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Abstract

Purpose—Minimally invasive alternatives are now available for many complex surgeries. These 

approaches are enabled by the increasing availability of intra-operative image guidance. Yet, 

fluoroscopic X-rays suffer from projective transformation and thus cannot provide direct views 

onto anatomy. Surgeons could highly benefit from additional information, such as the anatomical 

landmark locations in the projections, to support intra-operative decision making. However, 

detecting landmarks is challenging since the viewing direction changes substantially between 

views leading to varying appearance of the same landmark. Therefore, and to the best of our 

knowledge, view-independent anatomical landmark detection has not been investigated yet.

Methods—In this work, we propose a novel approach to detect multiple anatomical landmarks in 

X-ray images from arbitrary viewing directions. To this end, a sequential prediction framework 

based on convolutional neural networks is employed to simultaneously regress all landmark 

locations. For training, synthetic X-rays are generated with a physically accurate forward model 

that allows direct application of the trained model to real X-ray images of the pelvis. View 

invariance is achieved via data augmentation by sampling viewing angles on a spherical segment 

of 120° × 90°.

Results—On synthetic data, a mean prediction error of 5.6 ± 4.5mm is achieved. Further, we 

demonstrate that the trained model can be directly applied to real X-rays and show that these 

detections define correspondences to a respective CT volume, which allows for analytic estimation 

of the 11 degree of freedom projective mapping.
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Conclusion—We present the first tool to detect anatomical landmarks in X-ray images 

independent of their viewing direction. Access to this information during surgery may benefit 

decision making and constitutes a first step toward global initialization of 2D/3D registration 

without the need of calibration. As such, the proposed concept has a strong prospect to facilitate 

and enhance applications and methods in the realm of image-guided surgery.
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Introduction

In recent years, the increasing availability of intra-operative image guidance has enabled 

percutaneous alternatives to complex procedures. This is beneficial for the patient since 

minimally invasive surgeries are associated with a reduced risk of infection, less blood loss, 

and an overall decrease in discomfort. However, this comes at the cost of increased task load 

for the surgeon, who has no direct view onto the patient’s anatomy but has to rely on indirect 

feedback through X-ray images. These suffer from projective transformation, particularly 

the absence of depth cues and, depending on the viewing direction, vanishing anatomical 

landmarks. One of these procedures is percutaneous pelvis fracture fixation. Pelvis fractures 

may be complex with a variety of fracture patterns. In order to fixate pelvic fractures 

internally, K-wires must be guided through narrow bone corridors. Numerous X-ray images 

from different views may be required to ensure a correct tool trajectory [2,24]. One 

possibility to support the surgeon during these procedures is to supply additional contextual 

information extracted from the image. Providing additional, “implicit 3D” information 

during these interventions can drastically ease the mental mapping, where the surgeon has to 

register the tool in his hand to the 3D patient anatomy using 2D X-ray images only [8,22]. In 

this case, implicit 3D information refers to data that are not 3D as such, but provides 

meaningful contextual information related to prior knowledge of the surgeon.

A promising candidate for implicit 3D information is the positions of anatomical landmarks 

in the X-ray images. Anatomical landmarks are biologically meaningful locations in 

anatomy that can be readily detected and enable correspondence between specimens and 

across domains. Inherently, the knowledge of landmark locations exhibits helpful properties: 

(1) Context is provided, which supports intra-operative decision making, (2) they supply 

semantic information, which defines correspondences across multiple images, and (3) they 

might foster machine understanding. For these reasons, anatomical landmarks are widely 

used in medicine and medical imaging, where they serve as orientation in diagnostic and 

interventional radiology [7]. They deliver a better interpretation of the patients’ anatomy 

[28] and are also of interest for image processing tasks as prerequisite to initialize or 

constrain mathematical models [27]. A non-exhaustive review reveals that anatomical 

landmarks have been used to guide and model segmentation tasks [10,31], to perform image 

registration [12], to extract relevant clinical quantitative measurements [19], to plan 

therapies [14], or to initialize further image processing [16].
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Often, knowing the exact location of landmarks is mandatory for the desired application 

suggesting that landmarks must be labeled manually [28]. Manual labeling is time-

consuming, interrupts the clinical workflow, and is subjective, which yields rater dependent 

results. Although important, anatomical landmark detection is a challenging task due to 

patient specific variations and ambiguous anatomical structures. At the same time, automatic 

algorithms should be fast, robust, reliable, and accurate.

