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Abstract

Purpose Surgical processes are generally only studied by identifying differences
in populations such as participants or level of expertise. But the similarity
between this population is also important in understanding the process. We
therefore proposed to study these two aspects.

Methods In this article, we show how similarities in process workflow within a
population can be identified as sequential surgical signatures. To this purpose,
we have proposed a pattern mining approach to identify these signatures.
Validation We validated our method with a data set composed of seventeen
micro-surgical suturing tasks performed by four participants with two levels
of expertise.

Results We identified sequential surgical signatures specific to each partici-
pant, shared between participants with and without the same level of exper-
tise. These signatures are also able to perfectly define the level of expertise of
the participant who performed a new micro-surgical suturing task. However,
it is more complicated to determine who the participant is, and the method
correctly determines this information in only 64% of cases.

Conclusion We show for the first time the concept of sequential surgical signa-
ture. This new concept has the potential to further help to understand surgical
procedures and provide useful knowledge to define future CAS systems.
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1 Introduction

We all have our own habits that depend on our past. For example, some people
take a shower when they wake up, while others prefer to take a shower be-
fore going to sleep. Although all surgical procedures are unique because of the
patient’s anatomical characteristics, they do not escape to this rule because
of the habits and experience of the surgical team. The surgical process mod-
eling methodology, which was introduced around 15 years ago [1, 2], could
be used to study these “habits”. A surgical process model describes a sur-
gical procedure at different levels of granularity [2]. For example, a surgical
intervention can be divided into successive phases corresponding to the main
periods of the intervention. A phase is composed of one or more steps. A step
is a sequence of activities used to achieve a surgical objective. An activity is a
physical action performed by the surgeon. Each activity is broken down into
different components, including the verb of action, the target involved in the
action (usually an anatomical structure) and the surgical instrument used to
perform the action. Lower granularity levels are closer to kinematic data, such
as surgemes and dexemes [3, 4]. A surgeme was defined as a surgical motion
with explicit semantic meaning, composed by dexemes. A dexeme is a numer-
ical representation of the performed physical motion. Surgical Process Models
(SPMs) have been developed for three main purposes: (1) Formalize surgical
knowledge, (2) Evaluate surgical skills and systems, (3) Assist the surgeon in
surgical intervention.

A SPM can be acquired manually from observations [5] or automatically
thanks to recent advances in automatic recognition of phases [6, 7], steps
[8, 9] and activities [10, 11]. These SPMs have recently been used to identify
different surgical behaviors, such as those depending on surgical sites [12, 13],
surgical skills [14], types of procedures used [15] and surgical expertise levels
[12, 16, 13].

In these studies, the analysis is generally done by underlining differences
between two or more populations, using one or several information, such as
the surgical duration [14, 16], the number of activities [14, 16] or sequence
based metrics [12]. Recently, [13, 17] showed that sequences were highly dis-
criminatory.

In this paper, we introduce the concept of sequential surgical signatures:
sequences of phases, stages or activities being common within a more or less ho-
mogeneous population. To demonstrate this concept, we propose an approach
that is an extension of a method presented in [13].
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2 Material and methods

The aim of this paper is to identify sequential surgical signatures in the context
of micro-surgical suturing training task (see subsection 2.1). For this, we used
a pattern mining method presented in subsection 2.2.

2.1 Data

The data set was collected at the Tokyo University Hospital. It consists of sev-
enteen micro-surgical suture tasks of a 0.7mm artificial blood vessel performed
using a master-slave robotic platform [18]. Figure 1 shows snapshots of this
task. The data set included 4 participants with different levels of surgical ex-
pertise and robotics skills. Two of them, called experts, are surgeons but novice
roboticians, the other two, called engineering students, have no surgical skills,
but are expert roboticians. Each participant conducted between 3 and 6 trials,
according to their availability. This explains why there were in total 7 trials
made by surgeons, and 10 by engineering students. The average suture dura-
tion is about 3 minutes. For each test, the video was recorded at 30Hz. Thanks
to these videos, both hands were annotated manually, at the level of granular-
ity of the activities, using the software “Surgery Workflow Toolbox [annotate]”
[19]. The suture task is relatively simple to describe if the chosen granularity
is superficial. Indeed, the stain consists in taking the needle, passing through
the two artificial blood vessels and making 3 knots. But, such a description
cannot capture variations between participants. Thus, we have broken down
each gesture as much as possible in order to better describe the progress of
the task. Thus, we are able to take into account the gestures that are repeated
several times before being completed, as well as the intra-participant variabil-
ities. Table 1 summarizes the number of trials, average duration and average
number of activities per hand for each participant.

