracies to be expected. This can be utilized to de-

sign viewpoints guaranteeing desired requirements, e.g.

a true rotation around the vessel of at minimum 30◦.
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In addition a phantom study is performed investigating

the impact of input views to 3-D quantitative coronary

angiography (QCA).

Conclusion: We introduce an algorithm for optimal

viewpoint planning from a single angiographic X-ray

image. The quality of the second viewpoint — i.e. vessel-

foreshortening and true rotation around vessel — de-

pends on the first viewpoint selected by the physician,

however, our computed viewpoint is guaranteed to re-

duce the initial foreshortening. Our novel approach uses

fluoroscopy images only and, thus, seamlessly integrates

with the current clinical workflow for coronary assess-

ment. In addition it can be implemented in the QCA

workflow without increasing user-interaction, making

vessel-shape reconstruction more stable by standard-

izing viewpoints.

Keywords coronary angiography · C-arm · interven-

tional imaging · QCA · active vision · patient specific

imaging · foreshortening

1 Introduction

Cardiovascular diseases constitute a growing global health

problem. In the USA 31.1 % of all death in 2011 are cat-

egorized as related to cardiovascular disease, whereby

half of the incidents are accountable to Coronary Heart

Disease (CHD) [9]. The diagnosis of CHD is commonly

performed by evaluating the vessel shape of coronary

arteries after contrast agent injection. While many imag-

ing modalities allow for the assessment of vessel shape,

such as CT-Angiography or ultrasound, catheter-based

X-ray angiography using interventional C-arm cone-beam

systems is still considered the work-horse modality, as

it allows for diagnosis and treatment in a single session

and procedure. However, the 3-D vessel structure is to

ar
X

iv
:1

80
8.

00
85

3v
1 

 [
ph

ys
ic

s.
m

ed
-p

h]
  2

 A
ug

 2
01

8



2 Alexander Preuhs et al.

be assessed on 2-D projection images. This may lead to

false interpretations due to projective simplifications.

Thus, the proper selection of viewpoints is important.

Currently, viewpoints are determined as standard an-

gulations followed by iterations of manual adjustments,

causing unnecessary dose and contrast injection.

An approach to improve the 2-D-based assessment

is described by 3-D quantitative coronary angiography

(QCA), where two projection images — acquired within

the same heart phase — are used to perform a symbolic

3-D reconstruction of a vessel segment. The reconstruc-

tion is based on finding corresponding points on the cen-

terlines of the vessel and using a vessel segmentation to

approximate the lumen while enforcing consistency [3,

5,8,10].

However, the quality of the 3-D QCA is dependent

on the proper selection of the two input projections.

The X-ray projection inherently performs a dimension-

ality reduction, whereas most information is lost in the

depth direction. To preserve most of the relevant in-

formation needed for the assessment of the vessel, the

projection direction must be selected accordingly. Thus,

the second viewpoint should be rotated around the ves-

sel, which should be parallel to the detector in both

viewpoints [11].

The selection of good viewpoints is not trivial and

often a source of inaccuracy as the physician needs to

project the vessel without foreshortening and rotated

around the vessel that is to be assessed. Green et al.

compared the amount of foreshortening in physician se-

lected viewpoints with the viewpoints generated from

available 3-D coronary trees [6]. Summarizing the aver-

age vessel foreshortening was greater than 20% in 18%

of the cases and below 10% in 64% of the cases. The re-

sulting cases showed a foreshortening between 11% and

19%. A second source of error is the amount of rota-

tion around the vessel. Commercially available systems

measure the position of the C-arm using a latitude-

longitude spacing, where the latitude and longitude are

expressed as CRAN/CAUD and RAO/LAO angle (cf.

Fig. 1). The drawback of this equal angle systems is that

the great circle distance does not necessarily equal the

amount of rotation defined by RAO/LAO. For example,

consider a C-arm that is angulated by 45◦ in the CRAN

direction, an additional RAO rotation by 30◦ will result

in an overall rotation of only 21.09◦ measured between

the principal rays of the two views. Generally speak-

ing this effect vanishes for CRAN/CAUD = 0◦ and is

getting more intense for higher initial CRAN/CAUD

angulations.

