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Abstract

Purpose Annotation of surgical activities becomes increasingly important for many
recent applications such as surgical workflow analysis, surgical situation awareness
and the design of the operating room of the future, especially to train machine
learning methods in order to develop intelligent assistance. Currently, annotation
is mostly performed by observers with medical background and is incredibly costly
and time-consuming, creating a major bottleneck for the above-mentioned tech-
nologies. In this paper, we propose a way to eliminate, or at least limit, the human
intervention in the annotation process.

Methods Meaningful information about interaction between objects is inherently
available in virtual-reality environments. We propose a strategy to convert auto-
matically this information into annotations in order to provide as output individual
surgical process models.

Validation We implemented our approach through a peg-transfer task simulator
and compared it to manual annotations. To assess the impact of our contribution,
we studied both intra- and inter-observer variability.

Results and conclusion In average, manual annotations took more than 12 minutes
for one minute of video to achieve low-level physical activity annotation whereas
automatic annotation is achieved in less than a second for the same video period.
We also demonstrated that manual annotation introduced mistakes as well as
intra- and inter-observer variability that our method is able to suppress due to the
high precision and reproducibility.
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1 Introduction

Recent developments in computer-assisted surgical (CAS) systems rely on explicit
understanding of the surgical procedure through the use of surgical process models
(SPMs). SPM methodology may help surgical learning and expertise assessment
[1, 2], operating room optimization and management [3, 4], robotic assistance [5]
and also decision support [6].

A SPM is a description of a surgical procedure at several levels of granularity:
phases, steps and activities [7] along with surgemes and dexemes[8]. A SPM breaks
down the surgical procedure into a succession of phases corresponding to the main
periods of the intervention (e.g. abdominal closure). Each phase is composed of
one or more steps corresponding to a surgical objective (e.g. resect the pouch
of Douglas). A step is composed of a sequence of activities which describe the
physical actions performed by an actor. An activity is broken down into different
components: the action verb (e.g. cut), the target involved in the action (e.g.
the pouch of Douglas) and the surgical instrument used to perform the action
(e.g. a scalpel). Lower granularity levels are closer to kinematic data, such as
surgemes and dexemes. A surgeme is defined as a surgical motion with explicit
semantic meaning (e.g. grab), where, a dexeme is a numerical representation of
the performed physical motion (e.g. go left). A SPM is usually acquired manually
thanks to human observers [9]. Recent advances in machine and specifically deep
learning suggest limiting human intervention in SPM acquisition. For example,
automatic recognition methods have been studied for phases [10, 11], steps [12, 13]
or activities [5, 14]. However, most of the proposed methods require prior manual
annotations for training purposes.

Manual annotations of surgical procedures are mostly performed by observers
with medical background where their efforts are incredibly costly, time-consuming
and could bring variability into the data because of the subjective nature of the
task. Use of public data-set such as JIGSAW [15], DIONE [16] or Cholec80 [11] may
reduce the number of needed annotations by relying on transfer learning strategies
for instance. Other strategies are currently studied to reduce the amount of manual
annotations by learning from weakly annotated data (e.g. Auto-Encoder) or gen-
erating data from existing ones (e.g. Generative Adversarial Networks (GAN)).
Recently, Zisimopoulos et al. [17] demonstrated the feasibility to train a neural
networks from manually annotated surgical simulated data and validated it on
a real data-set. Following such idea, we hypothesize it is possible to develop an
automatic recognition method trained on simulated data.

In this paper, we propose a new approach for automatic generation of SPM
from a simulated environment. We also compare performances of manual annota-
tions from various observers with automatic annotation that we developed for this
purpose.

2 Material and Method

The proposed method, called ASURA (Automatic SimUlatoR Annotator) is sum-
marized in figure 1. It consists in converting information provided by a virtual-
reality (VR) based simulator into a SPM at different granularity levels: phases,
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steps, and activities. The final transcription is processed, after filtering, based on
rules described in a configuration file.

Fig. 1: Automatic SimUlatoR Annotator (ASURA) workflow.

We propose to use VR scene information provided by VR based simulators,
including pose of each VR object, collision between them, as well as kinematic
information. With this information, we extract boolean “flags”, called “simulator
information”, for each time-step. These flags are set to true if the conditions they
represent occur (e.g. collision between objects A and B).