Fig. 1: Snapshots of micro-surgical suture tasks of a 0.7mm artificial blood
vessel performed using a master-slave robotic platform.



4 Arnaud Huaulmé et al.

Table 1: Description of the 17 trials according to participants

Participant Id 1 2 3 4
Expertise level Student | Student | Expert | Expert
Number trial 4 6 3 4
Mean duration 4’08 5’46 2’45 1’48
Mean number Left Hand 37 52 31 32
of activities Right Hand 45 52 39 27

The output of the surgical process annotation is a sequential list of phases,
steps and/or activities performed by the participant’s left and right hands.
In order to analyze both hand sequences, we preprocessed the data by a step
called synchronization. It consists of dividing, step a in figure 2, the activity
from one hand into two parts when on the other hand an activity changes of
status (begin or end). Then, the activities of both hands are grouped together
in the same sequence, and when no activity is present on one of the hands,
the emptiness is supplemented by an activity, called “Idle”, representing this
absence of activity, step b in figure 2.

Left Hand A B
Right Hand C D
a) dividing l
Left Hand A A A B
Right Hand C D D
b) merging l
Both Hands <A; C> <A; Idle> <A; D> <B;D>

Fig. 2: The process of synchronizing the sequences of the left and right hand
to create a sequence with both hands. Each letter corresponds to an activity,
Idle means that no activity is executed by a hand.

As a reminder, an activity is composed of three components: the verb of
action, the target and the surgical instrument. To improve readability, we do
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not use information from the surgical instrument as only one surgical instru-
ment was used in all trials. Thus, we will note the activities of both hands as
follows: “< verbeyt, targeticrs >; < verbrigns, target,igny >".

2.2 Methods

In this paper, we propose to extend a method published in [13] and use it as
a means to identify sequential surgical signatures. In summary, the method
consists of finding the longest frequent patterns in sequences, i.e. identifying
the longest sequence of activities (2 or more) which are present at least min_fr
times in all sequences, where min_fr is a predetermined threshold. The original
method is composed of three steps:

— Step 1: establish a vocabulary of frequent activities;

— Step 2: generate possible frequent patterns of length %, thanks to the fre-
quent patterns of length £ — 1 and frequent activities;

— Step 3: determine if possible frequent patterns are really frequent and com-
pute the longest frequent patterns of size k — 1.

Steps 2 and 3 are repeated to extend the patterns until no new frequent
patterns of size k are found. At each loop, the longest frequent patterns of size
k — 1 are added to the longest frequent patterns of smaller sizes.

The extension consists in removing all patterns that are composed of less
than min_length activities. This step assumes that the shorter patterns do
not have enough discriminating power to be interesting. Finally, for the other
patterns, we determine if they are sequential surgical signatures or not by
checking if they are shared within a more or less homogeneous population.
The figure 3 summarizes the complete process for a simple example with the
following parameters: frequency threshold min_fr = 2 and the length thresh-
old min_length = 3.

To classify sequences, we use the Shared Longest Frequent Sequential Pat-
tern metric (SLFSP metric) developed in [13] to make a hierarchical clustering
with the average-link approach using UPGMA algorithm (Unweighted Pair
Group Method with Arithmetic Mean) [20]. SLFSP metric as defined as:

SLESP(A, B) = [shared.p| RNGY
’ |patternsa| + |patternspg| — |shared s g|

where A and B are 2 sequences, |shared 4 g| is the number of shared longest
frequent sequential patterns between A and B, and |patterns 4| and |patternsg|
are respectively the number of longest frequent patterns of A and B.

3 Validation studies

We propose three validation studies, first of all, to verify the usefulness of the
additional step (subsection 3.1). The aim of the second study (subsection 3.2)
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s s1= ABAACE min_fr=2 min_length=3
52=ABACD
Step 1.
count frequency of each activity = A:5, B:2, C:2, D:1, E:1 ===y frequentActivities( >min_fr) : A, B, C
K=2 pattern,, : A, B, C I K=3 pattern,, : AB, AC, BA
Step 2: | Step2:
Potential candidate: AA BA CA Potential candidate: ABA ACA BAA
AB BB cB ABB ACB BAB
AC BC cc ABC ACC BAC