Viewpoint planning for coronary angiography was

discussed in literature to obtain optimal viewpoints [7,

12] or create view-maps which can be used as a heuris-

tic look-up-table to identify angulations that are prob-

ably best suitable for a particular vessel segment [5,

15]. Fallavollita et al. presented the highly related con-

cept of ’desired view’ in angiographic interventions [4].

Based on a pre-operative CTA the physician only com-

municates the desired view whereas the C-arm position

is automatically provided by the system. This concept

reduces dose, as no unnecessary X-ray projections are

captured during the manual positioning process. This

concept was later applied to aortic interventions [14].

All previous methods rely on a 3-D reconstruction

of the vessel. However, the 3-D reconstruction itself re-

quires proper selection of input views or additional pre-

interventional imaging [13]. A highly related method

was proposed by Chrisriaens et al. [2]. The method does

not require a 3-D reconstruction, instead they deter-

mine optimal viewpoints for the determination of QCA

parameters based on two projection images acquired

with a Bi-plane system. The target vessel from which

the QCA parameters should be calculated is selected

on both projections, then the orientation of the vessel

is calculated and the optimal viewpoint is determined.

To the best of our knowledge, no method addresses the

determination of optimal viewpoints based on a single

2-D projection.

We introduce a viewpoint planning system that only

uses 2-D information from a single angiographic projec-

tion. The main purpose is to find a second optimal view

that can be used — together with the initial projec-

tion — for 3-D QCA. The second view is rotated around

the vessel by a given angle while minimizing vessel fore-

shortening. However, as depth information is missing,

the accuracy is dependent on the positioning of the ves-

sel within the first view, i.e. amount of foreshortening

and offset from the isocenter in view direction. To evalu-

ate the clinical applicability of the 2-D based viewpoint

planning an accuracy evaluation is performed, showing

the restrictions of the presented algorithm. The depen-

dency of the input views on the quality of 3-D QCA is

investigated with a phantom study in an interventional

environment.

2 Materials and Methods

At the beginning of this section, we introduce the con-

ventions used for describing the C-arm geometry. This

includes the description of the C-arm system itself and

the mathematics describing the acquisition of X-ray im-

ages. Thereafter, the proposed viewpoint planning al-

gorithm is described.
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2.1 Geometry of a C-arm System

During X-ray acquisitions using a C-arm system, an X-

ray source radially emits photons in a cone-like profile

which are then registered at a detector. The geometry

describing the relation between a point x ∈ R3 within

that cone and its corresponding projection on the de-

tector u ∈ R2 can be described mathematically by a

perspective transformation.

A perspective transform can be expressed elegantly

in terms of matrix multiplication in the projective do-

main P. For world points (x, y, z)> ∈ R3 we will use the

homogeneous representation (x, y, z, w)> ∈ P3 where w

describes the homogeneous component being 1. Anal-

ogously, detector points (u, v)> ∈ R2 are described by

their homogeneous representation (u, v, w)> ∈ P2 with

w = 1.

In the projective space, we can assign two interpre-

tations for the same object. The vector (a, b, c, d)> ∈ P3

can either be interpreted as a point or a plane. The Eu-

clidean representation of the plane (a, b, c, d)> ∈ P3 is

defined by all points x, y, z ∈ R3 satisfying ax+by+cz+

d = 0. Analogously the vector (a, b, c)> ∈ P2 can be in-

terpreted as either a point or a line, where the Euclidean

interpretation of the line (a, b, c)> ∈ P2 is defined by all

points x, y ∈ R2 satisfying ax+ by + c = 0.

A special case is the representation of a line in P3.

Opposite to the previous geometric quantities there is

no direct description but we can construct the line as

the connection of two points or the intersection of two

planes. We call the connection of two geometric objects

“join” and the intersection “meet”. For P2 we define

the operations on the vectors a,b ∈ P2 as

meet(a,b) = join(a,b) = [a]×b =

 0 −az ay
az 0 −ax
−ay ax 0

b .

(1)

In the P3, the meet of two points or the join of two

planes is more challenging. An intuitive derivation can

be found in [1], we will only state the result of this

derivation. Both operations result in a line L defined

by 6 parameters (p, q, r, s, t, u)> that are commonly re-

ferred to as Plücker coefficients. They can be calculated

from a,b ∈ P3 by

meet(a,b) = join(a,b) = L =



p

q

r

s

t

u

 =



azbw − awbz
aybw − awby
aybz − azby
axbw − awbx
axbz − azbx
axby − aybx

 .