Landmark detection methods have been developed for various imaging modalities and for 

2D or 3D image data [6,7]. In the following overview, we focus on 2D X-ray images. 

Landmark or key point detection is well understood in computer vision, where robust feature 

descriptors disambiguate correspondences between multiple 2D images, finally enabling 

purely image-based pose retrieval. Unfortunately, the above concept defined for reflection 

imaging does not translate directly to transmission imaging. For the latter, image and 

landmark appearance can change fundamentally depending on the viewing direction since 

the whole 3D object contributes to the resulting detector measurement.

Most of the current landmark detection approaches either predict the landmark positions on 

the input image directly, or combine these initial estimates subsequently with a parametric or 

graphical model fitting step [27]. Constraining detection results by models that encode prior 

knowledge can disambiguate false positive responses. Alternatively, priors can be 

incorporated implicitly, if multiple landmarks are detected simultaneously by reducing the 

search space to possible configurations [15]. Wang et al. [28] summarized several landmark 

detection methods competing in a Grand Challenge, where 19 landmarks have to be detected 

in 2D cephalometric X-ray images of the craniofacial area, a task necessary for modern 

orthodontics. Mader et al. [16] used a U-net to localize ribs in chest radiographs. They 

solved the problem of ambiguities in the local image information (false responses) using a 

conditional random field. This second step assesses spatial information between the 

landmarks and also refines the hypotheses generated by the U-net. Sa et al. [21] detected 

intervertebral discs in X-ray images of the spine to predict a bounding box of the respective 

vertebrae, by using a pre-trained Faster-RNN and refining its weights. Payer et al. [18] 

evaluated different CNN architectures to detect multiple landmark locations in X-ray images 

of hand X-rays by regressing a single heat map for each landmark. In a similar task, another 

approach used random forests to detect 37 anatomical landmark in hand radiographs. The 

initial estimates were subsequently combined with prior knowledge given by possible 

landmark configurations. [23]. For each landmark, a unique random regression forest is 

trained. In Xie et al., anatomical landmarks were a prerequisite for the segmentation of the 

pelvis in anterior–posterior radiographs in order to create a 3D patient specific pelvis model 

for surgical planning. The shape model utilized for this purpose is based on anatomical 

landmarks [30].

All the presented approaches above assume a single, predefined view onto the anatomy. This 

assumption is valid for certain applications, where radiographic images in a diagnostic setup 

are often acquired in standardized views, but is strongly violated when view changes 

continuously, e.g., in interventional applications or for projection data acquired on 

trajectories, scenarios in which the view changes continuously. To the best of our 

knowledge, there exists no approach that is able to detect anatomical landmarks in X-ray 
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images independent of the viewing direction. The view independence substantially 

complicates the landmark detection problem in X-ray images since object edges vanish and 

anatomical structures overlap due to the effect of transmission imaging. X-ray transform 

invariant landmark detection, therefore, bears great potential to aid fluoroscopic guidance.

In contrast to the landmark detection approaches that deliver implicit 3D information, 

several approaches exist that introduce explicit 3D information. These solutions rely on 

external markers to track the tools or the patient in 3D [17], consistency conditions to 

estimate relative pose between X-ray images [1], or 2D/3D registration of pre-operative CT 

to intra-operative X-ray to render multiple views simultaneously [17,25]. While these 

approaches have proven helpful, they are not widely accepted in clinical practice. The 

primary reasons are disruptions to the surgical workflow [8], as well as susceptibility to both 

truncation and initialization due to the low capture range of the optimization target [11].