Check sub-pattern with activity is in pattern, , :
Each potential candidates are good candidates

|
|
|
Check sub-pattern with activity is in pattern, , :
! INABA, BAis in pattern,, => ABA is a candidatePattern
| InACC, CCis not in pattern, ,=> ACC is not a candidatePattern
CandidatePattern: AA, AB, AC, BA, BB, BC, CA, CB, CC I CandidatePattern : ABA, BAB, BAC
! Step3:
count frequency: AA:1 BA:2 CA0 | count frequency: ABA:2 BAB:0 BAC:1
|
|
|
|
|
|
|

Step3:
AB:2 BB:0 CB:0
AC:2 BC:0 cc.o

pattern, : AB, AC, BA (frequency >min_fr)
infrequentCandidates: AA, BB, BC, CA, CB ,CC
L Check if each sub-pattern of infrequentCandidates is a sub-pattern
of pattern,., YES for all sub-patterns (A, B, C) - Remove
NO=none = No longestFrequentpatterns,

pattern, : ABA (frequency >min_fr)
infrequentCandidates: BAB, BAC
L Check if each sub-pattern of infrequentCandidates is a sub-pattern
of pattern,. YES = BAand AB = Remove
NO = AC =¥ AC is a longestFrequentpatterns,

Results at the last loop (k=4)
allLlonguestFrequentPatterns: AC , ABA

Step 4 : remove all pattern with a length < min_length
AC :length =2 <min_length =  Remove
ABA: length =3 > min_length - Keep

Results at the end
allLonguestFrequentPatterns: ABA

Fig. 3: Sequential pattern discovery method procedure for a simple example. S
is a set of activity sequences, min_fr is a frequency threshold and min_length
is the pattern length threshold.

is to identify sequential surgical signatures according to the participants and
their level of expertise, but also shared between different populations. Finally,
we use sequential surgical signatures to predict from which populations a new
sequence belongs to (subsection 3.3).

3.1 Classification according to sequential signatures

The objective of this first study is to ensure that the evolution of the method
produces better results than the original, or in the worst case, that it does
not deteriorate them. To do this, we try to classify the sequences by level of
expertise and participants using both methods.

For the first study we tested different parameter values, varying them in
the following way:

— Frequency threshold: min_fr € [2,7] for both methods. We have not tested
for frequency thresholds superior to 7, because in these cases it would not
have been possible to have patterns present only among experts (only 7
trials are made by experts);

— Length threshold: min_length € [3,10] for proposed method.
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3.2 Analysis of sequential surgical signatures

In this study, we use the method on all the data to identify sequential surgical
signatures. Based on optimal results of the first study, we selected, for this
study and the next one, the following parameters:

— Frequency threshold: min_fr = 3;
— Length threshold: min_length = 3.

3.3 Prediction of belonging to a population

In this study, we determine who is the participant who performs a new se-
quence and his or her level of expertise, thanks to the signatures present in
his or her sequence. To do this, we conduct a leave one out cross-validation
study. We trained our model on all sequences except one. For all the longest
frequent patterns, we determined whether this pattern was an indicator of se-
quential surgical signature and the percentage of sequences where this pattern
is present. For the remaining sequence, we checked the presence of all signa-
tures. With this signature list, we were able to determine the metadata of the
remaining sequence. If some signatures are specific to contradictory popula-
tions, we have determined the belonging for the remaining sequence based on
the highest probability of belonging defined as follows:

nb_Pattern_speci fic
nb_Pattern With_Contradictory_Meta_Data

1 n
— E %opresent; * (2)
n

i=1

4 Results

In this section, we present the results of the studies respectively in subsec-
tion 4.1, 4.2 and 4.3.

4.1 Classification according to sequential signatures

Tables 2 and 3 summarize the accuracy of both methods to distinguish between
the levels of expertise, and respectively between the participants, for different
parameter configurations. To determine this accuracy we use a distance of 0.6
to define clusters.

