
EyeSAM: Graph-based Localization and Mapping of Retinal 
Vasculature during Intraocular Microsurgery

Shohin Mukherjee1, Michael Kaess1, Joseph N. Martel2, Cameron N. Riviere1

1The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 USA camr@ri.cmu.edu; 
+1(412)268-3083

2Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213 USA

Abstract

Purpose: Robot-assisted intraocular microsurgery can improve performance by aiding the 

surgeon in operating on delicate micron-scale anatomical structures of the eye. In order to account 

for the eyeball motion that is typical in intraocular surgery, there is a need for fast and accurate 

algorithms that map the retinal vasculature and localize the retina with respect to the microscope.

Methods: This work extends our previous work by a graph-based SLAM formulation using a 

sparse incremental smoothing and mapping (iSAM) algorithm.

Results: The resulting technique, “EyeSAM,” performs SLAM for intraoperative vitreoretinal 

surgical use while avoiding spurious duplication of structures as with the previous simpler 

technique. The technique also yields reduction in average pixel error in the camera motion 

estimation.

Conclusions: This work provides techniques to improve intraoperative tracking of retinal 

vasculature by handling loop closures and achieving increased robustness to quick shaky motions 

and drift due to uncertainties in the motion estimation.
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Introduction

Intraocular microsurgery is a delicate procedure. The presence of physiological tremor in the 

surgeon’s hand makes it even more challenging. Success of promising new techniques like 

cannulation, which has the potential to be useful in the treatment of diseases such as retinal 

vasculature occlusion (RVO), depends on precise micromanipulation to inject anticoagulants 

into veins less than 100µm in diameter, which is less than the amplitude of physiological 

hand tremor [1,2]. RVO is the second most common retinal vascular disease after diabetic 

retinopathy and affects an estimated 16.4 million adults worldwide [3].
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The accuracy needed to safely and effectively treat RVO is not generally attainable with 

traditional instrumentation, however. This has led to the development of several robot-

assisted vitreoretinal surgery systems, most of which use a teleoperative approach [4–6], 

while others follow a shared-control approach, in which the surgeon and a robot arm hold 

the surgical instrument simultaneously, the robot arm selectively complying in order to 

suppress unwanted motion [7–9].

A handheld approach is possible, however, by actuating the tip of a handheld instrument. 

“Micron” is an actively stabilized handheld robotic microsurgical instrument that 

compensates for the surgeon’s hand tremor [10]. Micron is tracked in real time by an optical 

tracking system (Apparatus to Sense Accuracy of Position (ASAP) [11] while a pair of 

stereo cameras attached to a microscope observe the retinal plane to enable vision-based 

control, as shown in Fig. 1. During retinal microsurgery the patient is typically sedated 

rather than anaesthetized, which leads to unwanted movement of the eyeball. Moreover, the 

surgeon moves the eyeball to bring the region of interest in the field of view being observed 

by the microscope. Therefore, there is a need to track this intended and unintended eyeball 

motion and compensate for it during control.

In [12], Micron was used for automated laser photocoagulation. As shown in Fig. 2, the 

targets were defined in the image space. A hybrid control scheme was proposed in which the 

3-DOF motion of the tool tip was decoupled into 2-DOF planar motion parallel to the retinal 

plane and 1-DOF motion along the axis of the tool. The decoupled 2-DOF motion was then 

controlled via image-based visual servoing, to locate the laser aiming beam on a target. To 

compensate for the eyeball motion, the blood vessels were tracked. In [13], a method for 

retinal vein cannulation using Micron was proposed. The targets were defined in the image 

coordinates, and a homography matrix was used to map the image space target onto the 

ASAP space. Here again, vasculature tracking was used to account for eyeball motion.

Becker and Riviere [14] introduced EyeSLAM, a real-time simultaneous localization and 

mapping (SLAM) algorithm for retinal vasculature, which employed the iterative closest 

point (ICP) algorithm for registration between a skeletonized version of the occupancy map 

and the current vessel observations. EyeSLAM was improved further in [15] by introducing 

the following two components:

• A fast correlative scan-matching method proposed by Olson [16], in place of 

ICP;

• More robust vessel detection with better rejection of spurious detections.