2.1 Pre-filtering

To limit artifacts due to the noise in simulator information, signals are filtered.
All signals being boolean, the new binary value at instant t is defined thanks to a
majority voting in the window [t−N ; t+N ], where N is an user-defined parameter.

2.2 Activities, steps and phases generation

The configuration file is used to the different rules for transcription. It is composed
of:

– the meaning and type of each information from the simulator information file;
– the vocabulary describing the performed task;
– the rules allowing the transcription into a SPM.

Using this configuration file, the software is able to interpret, at each time
step, the binary filtered data into pseudo-activities. A pseudo-activity is an ac-
tivity which only takes into account the interaction between objects without any
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contextual information. To add this contextual information, the software inter-
prets additional information such as present and past others filtered flags, and the
past of the activity sequence.

Figure 2 illustrates this process with an example. The configuration file allows
interpretation of the flags relative to the collisions with the left grasper (“0 1 0
0”) as the pseudo-activity “tool-tip-1 of left grasper touch object B”. Without any
contextual information, it is not possible to completely understand the meaning of
this pseudo-activity. The contextual information is composed by the filtered flag
relative to the closure of left grasper and the activity at t−1. We see a modification
of the closure flag from true at t− 1 to false at t and the previous activity consists
of holding the object B, i.e. both tool-tips were in contact with this object. From
this information: opening of the grasper, previously two contacts with object B
and now only one, we could deduce that the current activity is “left grasper drops
the object B”.

Fig. 2: Example of activity generation at instant t. The configuration file allows
the interpretation of the filtered information into a pseudo-activity. Then, the
pseudo-activity is converted into activity thanks to contextual information.

As a reminder, a step is a sequence of activities corresponding to a surgical
objective. We deduce the current step using both the current activities and the
filtered information. The rules define the conditions of the beginning and the
ending of each step according to activities and scene information. For instance,
one step of the peg-transfer task consists in the transfer of one block from the left
to right (see subsection 3.2) and could be characterized as follows:

– Start: first activity concerning the block to transfer;
– End: the block is correctly place at the right part of the board.

The same principle is used for phase annotation, where a phase is composed
by steps and deduced from current step and filtered information.

3 Validation

We compare performances of automatic and manual annotations in the context of
a peg-transfer task performed on a VR simulator.
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3.1 Peg-transfer simulator

The VR simulator (figure 3) used for the data acquisition was developed at the
department of mechanical engineering at the University of Tokyo [18] and is com-
posed of:

– A core laptop (i7-700HQ, 16Go RAM, GTX 1070);
– A 3D rendering setup: 3D screen (24 inches, 144Hz) and 3D glasses;
– Two haptic user interfaces.

A non-medical participant familiarized with the simulator performed five ses-
sions of the peg-transfer task on the VR simulator. The mean duration of the
sessions was 178±24 seconds (table 1).

Table 1: Duration of peg-transfer sessions.

session 1 2 3 4 5 Mean
Duration (s) 216 181 163 175 155 178±24

For each session, the simulator provide video and simulator information as
output, synchronized at 30Hz.

Fig. 3: VR simulator setup.

3.2 Validation data

The peg-transfer task [19] consists in transferring six colored objects, called blocks,
from left to right first and then reverse through bimanual manipulations. We
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identified two phases, twelve steps, six action verbs, two targets, and one sur-
gical instrument (Table 2). Each phase corresponds to one transferring direction.
Each step (six by phase) corresponds to the transfer of one block in one direction
(e.g.“Block1 L2R” corresponds to the transfer of the first block from the left to the
right). For the activities, we differentiated two targets: “block” and “other block”.
The “block” corresponds to the one which is currently transferred. “Other block”
is an additional target used to differentiate when the user accidentally interacts
with another block.

Table 2: Peg-transfer vocabulary.