The proposed method gives better results than the original for the same
frequency threshold when the length threshold is 3. The only exception is for
a frequency threshold of 7, where the accuracy of expertise classification is the
same (94.12%) and lower for the classification of participants (76.47% for the
original method versus 64.71% for the proposed one). When the length thresh-
old increases the classification accuracy decreases or stays stable. Figure 4
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[mincfr [ 2 ] 3 [ 4 [ 5 [ 6 | 7 ]
original | 58.82% [ 88.24% | 94.12% [ 94.12% | 94.12% [ 94.12% |

76.47% 100% 100% 100% 100% 94.12%
58.82% 100% 100% 94.12% | 88.24% | 88.24%
58.82% | 94.12% | 88.24% | 82.35% | 47.06% | 64.71%
82.35% | 94.12% | 76.47% | 70.59% | 52.94% | 64.71%
76.47% | 88.24% | 52.94% | 52.94% | 52.94% | 52.94%
76.47% | 64.71% | 47.06% | 52.94% | 52.94% | 52.94%
82.35% | 58.82% | 47.06% | 47.06% | 47.06% | 35.29%
70.59% | 47.06% | 47.06% | 47.06% | 47.06% Na

min_length
o oo| 1| | en| | o

=
[e=]

Table 2: Accuracy of the classification of expertise using both methods and
the SLFSP metric for a cutting threshold of 0.6. Na: not applicable

[minfr | 2 [ 3 [ 4 [ 5 [ 6 [ 7 |
original | 52.94% | 88.24% | 82.35% | 82.35% | 82.35% | 76.47% |

76.47% | 94.12% | 88.24% | 88.24% | 88.24% | 64.71%
58.82% | 94.12% | 88.24% | 88.24% | 58.82% | 58.82%
58.82% | 88.24% | 52.94% | 70.59% | 41.18% | 41.18%
76.47% | 88.24% | 70.59% | 58.82% | 17.65% | 41.18%
64.71% | 82.35% | 41.18% | 35.29% | 35.29% | 35.29%
64.71% | 52.94% | 41.18% | 35.29% | 35.29% | 35.29%
82.35% | 47.06% | 17.65% | 29.41% | 29.41% | 23.53%
70.59% | 35.29% | 17.65% | 29.41% | 29.41% Na

min_length

-
S| | oo| | o | | o

Table 3: Accuracy of the classification of participant using both methods and
the SLFSP metric for a cutting threshold of 0.6. Na: not applicable

. 100 A A A A o 100
S S
z % | u u m P 7y
& 90 £ 90
= [} ﬁ 85 [ ] A A A
< < [ O [
@ 80 2 80
£ 75 A 8 75 A [
g S
B
s 70 i 70
S 65 «w 65 A
> 5]
9] >
g 60 H § 60
o 5 55
g 55 8 [ ]
50 < 50
2 3 4 5 6 7 2 3 4 5 6 7
min_fr min_fr
(a) Accuracy of expertise classification (b) Accuracy of participant classification

Fig. 4: Accuracy of expertise (a) and participant (b) classification for original
method (blue square) and extended one with a min_lenght = 3 (red triangle)
according to different value of frequency threshold.

summarizes the results of the original method and the best of the extended
method (min_length = 3).
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For both, the parameters which give the optimal results for classifications
are for a frequency threshold of 3. The original method gives 88% of accuracy
for expertise and participant classification, whereas the extended one gives
100% of accuracy for expertise classification and 94.12% for participant clas-
sification. The results are better for the extended method, even if we have
less information than the original one. Indeed, with the optimal parameters,
we found 97 patterns for the original method, and only 76 of them for the
extended method, i.e. a 22% decrease in information.

The classification results are shown in figure 5 for the original method, and
in figure 6 for the extended one. In these figures, the ordinate corresponds
to the distance between sequences, and each leaf corresponds to the sequence
ID. This ID is composed of the participant ID for the hundreds and the trial
number. Thus, leaf 402 corresponds to the second attempt of the participant
4.

When we cut dendrogram of figure 5 at a distance of 0.6, we can define 4
different clusters:

— C': a cluster which gathers all trial of participant 1 together;

— C?: a cluster which gathers all trial of participant 2 together except the
first trial (201);

— C3: a cluster which gathers all trial of participant 3 together;

— C*: a cluster which gathers all trial of participant 4 together except the
fourth trial (404).

1.0

0.8

P T e w | m— e m— s m— | —

Y
Wy

0.4

0.2
1

0.0

103 —\
|
]

403 —I

404
101
102
104
201
204
206
205
202
0:
302
301
303
402
401

Fig. 5: Dendrogram of the classification using the original method and the
SLFSP metric.

With the same distance to define cluster (0.6), in dendrogram of figure 6
we can define 3 different clusters:

— C': a cluster which gathers all trial of participant 1 together;
— C?: a cluster which gathers all trial of participant 2 together;
— CF: a cluster which gathers all trial of expert participant together.
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0.2

0.0

303
301
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/70
10
103
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/20
20
204
203
205
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Fig. 6: Dendrogram of the classification using the extended method
(min_lenght = 3) and the SLFSP metric.