In this work, we propose an automatic, purely image-based method to detect multiple 

anatomical landmarks in X-ray images independent of the viewing direction. Landmarks are 

detected using a sequential prediction framework [29] trained on synthetically generated 

images. Based on landmark knowledge, we can (a) identify corresponding landmarks 

between arbitrary views of the same anatomy and (b) estimate pose relative to a pre-

procedurally acquired volume without the need for any calibration. We evaluate our 

approach on synthetic data and demonstrate that it generalizes to unseen clinical X-rays of 

the pelvis without the need for re-training. Further, we argue that the accuracy of our 

detections in clinical X-rays may benefit the initialization of 2D/3D registration. This paper 

is an extended version of the work presented at the MICCAI 2018 conference [4] and 

provides a broader background on existing landmark detection research, a comprehensive 

quantitative analysis of the view invariance on synthetic data and a quantitative evaluation on 

real X-ray images of cadaveric specimens.

Materials and methods

Network architecture

The sequential prediction framework used in this work has been initially developed for 

human pose estimation [29]. In the original application, the machine learning task is to 

detect multiple human joint positions in RGB images. The architecture is abstractly depicted 

in Fig. 1. Given a single RGB input image, the network predicts multiple belief maps bt
p for 

each joint position p ∈ [1, …, P] at the end of every stage t ∈ [1, …, T] of the network. In 

the first stage, initial belief maps b1
p are predicted based only on local image information. 

Image features are extracted using a stack of convolutional and pooling layers with Rectified 

Linear Units (ReLUs) as activation functions, described by weights w1. In following stages t 

≥ 2, the predicted belief maps bt
p are obtained by combining local image information 

extracted by the layers with weights wp and the prediction results of the preceding stage. 

Note that this combination is implemented using a concatenation operation. The weights wp 

are shared for all stages t ≥ 2. The cost function C is the sum of the L2-losses between the 

predicted belief maps bt
p and the ground truth belief maps bt*:
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C = ∑
t = 1

T
∑

p = 1

P
‖bt

p − bt*‖2
2

(1)

The ground truth belief maps bt* contain a normal distribution, centered at the ground truth 

joint position. By design, the network imposes several properties: The key element of the 

architecture is that the belief maps are predicted based on local image information as well as 

the results of the preceding stage. This enables the model to learn long-range contextual 

dependencies of landmark configurations. The belief maps of the first stage b1
p are predicted 

only on local image information, which leads to false positive responses due to ambiguities 

in the local image appearance. The stage-wise application resolves these by implicitly 

incorporating the characteristic configuration of the landmark positions. Furthermore, the 

network has a very large receptive field that also increases over stages, which enables the 

learning of spatial dependencies over long distances. Lastly, the loss over all intermediate 

predictions bt
p is computed, which counteracts the vanishing gradient effect and 

simultaneously guides the network to focus early on the detection task. A drawback of this 

architecture is the small size of the output belief maps that are downsampled by a factor of 

around eight compared to the input size.

Landmark detection

We exploit the aforementioned advantages of sequential prediction frameworks for the 

detection of anatomical landmarks in X-ray images independent of their viewing direction. 

Our assumption is that anatomical landmarks exhibit strong constraints and thus 

characteristic patterns even in the presence of arbitrary viewing angles. In fact, this 

assumption may be even stronger compared to human pose estimation if limited anatomy, 

such as the pelvis, is considered due to rigidity. Within this paper and as a first proof-of-

concept, we study anatomical landmarks on the pelvis. We devise a network adapted from 

[29] with six stages to simultaneously predict 23 belief maps per X-ray image that are used 

for landmark location extraction, as shown in Fig. 1.