Phases Steps
Activities

Verb Target Tool

Transfer Left To
Right (L2R)

Block 1 L2R Catch Block Grasper
Block 2 L2R Drop Other block
Block 3 L2R Extract
Block 4 L2R Hold
Block 5 L2R Insert
Block 6 L2R Touch

Transfer Right To
Left (R2L)

Block 1 R2L
Block 2 R2L
Block 3 R2L
Block 4 R2L
Block 5 R2L
Block 6 R2L

3.3 Surgical process model annotations

Seven observers performed manual annotations with the “Surgery Workflow Tool-
box [annotate]” software [20] based on the videos provided by the simulator. One
observer performed six annotations of each session to highlight intra-observer vari-
ability. The six others performed one annotation of each session to highlight inter-
observer variability. Each observer was previously trained to the annotation soft-
ware and learnt a complete description of each phase, step, and activity of the
peg-transfer task. To limit variability due to annotation mistakes, each annotation
was corrected retrospectively by an expert. As described in table 3, 18 mistakes
were done by the observer for the intra-observer variability study and 47 for the
inter-observer variability study. These corrections focused on vocabulary mistakes
(such as wrong target or wrong step) and left-right inversion only. Other charac-
teristics such as duration, numbers of occurrences, and observer interpretations
were not modified.

Session id 1 2 3 4 5 All
Intra-observer variability study mistakes 9 4 1 1 3 18
Inter-observer variability study mistakes 16 4 11 12 4 47

Table 3: Number of annotation mistakes corrected by an expert
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Automatic annotations were generated following the described method using
a desktop computer (E5-1607 v3 @ 3.10 GHz with 8Go RAM). The parameter
N used for the filtering window was set to 5. For each sessions, 100 automatic
annotations were generated to measure the variability of the computing time.
Table 4 summarizes the configuration for each type of annotations.

Table 4: Configuration details for each annotations type.

Annotation type
Manual

Automatic
Intra-variability Inter-variability

Observer id 1 2-7 none
Number of annotation(s)
for one session and one

observer
6 1 100

Total number of
annotations

30 30 500

3.4 Validation metrics

To monitor consistency of each annotation type, we focused our analysis on the
following metrics:

– Time required to annotate one minute of video with the annotation software
or by the automatic annotation;

– Duration to achieves phases, steps, and actions according to observers’ interpre-
tation, i.e. the duration took to perform, on the simulator, the task according
to observers’ surgical process model annotations.

For each metric and each session, we computed both mean and relative stan-
dard deviation (RSD). To highlight statistical differences between results, we per-
formed ANOVA tests were the hypothesis is validated for a p-value inferior to
0.01.

4 Results

This section describes only the most relevant results. The entire analysis is avail-
able as supplementary material.

4.1 Manual annotations: intra-observer variability study

Table 5 presents the most relevant results for intra-observer variability computed
thanks to six annotations of each session.

The average annotation duration for one minute of video is 11.8 minutes with
a (RSD) of 16.03%.

Phases, respectively “transfer left to right” and “transfer right to left”, have
a mean duration of 85.4 and 86.4 seconds with a RSD of 0.37% and 0.10%. Mean
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Table 5: Results from manual annotation for intra-observer variability study. L2R:

Left to Right; R2L: Right to Left.

Session id 1 2 3 4 5 all
Time required

to annotate
1 min. of video

(min.)

11.5 10.9 12.5 11.9 12.5 11.8
±21.13% ±18.80% ±10.00% ±13.06 ±16.22% ±16.03%

Mean duration to achieve the task (s)

P
h

a
se

s Transfer L2R
92.1 100.6 73.1 88.0 73.3 85.4

±0.24% ±0.20% ±0.90% ±0.15% ±0.36% ±0.37%

Transfer R2L
115.2 76.3 84.2 82.9 73.6 86.4

±0.10% ±0.10% ±0.06% ±0.13% ±0.36% ±0.10%

S
te

p
s Block 1 L2R

16.1 25.6 12.1 21.4 19.1 18.9
±0.95% ±0.79% ±5.69% ±1.73% ±1.26% ±2.08%

Block 1 R2L
13.6 13.8 13.4 13.9 10.7 13.1

±1.20% ±0.63% ±0.66% ±1.00% ±0.91% ±0.88%

A
ct

io
n

v
er

b
s

Catch
1.2 0.9 1.1 1.1 0.9 1.0

±8.02% ±8.79% ±9.22% ±9.78% ±10.56% ±9.27%

Hold
3.4 3.3 2.9 3.3 3.1 3.2

±4.65% ±2.35% ±4.65% ±1.42% ±1.67% ±2.95%

Touch
0.5 0.0 0.4 0.2 0.5 0.3

±29.94% ±0.00% ±9.54% ±40.37% ±21.95% ±20.36%

Average of occurrences for action verbs

A
ct

io
n

v
er

b
s

Catch
30.5 25.7 27.2 30.3 25.2 27.8

±4.97% ±5.87% ±2.77% ±3.99% ±5.85% ±4.69%

Hold
26.7 26.0 24.3 25.0 24.0 25.2

±3.06% ±2.43% ±2.12% ±0.00% ±0.00% ±1.52%

Touch
3.7 0.0 2.0 1.2 2.5 1.9

±22.27% ±0.00% ±0.00% ±34.99% ±33.47% ±18.15%

duration of step “block 1 L2R” is 18.9 seconds with a RSD of 2.08%. For step
“block 1 R2L”, it is 13.1 seconds with a RSD of 0.88%.