This last cluster could be divided into two sub-clusters C® and C*. C3
bringing together the majority of the trials of participant 3 and participant4
respectively for C*. Only participant 4’s trial 404 is grouped with participant
3’s trials.

4.2 Analysis of sequential signatures

We looked more closely at the longest frequent patterns. With our parameters
(min_fr = 3 and min_length = 3)), 76 longest patterns composed of 3 or
more activities were found. On these 76 patterns, 56 are specific to one of the
following metadata: participant 1, participant 2, participant 3, participant 4,
student or expert. Table 4 summarizes the number of patterns specific to each
type of metadata, the number of patterns that are more frequent than the
threshold (Present 4+) or whose length is greater than or equal to 5 activities
(length >5). A pattern specific to a participant is only found in the sequences
executed by this participant. Whereas a pattern specific to a level of expertise
is found in the sequences performed by the two participants with this level
of expertise. In parentheses, we have the result in proportion to the number
of trials for the column “Nb Patterns” and in proportion to the number of
pattern for the other columns. The length of the longest patterns in each
category ranges from 10 to 14 activities.

4.3 Prediction of belonging to a population

Results of the leave one out cross validation for predicting population affilia-
tion are summarized in the table 4. Our model is able to perfectly predict the
expertise in all cases (accuracy of prediction and correct prediction of 100%).
But it is more difficult to predict the participant, the model gives the par-
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Table 4: The number of patterns specific to each metadata and the number of
those patterns that are present at least 4 times or composed of 5 or more ac-
tivities. For each metadata we also provided the length of the longest patterns

. In brackets, it is the number of patterns by the number of trials for column “Nb
Patterns” and the proportion by numbers of patterns for other columns.

Nb patterns | Present 44 | length > 5 Longest patterns

Participant 1 | 12 (3) 1 (0.09) 5 (0.42) 10
Participant 2 | 22 (3.66) 5 (0.23) 8 (0.36) 14
Participant 3 0 (0) 0 (0) 0 (0) 0
Participant 4 | 3 (0.75) 0 (0) 1 (0.25) 12
Student 13 (1.3) 1 (0.08) 8 (0.61) 14
Expert 6 (0.86) 4 (0.66) 5 (0.83) 11

[ Total [ 56 (3.3) [11(019) [27(048) 14

ticipant’s information for only 83% of the sequences and makes many errors
(correct predictions in 64% of the cases).

Table 5: Percentage of metadata predicted thanks to sequential signatures and
the accuracy of this prediction.

Expertise | Participant
Prediction 100 % 82.35 %
Accuracy of prediction 100 % 64.29 %

5 Discussion
5.1 Method

In this article, we introduced for the first time the concept of sequential sur-
gical signatures. And we have demonstrated this concept using a pattern ex-
ploration method. We have decided to ignore patterns that are shorter than
a predetermined threshold (min_length) by deleting them at the end of the
method. Another approach would have been to directly find the most frequent
patterns with the length of min_length, but in this case, we would have had
a large number of results after step 2, which would have caused many unnec-
essary tests in step 3. As a reminder, to find the longest frequent patterns of
length k, it is necessary to find frequent patterns of k + 1. In this way, with
the example shown in figure 3, if we try to find the longest frequent patterns
with the length of 3, we have to find frequent patterns of size 4. Thus, with
3 frequent activities, the second step would give 84 candidate models of size
4 (3*). Whereas with our method, we do 3 times step 2 but for a total of 12
candidate patterns (9 for k=2, 3 for k=2 and 0 for k=4).
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5.2 Classification according to sequential signatures

In this first study, we validated the utility of the extended method for different
parameters values. In most cases, not taking the shortest signatures into ac-
count increases the classification rate. Although, for the optimal parameters,
the accuracy of classification improved (94 versus 88% for participants and 100
versus 88% for expertise), this improvement is not significant. However, this
classification was carried out with only 78% of the data available using the
other method. Thus, it has been shown that our method gives similar results
with fewer data. Thus, the hypothesis that the shorter patterns do not have
enough discriminating power to be interesting is verified.