However, the algorithm in [15] employs scan matching for frame-by-frame registration, 

which corresponds to visual odometry. This leads to significant drift since the uncertainty in 

the motion model builds up over time. To address this need, this brief paper builds on [15] 

by exploring more advanced SLAM algorithms that handle loop closures to remove drift. 

The paper concludes with an illustrative quantitative example.
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Materials and Methods

Problem Definition

The retinal localization and mapping problem can be defined as follows. Given a series of 

input video frames I = I0, I1, ⋯, IT , over a discretized time period t ∈ 0, 1, ⋯, T , we want to 

obtain a global map in the form of vasculature points and the corresponding camera 

viewpoint locations, or poses, X = x0, x1, ⋯, xT  of the input video frames in the map. The 

retina is modeled as a plane because typical retinal surgeries have high magnification with 

the field of view being only a few square millimeters in an eye 25 mm in diameter. The 3-

DOF planar motion model is parameterized as a 2D translation and a rotation: [tx, ty, θ].

Graph Optimization

We take a probabilistic approach and represent the SLAM problem as a factor-graph 

optimization. A factor graph is a bipartite graph F = (U, V, E), where fi ∈ U are factor nodes 

and xj ∈ V are variable nodes. Edges eij ∈ E always exist between factors and variables (17). 

A factor graph defines the factorization of a global function f (X) over the camera viewpoint 

locations X as:

f X =
i

f i Xi (1)

where Xi is the subset of the poses relevant to factor fi.

Each factor fi(Xi) in the graph is proportional to a corresponding factor in the posterior 

probability function p (X|Z), i.e. the posterior density of the states X given the measurements 

Z. Each variable in the graph corresponds to the pose of the retina at a certain instant. 

Solving for the poses involves performing maximum a posteriori (MAP) inference on the 

variables, given the information obtained from the uncertain measurements

XMAP = argmax
X

f X (2)

XMAP = argmax
X i

f i Xi (3)

In our factor-graph formulation, the factors are of two types: motion factors between 

successive frames, obtained as explained below under “Motion Estimation via Scan 

Matching,” and loop closure factors, obtained as explained below under “Loop Closure 

Detection.” Each of these factors is of the following form:
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f i Xi ∝ exp −1
2 hi xAi

, xBi
− zi ∑i

2
(4)

where xAi
∈ Xi and xBi

∈ Xi are the two poses between which the factor exists. They are 

consecutive poses in the case of incremental motion factors, but they could be non-

consecutive in the case of loop closure factors. Here ℎis the measurement function that 

calculates the difference between the two poses and Σ is an n × ncovariance matrix. This 

assumes measurements are corrupted by zero-mean Gaussian noise. Therefore, performing 

MAP inference involves solving the following nonlinear least-squares optimization:

XMAP = argmin
X

‖x1‖∑
2 + ∑

i
‖hi xAi

, xBi
− zi‖∑i

2
(5)

The first term in the minimization arises from a unary factor on the first pose, which 

corresponds to our setting of the initial reference position to [0,0,0]. Each node in our graph 

contains a local map of the vascular tree that was observed in the pose that corresponds to 

that node. When a new image frame is obtained from the camera, first its vascular tree is 

extracted and the incremental motion relative to the previous frame is estimated using scan 

matching. A new node corresponding to the current frame is then added to the factor graph 

with a motion factor, shown in black in Fig. 3. Then loop closure is checked for. If an 

overlap with a previously mapped area is detected, a loop closure factor is added, as shown 

in red. The graph is incrementally optimized using the iSAM2 algorithm [18].

Feature Extraction

In visual odometry there are two categories of methods to construct an optical flow field. In 

the first category the frames are directly matched in a dense or semi-dense fashion [19,20]. 

This obviates feature extraction and exploits all the information present in the images. The 

second category of methods relies on feature detectors/descriptors such as SIFT [21], SURF 

[22] or other custom-designed detectors. Such detectors fail to find distinctive points on the 

textureless retina.