(2)

Again, a,b can either be two points or two planes. Anal-

ogously to P2 we can build up anti-symmetric matrices

(cf. Eq. (1)) to compute the meet between a line L ∈ P3

and a plane a ∈ P3 by

meet(L,a) = LK a =


0 −u −t −s
u 0 −r −q
t r 0 −p
s q p 0

 a (3)

and the join between a line L ∈ P3 and a point b ∈ P3

by

join(L,b) = b> LL = b>


0 p −q r

−p 0 s −t
q −s 0 u

−r t −u 0

 . (4)

Note that Eq. (3) will result in a point and Eq. (4) de-

fines a plane. We refer to LK as the dual and LL as the

primal representation of a line. The presented opera-

tions enable the effortless description of a geometrical

scene in the context of a C-arm system, where we want

to switch between P3 and P2 corresponding to the world

coordinate system and the detector coordinate system.

A well known projective transformation describing

the relation between world points and their projection is

given by the 3×4 projection matrix P which originates

from the pinhole camera model. The matrix incorpo-

rates the whole geometry of the C-arm system.

A schematic drawing of a C-arm system is depicted

in Fig. 1. The main characterization is the movable

C-shaped detector-X-ray-source configuration, enabling

2-D X-ray projections with a high flexibility. The C-arm

can be rotated in CRAN/CAUD and RAO/LAO direc-

tion. The rotation can be incorporated into the projec-

tion matrix by right multiplication of rotation matrices.

If P0 corresponds to the C-arm orientation in the ini-

tial position (cf. Fig. 1) then a rotated view is described

by the angles RAO/LAO= α, CRAN/CAUD= β and a

detector rotation γ. The rotated view is calculated by

P(α, β, γ) = P0 Ry(γ) Rx(β) ,Rz(α) , (5)

where Re(·) ∈ R4×4 is the homogeneous representation

of a rotation matrix, describing the rotation around a

coordinate axis taking the angle as an argument. For

the computation of α and β from P we use the property

that the vector (P31, P32, P33)> points in the direction

of the principal ray. Thus, by normalizing that vector

we obtain nx, ny and nz which can be used to calculate

the angulation from P by

α = atan2(nx,−ny)
180◦

π
β = arcsin(nz)

180◦

π
(6)
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Fig. 1 Schematic drawing of
the C-arm geometry. The co-
ordinate axes correspond to
the isocenter of the C-arm
system. The C-arm system
is shown in default position
and can be rotated along the
drawn rotation axes i.e. right
anterior oblique (RAO) and
left anterior oblique (LAO)
as well as cranial (CRAN)
and caudal (CAUD). In addi-
tion a detector rotation γ can
be performed. For coronary
interventions, the patient is
lying with the head near the
isocenter and the feet point-
ing in the negative z direc-
tion.
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In the remainder of this manuscript we will mostly talk

about projection matrices, however, using Eq. (6) we

can easily transform the projection matrix to angles,

which could be used to steer a C-arm. Further note

that we do not explicitly compute the image rotation

γ, as this is typically not performed in the procedures

and is always kept at γ = 0◦ or γ = 90◦.

2.2 2-D-Based Viewpoint Planning

We introduce a method for viewpoint planning based

on a single 2-D angiographic X-ray image. The second

viewpoint is expected to be rotated around the vessel

by a physician determined angle and with the vessel

being projected without foreshortening.

In the simplest case, the target vessel is in the C-
arm isocenter and not foreshortened in the initial X-

ray projection. While this assumption will almost never

be satisfied in clinical practice, it is a good starting

point to grasp on the general idea. First, we estimate

the rotation axis of our transformation. In this very

simple case, assuming a rotation axis that is simply

the backprojection of the vessel to the isocenter, will

produce exact results as we know that the vessel of

interest is a) in the isocenter and b) not foreshortened.

Thus, we can use this axis and rotate the gantry around

it.

However, in clinical practice the target vessel is not

necessarily in the isocenter, nor is it projected without

foreshortening. This makes an exact determination of

the rotation axis infeasible as depth cannot be recovered

from a single image, but we can make some adjustments

to perform substantially better than by just assuming

a centered, foreshortening-free vessel. Fig. 2 depicts the

steps that build up our workflow which are explained

in the following subsections.