Action verb “catch” has on average 27.8 ± 4.69% occurrences by session with
an average duration of 1 ± 9.27% second. The action verb “touch” is not always
present in sessions (e.g. in session 2 there is no occurrence). On average, there
is only 1.9 ± 18.15% occurrences of this action verb for a average duration of 0.3
second with a RSD of 20.36%.

4.2 Manual annotations: inter-observer variability study

Table 6 presents the most relevant results for inter-observer variability computed
using one annotation for each session performed by six observers.

The average annotation duration for one minute of video is 12.7 minutes with
a RSD of 17.25%.

Phases, “transfer left to right” and “transfer right to left”, have respectively
a mean duration of 85.2 and 86.3 seconds with a RSD of 0.79% and 0.45%. Mean
duration of step “block 1 L2R” is 18.6 seconds with a RSD of 3.83%. For step
“block 1 R2L”, it is 13.1 seconds with a RSD of 2.68%.
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Table 6: Results from manual annotation for inter-observer variability study. L2R:

Left to Right; R2L: Right to Left.

Session id 1 2 3 4 5 all
Time required

to annotate
1 min. of video

(min.)

14.5 11.0 12.3 13.6 11.6 12.7
±21.74% ±13.40% ±12.10% ±17.00 ±19.78% ±17.25%

Mean duration to achieve the task (s)

P
h

a
se

s Transfer L2R
91.8 100.3 72.9 87.8 72.9 85.2

±0.91% ±0.49% ±1.60% ±0.44% ±0.53% ±0.79%

Transfer R2L
115.0 76.2 84.2 82.8 73.5 86.3

±0.64% ±0.16% ±0.61% ±0.60% ±0.22% ±0.45%

S
te

p
s Block 1 L2R

15.9 25.6 11.3 20.9 19.1 18.6
±2.60% ±3.17% ±4.67% ±6.68% ±2.02% ±3.83%

Block 1 R2L
13.5 13.9 13.5 13.7 10.8 13.1

±2.60% ±3.17% ±4.67% ±6.68% ±2.02% ±2.68%

A
ct

io
n

v
er

b
s

Catch
1.0 0.7 0.9 1.0 0.8 0.9

±23.57% ±15.13% ±18.65% ±14.21% ±21.68% ±18.65%

Hold
3.5 3.6 2.9 3.3 3.0 3.3

±6.40% ±11.49% ±5.25% ±4.36% ±3.23% ±6.15%

Touch
0.5 0.0 0.8 1.0 0.4 0.5

±46.33% ±0.00% ±56.51% ±36.02% ±21.96% ±32.16%

Average of occurrences for action verbs

A
ct

io
n

v
er

b
s

Catch
30.5 26.5 28.0 29.33 25.5 28.0

±5.77% ±6.20% ±3.19% ±3.52% ±5.41% ±4.82%

Hold
26.2 25.0 24.0 24.2 24.0 24.7

±1.56% ±3.58% ±0.00% ±1.69% ±0.00% ±1.37%

Touch
3.7 0.0 2.2 2.5 2.3 2.1

±14.08% ±0.00% ±67.94% ±51.64% ±22.13% ±31.16%

Action verb “catch” has on average 28.0 ± 4.82% occurrences by session with
an average duration of 0.9 ± 18.65% second. As for the intra-observer variability
study, the action verb “touch” has no occurrence in session 2. On average, there
was only 2.1 ± 31.16% occurrences of this action verb for a duration of 0.5 second
with a RSD of 32.16%.

4.3 Automatic annotation

Table 7 presents the most relevant results for automatic annotation. The mean
computation time, measured over 100 repetitions of each session, to generate an-
notation corresponding to one minute of video was 700 milliseconds with a RSD
of 0.44%.