In order to obtain the predicted landmark positions, all predicted belief maps bt
p are averaged 

over all stages prior to estimating the position of the landmarks yielding the averaged belief 

map bp. We then define the landmark position lp as the position with the highest response in 

bp. Since the belief maps are downsampled, the maximum location is computed in a sub 

pixel accuracy by a maximum likelihood estimation of the Gaussian estimate. If the 

maximum response in a belief map is below 0.4, the landmarks are discarded since they may 

be outside the field of view or are not reliably recognized. The implementation was done in 

Python and TensorFlow. The hyperparameters for the network training are set to 10−6 for the 

learning rate and a batch size of one. Optimization was performed using Adam over 30 

epochs until convergence in the validation set had been reached.

Data generation

The network training requires a data set of X-ray images with corresponding landmark 

positions. Manual labeling is infeasible for various reasons: First of all, the labeling process 
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to obtain the required amount of training data is time costly. However, and more importantly, 

an accurate and consistent labeling cannot be guaranteed in the 2D projection images due to 

the discussed properties of transmission imaging (vanishing edges, superimposed anatomy). 

Therefore, we synthetically generated the training data from full body CTs of the NIH 

Cancer Imaging Archive [20]. In total, 23 landmark positions were manually labeled in 20 

CTs of male and female patients using 3D volume renderings in 3D Slicer [5]. The landmark 

positions have been selected to be clinically meaningful, to have a good visibility in the 

projection images and to be consistently identifiable on the anatomy. The selected landmarks 

are depicted in Fig. 2.

Subsequently, data were obtained by forward projection of the volume and the respective 3D 

labels with the same X-ray imaging geometry, resulting in a set of X-ray images with 

corresponding landmark positions. The synthetic X-ray images had a size of 615 × 479 

pixels with an isotropic pixel spacing of 0.616mm. The corresponding ground truth belief 

maps were downsampled by a factor of about eight and had a size of 76 × 59. For data 

generation, two factors are important to emphasize: (1) the augmentation of training data in 

order to obtain view invariance is crucial. To this end, we applied random translation to the 

CT volume, varied the source-to-isocenter distance, applied flipping on the detector, and 

most importantly, varied the angular range of the X-ray source position on a spherical 

segment of 120° in LAO/RAO and in 90° in CRAN/CAUD, centered around an AP view of 

the pelvis. This range approximates the range of variation in X-ray images during surgical 

procedures on the pelvis [13]. (2) A realistic forward projector that accounts for physically 

accurate image formation, while being capable of fast data generation, was used to obtain 

realistic synthetic training data. This allows direct application of the network model to real 

clinical X-ray images. The forward projector computes material-dependent attenuation 

images that are converted into synthetic X-rays [26]. In total, 20,000 X-rays were generated 

and split 18 × 1 × 1-fold into training, validation, and testing, where we ensured that images 

of one patient are not shared among these sets.

2D/3D registration

As motivated previously, the detected anatomical landmarks offer a range of possible 

applications. In this work, we focus on the example of initializing 2D/3D registration. To 

this end, 2D landmark positions are automatically extracted from X-ray images, while 3D 

points are obtained from a manually labeled pre-operative CT acquisition of the same 

patient. Since the landmark detections supply semantic information, correspondences 

between the 2D and 3D points are defined, which enables the computation of the projection 

matrix P ∈ ℝ3 × 4 in closed form across the two domains [9]. The set of 2D detections are 

expressed as homogeneous vectors as dn ∈ ℝ3 with n ∈ [1, …, N]. Each point contains the 

entries dn = (xn·yn, wn). The set of corresponding 3D points are denoted as homogeneous 

vectors rn ∈ ℝ4. Following the direct linear transform, each correspondence yields two 

linearly independent equations [9, p. 178]:

Bier et al. Page 6

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2020 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0T −wiriT yiriT

wiriT 0T −xiriT

p1
p2
p3

= 0 . (2)

With N being the number of corresponding points, these rows are stacked into a 

measurement matrix that results in a size of 2N × 12. p1, p2, and p are vectors ∈ ℝ4 that 

contain the entries of the projection matrix P. These are obtained subsequently by 

computing the null space of the measurement matrix.