2.2.1 Principal Ray Alignment

The starting point of the algorithm is a 2-D projec-

tion image of contrasted vessels, and the corresponding

projection matrix P1. The physician selects the tar-

get vessels by two clicks c1, c2 ∈ P2 defining a line

l = join(c1, c2). Vessels within the isocenter that are

not foreshortened are already well aligned, making the

principal ray alignment dispensable. However, in most

cases, this will not be the case.

Assume that the vessel is off-centered e.g. 5 mm

parallel to the detector. In this case, due to the X-

ray cone, we already observe the vessel from an ori-

entation rotated compared to the principal ray. This

rotation is what we seek to compensate with a prin-

cipal ray alignment. Therefore, we first calculate the

backprojection-plane of the target vessel eL and com-

pare its normal to that of a second plane eR which is

constructed by the backprojection of c1 and c2 as well

as the source position. With pi1 denoting the i−th row

of the projection matrix P1, we can interpret each pi1
as a plane, each passing the source position. Therefore,

we can compute the source position s ∈ P3 simply by

s = meet(meet(p1
1,p

2
1),p3

1). The two planes are then

calculated by

eL = P+>
1 l eR = join(join(P+>

1 c1,P
+>
1 c2), s) , (7)

note that eL and eR are equal, if the vessel is in the

isocenter, but will differ when the vessel is translated.

The angle α between the planes eL and eR can simply

be calculated from the angle between their normals,

e.g. by exploiting the definition of the scalar product.

In the next step we use the property, that we can right-

multiply rotation matrices R ∈ R4×4 to P1. The result-

ing projection matrix corresponds to a virtual interme-

diate view rotated by R. Therefore, we transform the
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Line on
detector
and
projection
matrix

Principal
ray
align-
ment

Isocenter
rotation

Isocenter
offset
correc-
tion

Second viewpointSecond viewpoint

P1, l

P1,align

r

P2

P2 tP2

P1, l

Fig. 2 Flowchart showing the proposed viewpoint planning algorithm. The input is a line defined on the detector. A principal
ray alignment is performed, creating a virtual intermediate view. The isocenter rotation is then applied to the virtual inter-
mediate view. The algorithm is finished after the calculation of an additional translation compensating for an isocenter offset.
If a translation cannot be performed, e.g. due to limitations of the system, the isocenter offset correction can be skipped.

rotation around an axis r by α to a rotation matrix Rr,α

using a homogeneous version of the Rodriguez formula.

The axis r is the orientation of the backprojected vessel,

which will be discussed in more detail in the following

subsection (cf. Eq. (10)). This is then right-multiplied

to P1 in order to obtain the intermediate view

P1,align = P1Rr,α . (8)

As depicted in Fig. 2, the aligned intermediate view

P1,align will be propagated to the ”isocenter rotation”

module.

2.2.2 Isocenter Rotation

The goal is now to rotate around the vessel segment

as exact as possible using the intermediate view. The

rotation axis is the backprojection of the line l defined

on the detector. Note that the backprojection opera-

tion basically solves Px = y with x denoting world

points and y detector points. Since this equation is not

uniquely solvable we use the pseudo-inverse P+ to cal-

culate x. If the principle ray of the system intersects the

coordinate origin, then the space of solutions to P+y

corresponds to a plane parallel to the detector. This

justifies our assumption, that we can use the backpro-

jection of the line l as rotation axis. We can interpret

[l]× as a tensor which is therefore transformed as such.

With the backprojection P+
1 being the desired trans-

formation, the backprojection of the line l is computed

by

LK = P+
1 [l]×P+>

1 . (9)

The result LK is the dual representation of the line L

that contains the Plücker coordinates in its respective

entries (cf. Eq. (3)), thus we can simply extract L from

LK . The direction of L can be found by the intersection

with the plane at infinity π∞ = (0, 0, 0, 1)>, which will

be a point r ∈ P3 at infinity

r = meet(L, π∞) . (10)

The first three components of r denote the direction

of L, which is the rotation axis we aim to compute.