We use the network of blood vessels on the retina as features. They are extracted using the 

fast vessel-detection algorithm proposed by Can et al [23]. It is a highly efficient algorithm, 

suitable for real-time high-definition video. Its efficiency comes from direct processing on 

gray-level data without any preprocessing, and from processing only a minimally necessary 

fraction of pixels in an exploratory manner, avoiding low-level image-wide operations such 

as thresholding, edge detection, and morphological processing. To remove spurious 

detections of vessel-like structures such as the instrument tip or the light-pipe that is used for 

illumination, each potential vessel point undergoes a color test and a bloom proximity test 

[15]. The color test rejects pixels that are too dark or insufficiently red, while the bloom 

proximity test rejects vessel points that are too close to large white specular blooms in the 
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image. As in [15], EyeSAM is equipped with a filter that applies a mask on the dark area 

circling the visible retina area to mask out fringing effects caused by the microscope. Fig. 4 

shows the vessel extraction in a real eye. The vessels undetected because of surgical 

instrument shadows in one frame will become visible eventually when the instrument 

moves. The observation will then be used to update the probability of a vessel being present 

at that location in the global map, as explained in subsequent sections.

Mapping via Occupancy Grids

Like in [15], a global occupancy map holds the current best estimate of all the observed 

vasculature. Each pixel in the map stores a score that is proportional to the probability of it 

being a vessel pixel. At each time instant, the current observations zt are transformed to the 

map with the localization estimate xt. For each vein point zt
i, a fixed value is added to the 

map at the corresponding cell location, thereby increasing the probability of a vessel existing 

at that location. The occupancy map has a maximum allowed value in order to keep the 

scores bounded. In [15], a decay function was used to the decrease the probability of all grid 

cells, allowing vessels which have not been detected for a while to vanish. What this 

essentially means is that the part of the built map that is no longer consistent with the current 

observations is discarded. Though this approach generates a smoother map by artificially 

removing the drift, it does not solve the underlying cause of the drift, i.e., the accumulated 

gross error in the localization caused by the inaccurate motion estimate. Hence, even though 

the map appears smooth, the localization is still under gross error. The utility of EyeSAM is 

to accurately track the eyeball motion so that it can be compensated for during control. A 

smooth map is not of primary concern.

Motion Estimation via Scan Matching

To estimate the eyeball motion, a 3-DOF planar motion model is used. In the first 

formulation of the algorithm, the iterative closest point (ICP) algorithm was used for 

registration between a skeletonized version of the occupancy map and the current vessel 

observations [14]. Any rapid motion caused it to fail.

In the second formulation [15], ICP was replaced with the fast correlative scan-matching 

approach. The scan-matching was performed incrementally between the features observed in 

the current frame and a global map of features accumulated in the form of an occupancy 

map. It used a hierarchical approach in which a first scan on a low-resolution version of the 

map quickly finds an approximate solution and avoids local minima. This approximate 

solution is then used to initialize a search on the high-resolution map. To ensure speed of 

execution, at most 500 random vessel points are used for scan matching. In [15], a constant-

velocity Kalman filter was used to smooth the localization estimation.

In this work we use a graph-based formulation to allow correction of the map upon loop 

closure, requiring a different strategy for scan matching. Matching against the global map 

results in corruption of the map caused by drift: when revisiting a previously observed part 

of the map, drift in the state estimate results in a duplication of structure in the map. In a 

graph-based solution, instead of matching against the previous map, one matches to the 

previous frame only, generating pairwise constraints between pose estimates. Upon 

Mukherjee et al. Page 5

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



revisiting previously observed parts of the scene, one additionally matches against older, 

nearby frames to generate again pairwise constraints. But this time they serve as loop 

closures between the current frame and an older part of the trajectory. The graph 

optimization then corrects the trajectory and localizes the camera viewpoints, and one can 

re-render a corrected global map—though that is only needed for visualization, not for the 

SLAM algorithm itself.

However, in practice, this approach needs to be refined because noise in the vessel detection 

causes failure in scan matching. Features observed in one frame may not be observed in the 

one immediately following. Therefore we propose a hybrid approach which estimates 

motion factors by registering the current frame to a locally accumulated map, without 

significantly invalidating the independence assumption that a factor between two nodes 

should express the relationship between just the two nodes. We do this by using a decay 

function that reduces the probabilities that were added to the occupancy map every N th 

frame by a scale y, where y ∈ (0,1). A value of y = 0is the same as matching consecutive 

frames. A value of γ = 1 is the same as matching the current frame with a globally 

accumulated map as was done in [15]. The lower the value of y and the higher the value of 

N, the more accurate the model, but the less robust the motion estimation. This is because 

the probabilities that were added to the occupancy map due to previously observed frames 

decay by a larger fraction and more frequently. In our implementation, y was chosen to be 

0.9 and N was chosen as 10, based on preliminary experimentation.