Experiments and results

The result section is split into two parts: In the first part, the results of the landmark 

detection on the synthetic data set are presented. In the second part, the network trained on 

synthetic data is used to predict anatomical landmarks in real X-ray images acquired using a 

clinical C-arm X-ray system of cadaveric specimens. Note, that the network has not been re-

trained for this purpose. For both cases, the results are presented qualitatively and 

quantitatively.

Synthetic data

For the evaluation of the view-invariant landmark detection, we created X-ray images of the 

testing CT data set that was uniformly sampled across the whole spherical segment with an 

angular spacing of 5° in both dimensions. A standard setting for the geometry with 750mm 

source-to-isocenter distance and 1200mm source-to-detector distance was used. These 

distances are not varied in the evaluation, since the focus is the angular dependent 

detectability of landmarks.

In Fig. 3, the detection results are presented qualitatively and compared to the ground truth 

positions. Overall, the qualitative agreement between ground truth locations and predictions 

is very good. Quantitatively, the average distance between ground truth positions and 

detection across all projections and landmarks is 9.1 ± 7.4pixels (5.6 ± 4.5 mm). Note that, 

as motivated previously, belief map responses lower than 0.4 are considered as landmark not 
detected and the corresponding landmark are excluded from the statistics. Graphically, the 

detection accuracy is plotted across all viewing directions in Fig. 4. We define the detection 

accuracy as the percentage of landmarks that have an error smaller than a distance threshold 

of 15 pixels in the respective view. The detection accuracy is also plotted against this 

threshold in Fig. 8.

In Table 1, a more detailed analysis of the error across the different landmarks and the view 

position is presented. For each landmark, the average maximum belief, the average error 

across all projections, as well as the error across quadrants are shown. For the latter, the 

spherical segment is subdivided into four areas, centered at the AP position with two 

perpendicular divisions across the CRAN/CAUD and RAO/LAO axis. This reveals three 

interesting observations: First, some landmarks have an overall lower error (e.g., land mark 

#9 with an average error of 5.26pixels), while others are detected poorly (e.g., landmark #23 
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with an average error of 26.05pixels). Second, there exists a correlation between the average 

maximum belief response and the average error: The higher the response in a belief map, the 

lower the error. This observation is also supported by the scatter plot presented in Fig. 5, 

where for each prediction, the detection error is plotted over the corresponding maximum 

belief map response. Third, some landmarks can be detected equally well, independently of 

the viewing direction (e.g., landmark #11), while for others, the detectability highly varies 

across the quadrants (e.g., landmark #19). This observation is graphically well visible for 

these two landmarks, as shown in Fig. 6.

We further investigated how the belief map response develops over the stages of the network 

and how ambiguities in the early stages are resolved. In Fig. 7, two example projections are 

shown, overlain by their corresponding belief maps at the respective stage. In the first row, 

the landmark of interest (tip of the right femoral head) is outside the field of view. However, 

a false position response appears after the first stage due to the similar appearance of the 

anatomy. With further stages, this ambiguity gets resolved. In the second row, a similar 

behavior is visible and a refinement of the prediction accuracy is clearly observable. The 

development of a landmark belief is also shown in Fig. 8. Here, the detection accuracy is 

plotted over the error distance tolerance for the belief maps at certain stages. Identical to 

above, a landmark is considered detected, if the error to its ground truth location is smaller 

than the Distance Threshold. It can be well observed that the detection results are refined 

with increasing stages.