Finally, we create the second viewpoint P2 by rotating

around r by ξ, again using Rodriguez formula

P2 = P1,align Rr,ξ . (11)

2.2.3 Isocenter Offset Correction

The input of this algorithm is P2 described in the pre-

vious sections. To compute P2 we have rotated around

an isocenter, that did not correspond to the center of

the vessel. In fact, we cannot know the true center of

rotation, i.e. the center of the vessel segment, as 3-D re-

construction of the vessel is impossible from the single

frame only. Yet, we can minimize the difference between

the true isocenter and the isocenter of rotation. Doing

so results in a translation t that can be realized by ei-

ther a table movement or a C-arm translation. The goal

of the offset correction, is that the central ray of P1,align

is coincident with the backprojection-plane of the ves-

sel eL. Therefore, we calculate the distance between eL
and the central ray of P1,align. With the plane and line

being parallel by construction, this distance is equal

to the distance between eL and the source position of

P1,align. We denote the source position of P1,align by
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Fig. 3 Heatmap showing
the maximal foreshortening
in the second view for vessels
having an initial foreshorten-
ing of ν = 30◦.
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sa = meet(meet(p1
1,align,p

2
1,align),p3

1,align) and calculate

the distance d by

d =
eTL√

e2
L1

+ e2
L2

+ e2
L3

sa√
s2a1 + s2a2 + s3a1

. (12)

Note that Eq. (12) is simply the distance between a

point and a plane. The translation t is then in the nor-

mal direction of eL scaled by −d.

3 Evaluation and Results

Our viewpoint planning algorithm uses a single 2-D an-

giographic image only to optimally integrate with the

current clinical workflow and we evaluate the method

accordingly. We identify the reliability of calculated view-

points based on different inputs to the method, and

state results for both the complete and the rotation-

only method. In addition, we implemented the proposed

algorithm on a C-arm system. Using a phantom of the

left coronary artery tree (LCA) we investigate the im-

pact of input views to the quality of QCA.

3.1 Accuracy of 2-D Viewpoint Planning

The first important quantity on view selection for pro-

viding high quality QCA is the true rotation around the

vessel φ = ξ + ε with the desired rotation ξ and some

unwanted rotation ±ε. Typically an additional rotation

might not always harm the result but especially when a

minimum angulation must be fulfilled, a high precision

is important. The second quantity is the foreshortening

of the vessel within each of the two views ν1 and ν2. The

physician is responsible for ν1, whereas our algorithms

can only influence ν2. In our evaluation we inspect the

angular precision measured in ε and the foreshortening

ν2 based on given desired rotations ξ and different po-

sitions of the vessel segment in the initial frame that

determines ν1.

Covering all possible line configurations seems im-

practical, and we decide to parameterize the vessel seg-

ment position using an offset from the origin r and fore-

shortening ν1. Based on such a line configuration we

perform the proposed algorithm. Since the true scene is

known we can then calculate ε and ν2. However, a line

is not uniquely defined by ν1 and an offset r as the off-

set could e.g. be parallel or orthogonal to the detector.

Therefore, the stated ε and ν2 represent the worst case

foreshortening and angulation inaccuracy over all lines

having a certain offset r and foreshortening ν1.

3.1.1 Foreshortening

The impact of different line configurations on the fore-

shortening in the second view is depicted in Fig. 3. A

very practical aspect is the elimination of foreshorten-

ing when requesting a 90◦ rotation. This elimination is

independent on the positioning of the vessel and can

therefore be guaranteed. In general, low ν2 values are
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Fig. 4 Plots depicting ε as a function ξ. The two plots in the left column correspond to the algorithm with skipped translation,
and the two plots in the right column correspond to the full algorithm.

associated with high ξ values, suggesting that large an-

gulations are desirable if a substantial reduction in fore-

shortening needs to be achieved. For all clinically rel-

evant cases where the vessel off-center displacement is

very likely below 100 mm, our algorithm consistently

reduces foreshortening. The influence of an offset r to

ν2 is negligible small.

3.1.2 Angular Precision

The angular precision is depicted in Fig. 4. It is ob-

servable that a high foreshortening ν1 reduces the an-

gular precision, whereas the most inaccuracy occurs at

ξ ≈ 40◦. The translation is capable of increasing the

angular accuracy at small ξ values; however, for large ξ

values the translation only minimally affects the result.

The two plots in the upper row are created with

a fixed r = 25 mm, whereas the lower two plots are

created with a fixed r = 75 mm. This off-centering is

mostly visible by an overall offset of angular precision.