Loop Closure Detection

If the pose estimate from incremental scan-matching is in gross error, while the camera is 

observing an already mapped region of the retina, the likelihood of the measurements being 

explained by the pose and map estimate is vanishingly small. This leads to previously visited 

areas getting re-mapped in the wrong global location and the error accumulates without 

bound [24]. Therefore loop closure factors are added to the graph when the camera re-

observes a previously observed scene. In order to estimate loop closure, the local map of the 

current node needs to be compared to the local maps of every node that has been previously 

added to the group. Therefore the number of times we need to run the expensive scan-

matching increases linearly with the graph size. This is too costly given the real-time 

requirements of the application. In order to save computation time, a better approach is to 

compare the current node with the nodes that are inside its uncertainty ellipse. However, this 

may still be very computationally expensive, especially if all frames are processed, in which 

case there will be multiple nodes within the uncertainty ellipse. Therefore we always match 

with a fixed number of previously visited nodes, depending upon how many threads can run 

in parallel in the given machine. In order to ensure that nodes recently visited are not 

matched with the current node, and loop constraints are added to the graph, we enforce a 

minimum time difference between the current frame and the frame it is matched with for a 

loop constraint.

Evaluation

A. Qualitative Evaluation—We evaluated EyeSAM on several videos of real human 

eye surgeries. These videos are of different surgical procedures including retinal membrane 
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peeling and laser photocoagulation. They were shot under varying conditions of lighting, 

resolution, and tool occlusion. There is no ground truth available for real surgery videos; 

hence a qualitative evaluation was made. In these experiments we processed all frames 

offline so that we can compare the performance with the old EyeSLAM. Hence the code was 

not optimized to run in real time. Real-time performance can easily be achieved by running 

the algorithm on a faster processor with more cores.

We also carried out qualitative evaluation of EyeSAM in an eye phantom. The eye phantom 

consisted of a network of blood vessels printed on paper at a scale that matches a real retina, 

similar to that used in [15]. We call this video sequence A (duration 75 s). All videos for the 

experiments in this paper were taken from the same monocular camera mounted on a high-

magnification microscope. Our approach is expected to transfer to other devices, as long as 

the image scale is estimated. The camera plane is assumed to be parallel to the retinal plane.

B. Accuracy on Phantom—In order to better test our hypothesis that the factor-graph-

based EyeSAM performs better, we carried out quantitative evaluation on another video 

sequence of the eye phantom. This was not possible to do on real surgery videos because no 

ground truth is available or can be generated for them. We call this video sequence B 

(duration 135 s). Ground truth was generated by tracking colored fiducials printed on the 

retina phantom.

Results

Qualitative Evaluation

The maps developed on the real eye surgery videos are shown in Fig. 5. Fig. 6(a) and 6(b) 

show the old EyeSLAM and the current EyeSAM working on video sequence A. The 

colored image on the left is the map superimposed on the image frame; the image on the 

right is the global occupancy map. The brighter the pixel, the more likely a vessel exists at 

that point. The drift due to the inaccurate motion estimation is clearly visible in Fig. 6(a). 

The new EyeSAM takes into account loop closure and therefore eliminates the drift, as 

expected, and as seen in Fig. 6(b). Fig. 8 shows the trajectory of the center of the camera 

frame with respect to the global map for video sequence A. The camera executes a loop and 

returns close to the starting position. The loop is detected and the drift in the motion is 

corrected as seen in Fig. 6(b). Fig. 7(a) and 7(b) compare the older EyeSLAM and the new 

EyeSAM working on a real surgery video. The map in Fig. 7(b) is sharper because of less 

drift as compared to the map in Fig. 7(a).