Clinical data

For the evaluation of the view-invariant landmark detection on real X-ray image data, five 

cadaveric data sets have been processed, each set consisting of a pre-operative CT scan and 

intra-operative X-ray sequences, taken from arbitrary and unknown viewing angles. In order 

to enable the retrieval of X-ray geometry, metal beads (BBs) were injected into the pelvis 

before imaging. To retrieve the X-ray projection geometry, first BB correspondences are 

established between individual images of the intra-operative X-ray sequence. Then, the 

fundamental matrix is computed for each image pair allowing for the 3D reconstruction of 

the BB positions [9]. This 3D reconstruction was then registered to the 3D BB locations 

extracted from the CT volume, allowing for an exact registration of each BB in 2D space to 

its corresponding location in 3D space. With these correspondences established, the 

projection matrices for each X-ray image were then calculated in closed form solution as in 

Eq. 2. To evaluate the reprojection error of these projection matrices (which defines a lower 

bound on the accuracy achievable using anatomical landmarks), the 3D BB coordinates as 

per the CT scan are forward projected into 2D space. Table 2 shows the reprojection error 

between the forward projection and the real X-ray images for the X-ray sequences. Note that 

one of this sequences has a tool in the field of view (sequence #3), while another shows a 

fracture of the pelvis (sequence #2). The low reprojection error of 2–5pixel is in line with 

our expectations and suggests that the resulting projection matrices are an appropriate 

reference when evaluating the performance of our proposed view-invariant landmark 

detection.
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In the top row of Fig. 9, example landmark detection results in X-ray images of these 

sequences are shown. Automatic detections and ground truth locations are indicated with red 

and blue crosses, respectively. Overall, the well agreement between the automatic detections 

and the ground truth positions can be appreciated for various poses and truncations. In 

complicated situations when tools are present in the image, the landmark detection approach 

fails to detect the surrounding landmarks, as can be seen in example 4. However, this is not 

surprising since such situations were not part of the training data set. Small unknown 

objects, such as the metallic beads on the bone, seem to only have a limited influence on 

performance. Furthermore, example 5 depicts an image of the sequence where a fracture is 

present in the X-ray image, indicated with the white arrow. Qualitatively, this did not 

influence the detection substantially. Quantitatively, the overall deviation between true and 

predicted landmark locations averaged over the total 106 real images is shown in Table 2 in 

column titled Landmark Error.

The bottom row in Fig. 9 shows digitally reconstructed radiographs (DRRs) of the CT 

volumes belonging to the real X-ray image of the same patient shown above. The geometry 

for generating the DRRs has been obtained in closed form 2D/3D registration of the detected 

landmarks to the 3D labels in the CT volume, as described in “2D/3D registration” section. 

For these various poses, the landmark detection accuracy proves sufficient to achieve views 

that are very similar to the target X-ray image, suggesting successful initialization.

Discussion and conclusion

We presented a novel approach to detect anatomical landmarks in X-ray images independent 

of the viewing direction. The landmark locations supply additional information for the 

surgeon and enable various applications, including global initialization of 2D/3D registration 

in closed form. Due to the characteristics of transmission imaging, landmark appearances 

change substantially with the viewing direction making anatomical landmark detection a 

challenging task that has, to the best of our knowledge, not previously been addressed.

We employed a convolutional neural network that consists of multiple stages. Given a single 

input image, multiple belief maps are inferred and refined based on local image information 

and belief maps of the preceding stage, finally indicating the respective landmark location. 

The network was trained on synthetic data generated using a physics-based framework and 

evaluated on both synthetic and real test sets, revealing promising performance.

Despite encouraging results, some limitations remain that we discuss in the following 

paragraph, pointing to possible future research directions to overcome or alleviate these. 

First of all, the robustness toward unseen scenarios such as tools in the image or changes of 

the anatomy due to fractured anatomy must be improved. This issue could be addressed with 

a larger data set that contains such variation. Also, the accuracy from views of the border of 

the spherical segment is slightly inferior compared to frontal views. This might be explained 

by the higher amount of overlapping anatomy from these directions as well as a lower 

amount of variation of the training data sampled in this area. A possible solution could be to 

increase the angular range during training, while limiting validation to the current range 

Further, the network architecture in its current state yields belief maps that are downsampled 