3.2 Phantom Study

To inspect the impact of input views to the quality of

3-D QCA, we placed an aluminum phantom of the LCA

in a thorax phantom. The vessel segment of interest is

a commercially available calibration phantom consist-

ing of three piecewise constant diameters that are suc-

cessively narrowing to mimic a stenosis. The quality

is inspected using the area curves of the reconstructed

vessel (cf. Fig. 5).

We generate two QCAs of the phantom both gener-

ated from two views, one using the proposed algorithm

and the other using manual selected views, whereas

both use a similar amount of rotation. The input view

in Fig. 5(a) is used as the initial view for both QCAs.

The view depicted in Fig. 5(b) is created using an im-

plementation of the viewpoint planning algorithm on a

C-arm system with ξ = 35◦. The resulting area curve

is depicted in Fig. 5(d). The area curve in Fig. 5(e) is
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(a) RAO: 27, CAUD: 11. (b) LAO: 6, CAUD: 30. (c) RAO: 15, CRAN: 13.

(d) QCA using 5(a) and 5(b) as inputs. (e) QCA using 5(a) and 5(c) as inputs.

Fig. 5 Top row: Input views for QCA generation. The initial view (a), a second view generated using the proposed viewpoint
planning with ξ = 35◦ (b), and a manual selected second view (c). Bottom: Area curves deduced from a 3-D QCA using
two input views. The curves are exported from the clinical report generated with the 3-D QCA tool syngo IZ3D (Siemens
Healthcare GmbH, Forchheim).

generated using the manually selected view depicted in

Fig. 5(c).

As the wire phantom is piecewise constant and ra-

dial symmetric, it is not to be expected that constant

regions are strongly view dependent, however, in the

transitions to narrower or brighter diameters a view de-

pendence is observable. Using the viewpoint planning
the transitions (cf. Fig. 5(d) at 9.1, 20 and 31.3 mm) are

much sharper and well defined, whereas the manually

selected views produce a smearing of the transitions (cf.

Fig. 5(d) at 11.2, 23 and 33 mm).

4 Outlook and Discussion

Our accuracy evaluation states the worst possible out-

come when our planning algorithm is used. The largest

errors typically occur if the vessel is translated in the

viewing direction as a displacement that cannot eas-

ily be recovered from a single projection image. Rota-

tions around vessels that are translated parallel to the

detector are achieved with much higher precision and,

in the best case, even exact. However, using the worst

case experiments, we can ensure certain minimum re-

quirements. For instance, consider a required minimum

rotation around the segment of ξ = 30◦, e.g. to ensure

3-D reconstruction of acceptable quality: if the physi-

cian can ensure that the target vessel is foreshortened

by less then 20◦ and that it is located within a 25 mm

radius around the isocenter, then we can accurately cal-

culate the required transformation. An angulation of

33◦ is sufficient to ensure a 30◦ rotation. When transla-

tion is not possible, the 30◦ angulation is ensured with

a 34◦ rotation. These minimum requirements are often

important in clinical practice, as the C-arm can be re-

stricted in its movements either due to the patient or

the anatomy, making a simple 90◦ rotation infeasible.

Our phantom study showed that changes in the di-

ameter are smeared if the view selection is not taken

carefully. This comes in favor to the results presented

by Sato et al. [11]. Particularly, in a real clinical setup

these inaccuracies can limit the reliability of QCA es-

pecially for small stenosis.

A problem not yet addressed by the algorithm is the

overlapping of vessels as well as vessels leaving the field-

of-view. Possible improvements for overcoming these

drawbacks could be the extension of the method with

prior knowledge, e.g. by favoring viewpoints that are

empirically known to produce good results (see for ex-

ample [5,15]).

To conclude, we introduced a method for viewpoint

planning in coronary angiography based on a single

2-D image. If two or more images have been acquired,

making a 3-D centerline reconstruction possible, exact
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methods — e.g. [2,5,7] — will outperform the proposed

planning system. The proposed method is therefore of

advantage if no 3-D information is available, or can-

not be utilized due to a missing system-patient reg-

istration. Our algorithms allow personalized planning

of standardized views in conventional angiography that

could translate to reduced dose to the patient and oper-

ating team while promoting improved quality for QCA.
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