Accuracy on Phantom

For video sequence B, Fig. 9 compares the camera trajectory for the old EyeSLAM and the 

current EyeSAM with the ground truth trajectory. Fig. 10 compares the SLAM maps, where 

drift is apparent for the old EyeSLAM, while our implementation of factor-graph-based 

EyeSAM estimates camera motion much more accurately. The average error in translation 

was 18.8 pixels for the old EyeSLAM and 6.8 pixels for EyeSAM. Taking camera scale into 

account, which was calibrated separately, this corresponds to an error of 161.4 µm for the 

old EyeSLAM and 58.0 µm for EyeSAM. Therefore our method will allow us to safely 
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operate on vessels of 100 µm. The max error in translation was 59.5 pixels (511.0 µm) for 

the old EyeSLAM and 32.8 pixels (281.4 µm) for EyeSAM. From Fig. 9, drift is apparent in 

the old EyeSLAM, while EyeSAM estimates camera motion more accurately. EyeSLAM 

manages to correctly localize eventually, because we are matching against a globally 

accumulated map. However, it does not correct for the previously observed poses and the 

duplicated structures in the map. Fig. 11 compares the translation (in x and y) and rotation 

for the two cases with the ground truth.

Discussion

In this work we introduced EyeSAM, a factor-graph-based formulation of retinal SLAM that 

can incorporate loop closures and therefore eliminate the drift that is introduced by noise in 

the frame-by-frame scan matching. In this work we ignored intra-operative retinal 

deformation. Heart pulse and breathing effects are also ignored and a planar motion-model 

for the retina is assumed like in [15]. We evaluated our new algorithm on several real eye 

surgery videos under different lighting conditions and in the presence of tool occlusion. As 

can be seen from Fig. 5, our approach handles a wide range of pathologies and procedures. 

In case of retinal hemorrhage, the vessel extraction is likely to detect intraoperative retinal 

hemorrhages as vessels. Vitreous hemorrhage and other vitreous media opacities are cleared 

prior to retinal treatment or surgical maneuvers, as is standard practice for vitreoretinal 

surgery. The color test and the bloom proximity test, as explained under Feature Extraction, 

reject many false positives in the vessel detection. We also evaluated EyeSAM on eye-

phantom videos and compared the generated map with that generated from the old 

EyeSLAM. EyeSAM generated a more consistent map. We also showed reduction in 

average pixel error in the camera motion estimation.

Future improvements include optimization to allow the algorithm to run in real time on high-

definition videos. In addition, implementing 3D SLAM using stereo vision while handling 

distortion could be beneficial.
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Figure 1. 
Micron setup. The main components have been labeled: the optical tracking system 

(Apparatus to Sense Accuracy of Position, or “ASAP”), CCD cameras, microscope, and 

laser.
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Figure 2. 
Micron-aided photocoagulation in porcine retina ex vivo.
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Figure 3. 
Factor graph representation [17] of EyeSAM. The unfilled circles correspond to the 

variables over which we intend to infer. The incremental motion constraints are shown in 

black. The loop closure constraints are shown in red. f0(x1) is a prior factor to fix a 

coordinate frame.
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Figure 4. 
Vessel extraction in a real eye using the algorithm proposed in [23]. The algorithm detects 

the major vessels. The thinner vessels are harder to detect, but once they are detected in 

subsequent frames, they will be added to the global map.
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Figure 5. 
EyeSAM was run on several video sequences of eye surgery. The videos correspond to 

different surgical procedures, under different lighting conditions. It can be seen that 

EyeSAM manages to map most of the vasculature. It also handles tool occlusions well.
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Figure 6. 
Comparison of SLAM maps generated from (a) old EyeSLAM and (b) factor-graph-based 

EyeSAM on video sequence A. The images on the right show the global map. The images 

on the left show the map superimposed on the current frame. The drift is apparent in old 

EyeSLAM which leads to duplicated structures; this has been corrected in EyeSAM.
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Figure 7. 
Comparison of SLAM maps generated from (a) old EyeSLAM and (b) factor-graph-based 

EyeSAM using video from clinical vitreoretinal surgery.
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Figure 8. 
Camera trajectory (green) superimposed on the globally corrected map for video sequence 

A. The yellow frame shows the footprint of the last image, which completed a loop in the 

camera trajectory.
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Figure 9. 
Camera trajectory for ground truth (red), old EyeSLAM (blue), and factorgraph-based 

EyeSAM (green) on video sequence B.
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Figure 10. 
Comparison of SLAM maps generated from (a) old EyeSLAM and (b) new EyeSAM on 

video sequence B.
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Figure 11. 
Comparing translation and orientation for ground truth (red), old EyeSLAM (blue), and 

factor-graph-based EyeSAM (green). (a) Translation in x. (b) Translation in y. (c) Rotation.
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