Bier et al. Page 9

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2020 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by a factor of around eight compared to the input image. This downsampling inherently 

limits the accuracy of the detection results. While this accuracy may have been sufficient for 

the initial purpose of human pose estimation, in medical imaging, higher accuracy is 

desirable. Possible improvements that are subject to future work could be achieved by 

competing network architectures based on an encoder–decoder design with skip connections 

in order to preserve resolution of the output images. Alternatively, test-time augmentation 

could be applied by processing slightly altered versions of the input image with the same 

network during application. The results of these multiple outputs could subsequently be 

averaged, which might yield higher accuracy. Furthermore, the robustness as well as the 

overall accuracy could benefit by providing prior knowledge in the form of a model-based 

post-processing step. A possible source of error might be introduced by the labeling of the 

landmarks in the 3D volume that, since manual, is inherently prone to errors. Ideally, an 

unsupervised landmark or keypoint selection process would be of great benefit for this 

approach. As a possible application, we showed that an initialization of 2D/3D registration 

based on the automatic detections is successful without the need for additional calibration. 

In this work, we relied on a closed form solution to estimate the image pose which is 

compelling due to its simplicity, yet a more sophisticated approach based on maximum 

likelihood would certainly yield superior results in the presence of statistical outliers. In this 

task, we also showed that considering the maximum belief is powerful for selecting reliably 

detected landmarks. This additional information can be used as a confidence measure for 

further processing tasks. Recently, the proposed concept of view-invariant anatomical 

landmark detection has been transferred to projection images of knees in an attempt to 

estimate involuntary motion during scans [3].

In conclusion, detecting anatomical landmarks has grown to be an essential tool in automatic 

image parsing in diagnostic imaging, suggesting similar importance for image-guided 

interventions. The implementation of anatomical landmarks as a powerful concept for aiding 

image-guided interventions will be pushed continuously as new approaches, such as this 

one, strive to achieve clinically acceptable performance.
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Fig. 1. 
Schematic representation of the convolutional neural network used in this work. A single 

input image is processed by multiple stages of convolutional and pooling layers, resulting in 

a stack of belief maps, where each map corresponds to a landmark location. During the 

stage-wise application, these belief maps are refined
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Fig. 2. 
The pelvis bone of a CT of the used data set is rendered with the corresponding 3D 

landmark labels that have been labeled manually. Orange dots with numbers indicate visible 

landmarks. Landmarks hidden due to the rendering are marked with a gray box and number 

(e.g., the tip of the right femoral head, landmark #13)
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Fig. 3. 
Predicted landmark positions for example projection images sampled across the sampled 

spherical segment of the synthetic test data set. Ground truth positions are marked with blue 

labels and automatic detection with red labels. Note that each projection image is processed 

independently
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Fig. 4. 
Accuracy depending on the viewing direction of the X-ray source. In average the detection 

result from central views is superior to the ones at the border of the sphere. The accuracy is 

defined as the ratio of landmarks that have an error below 15 pixels in the respective view
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Fig. 5. 
The error of a landmark detection is plotted onto the belief of the corresponding landmark 

detection. A correlation can be observed: Higher beliefs indicate lower detection errors

Bier et al. Page 17

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2020 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Maximum belief depending on the viewing direction for two landmarks (#11 and #19). 

While landmark #11 (left) is equally well visible across views, the belief for landmark #19 

(right) changes substantially across views
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Fig. 7. 
Initial, intermediate, and final belief map predicted by the model. The detection task in both 

cases is to detect the tip of the right femur. False positive responses due to ambiguities in the 

local image information are resolved over the stages
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Fig. 8. 
Accuracy depending on the distance threshold for intermediate stages
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Fig. 9. 
(Top) Detection results on clinical X-ray images. Landmark detection using the proposed 

approach is marked with a red cross, ground truth positions with a blue cross. (Bottom) 

Forward projections of the corresponding CT volume using the projection matrices 

computed by 2D/3D registration between the 2D landmark detections and the 3D labels in 

the CT volumes
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