5.3 Analysis of sequential signatures

Our method is able to distinguish sequences according to the level of expertise
and the participant. This differentiation cannot be made by the length of
the longest patterns since they all have lengths between 10 and 14 activities
regardless the category. We can also find many signatures specific to the level
of expertise and each participant, except for participant 3 (Table 4). Even if
we did not find any signature that only appears in this participant does not
mean that there is no signature in trials of this participant. The 6 signatures
noted as being specific to the experts are present in the trials of the both
expert participants. In order to detect a signature specific to participant 3, it
should be present in each of the participant’s trials because only three have
been performed, which corresponds exactly to our min_fr threshold. It is
highly improbable that all trials have been proceed in the same way, especially
since we did not take into account the signatures composed of 2 activities. To
identify the sequential surgical signatures of participant 3, we need to collect
more data.

The number of sequential surgical signatures found by each category de-
pends on the number of trials, for example, even though we found fewer se-
quential surgical signatures for participant 1 than participant 2, 12 versus 22,
when we count the average number of signatures per trial, the difference is less
significant: 3 versus 3.66. As shown in Table 4, participants 1 and 2 have more
sequential surgical signatures specific to participants 1 and 2 than sequential
surgical signatures specific to their level of expertise (3 and 3.66 compared
to 1.3). On the other hand, for participants 3 and 4, it is the opposite, there
are more sequential surgical signatures specific to their level of expertise than
for themselves (0.86 versus 0 and 0.75). This could be interpreted by the fact
that the experts’ participants are more consistent when they perform a task
and their signatures are composed of more activities than the students’ par-
ticipants. This hypothesis is confirmed by the proportion of signatures present
more often than the threshold for expert participants (66%) than for student
participants (8%), but also by the proportion of signatures composed of many
activities (83% for experts versus 61% for students).
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In the 6 expert sequential surgical signatures (table 4), one of them at-
tracted our attention because of its number of activities (11) and the number
of sequences where this signature is present (5 out of 7 expert sequences). This
signature, notated signature;, is presented at table 6.

Table 6: Signature present in 5 expert sequences.

Activity id  Left hand Right hand

1 Hold, Long wire strand Idle

2 Hold, Long wire strand Catch, Long wire strand
3 Hold, Long wire strand Hold, Long wire strand
4 Idle Hold, Long wire strand
5 Catch, Long wire strand Hold, Long wire strand
6 Hold, Long wire strand Hold, Long wire strand
7 Hold, Long wire strand Idle

8 Make a loop, Long wire strand  Make a loop, Long wire strand
9 Hold, Long wire strand Idle

10 Hold, Long wire strand Catch, Short wire strand
11 Pull, Long wire strand Pull, Short wire strand

However, a signature may be the marker for something other than a popu-
lation of individuals. This is the case, for example, of the following signature,
noted signatures (Table 7), which are composed of 3 activities and shared
between 5 sequences, 2 performed by students and 3 by experts:

Table 7: Signature present in 3 expert sequences and 2 student sequences.

Activity id  Left hand Right hand

a Pull, Long wire strand Pull, Short wire strand
b Hold, Long wire strand  Idle

c Hold, Long wire strand  Catch, Short wire strand

These two examples are interesting for multiple reasons:

— Signature; illustrates the full knot tying process without unnecessary ac-
tivities;

— Signatures reflects a mistake independent of the level of expertise. In each
case, the participant tried to tie the knot by pulling the two strands of the
wire (activity a), but dropped the short wire strand (activity b) so had to
catch again the short wire strand (activity c);

— Both signatures provide hints to improve or facilitate the execution of the
task by informing us how an expert performs the task and which mistakes
should not be made;

— These both types of signature, coupled with real time activity detection
methods, can be used for automatically analysis of surgical workflow and
thus providing relevant information for situation aware systems.
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A video representation of each of these two signatures is available as sup-
plementary material. In these videos, the animated process was realized thanks
to Disco software [21], and each video was synchronized to start each activity
at the same time.

5.4 Prediction of belonging to a population

Our method also showed that sequential surgical signatures could be used to
determine which population a new sequence belongs to. These initial results
need to be complemented by more data that would not only increase the
number of participants in each population, but also the number of different
populations.

6 Conclusion

In this article, we introduced the concept of sequential surgical signatures
and demonstrated their usefulness in classifying surgical sequences and their
ability to determine by which individual a sequence was performed. This could
be interesting in order to provide an automatic and objective skill assessment
system.

The identification of sequential surgical signature could provide leads for
understanding surgical skills and consequently useful pedagogical guidance for
trainees.
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