Phases, respectively “transfer left to right” and “transfer right to left”, has
a mean duration of 85 and 86 seconds. Mean duration of step “block 1 L2R” is
19 seconds and 13 seconds for step “block 1 R2L”. Around 30.8 actions with verb
“catch” are present by session with a mean duration of 0.6 second. With automatic
annotation, the action verb “touch” is never present in the sessions.

Except computation time, there is no variation within the 100 automatic an-
notations.
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Table 7: Results from automatic annotation. L2R: Left to Right; R2L: Right to Left.

Session id 1 2 3 4 5 all
Time required

to annotate
1 min. of video

(ms)

698 700 700 701 702 700
±0.68% ±0.33% ±0.38% ±0.35% ±0.40% ±0.44%

Mean duration to achieve the task (s)

P
h

a
se

s Transfer L2R 91.9 101.0 73.2 88.2 72.6 85.4

Transfer R2L 115.2 75.7 83.8 82.6 73.5 86.2

S
te

p
s Block 1 L2R 16.1 25.6 11.9 22.0 19.0 18.9

Block 1 R2L 13.9 13.8 13.5 13.9 11.4 13.3

A
ct

io
n

v
er

b
s

Catch 0.6 0.5 0.7 0.7 0.5 0.6

Hold 3.1 3.2 3.1 3.4 3.0 3.2

Touch 0 0 0 0 0 0

Average of occurrences for action verbs

A
ct

io
n

v
er

b
s

Catch 38 25 31 32 28 30.8

Hold 30 28 24 25 24 26.2

Touch 0 0 0 0 0 0

4.4 Automatic versus manual annotations

The most relevant results of the statistical analysis are shown on table 8.

One of the main differences between automatic and manual annotations is the
time required to perform the annotations. As shown in figure 4, manual annotation
is 700 times more time-consuming than automatic annotation (p<0.0001). The
differences in annotation duration between the intra-observer and inter-observer
variability studies are not statistically significant (p=0.2058).

For both phases and steps the mean duration is independent of the type of
annotation, e.g. the mean duration of phase “transfer left to right” is between
85.2 and 85.4 seconds. Even if inter-observer variability are more important than
intra-observer one, differences are not significant (table 8), e.g. 2.68% vs. 0.88%
for the duration of “block 1 L2R” with p=0.8225 .

For action verb duration, differences are statistically significant between all
studies for activities shorter than one second (“catch” and “touch”), and between
automatic and inter-observer variability studies for the action verb “hold”. For
action verb occurrences, the differences were only significant for “catch” between
automatic and manual annotations, and for “hold” between automatic annotation
and inter-observer variability study.
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Table 8: p-value between automatic and manual annotations (intra-observer and
inter-observer variability) with ANOVA test. L2R: Left to Right; R2L: Right to Left;

Na: not applicable ; ∗: statistically significant.

p-value automatic vs. intra automatic vs. inter intra vs. inter
Time required to
annotate 1 min.

of video
<0.0001 ∗ <0.0001 ∗ 0.2058

Mean duration to achieve the task

P
h

a
se

s Transfer L2R 0.9732 0.9217 0.9235

Transfer R2L 0.9233 0.9482 0.9820

S
te

p
s Block 1 L2R 0.9386 0.6942 0.8225

Block 1 R2L 0.2736 0.2703 0.9964

A
ct

io
n

v
er

b
s

Catch <0.0001 ∗ <0.0001 ∗ 0.0005 ∗

Hold 0.1508 0.0025∗ 0.4964

Touch Na Na 0.0062 ∗

Average of occurrences for action verbs

A
ct

io
n

v
er

b
s

Catch 0.0002 ∗ 0.0005 ∗ 0.7517

Hold 0.0240 0.0005 ∗ 0.0531

Touch Na Na 0.7907

Fig. 4: Time required to annotate one minute of video for both automatic and
manual annotations.

5 Discussion

In this paper, we propose a new automatic strategy to convert information pro-
vided by VR simulator into annotations and resulting individual surgical process
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models. We compare the performances of automatic annotations to manual ones.
Even if we validate this strategy with a peg-transfer simulator, it could be used
with any VR environment, even a more complex one with multiple surgical tools
and targets, as long as it is able to provide object collisions and kinematic data.

Manual annotations have several limitations. First, it is time-consuming, around
12 minutes are required to annotate one minute of video. Secondly, it could intro-
duce annotation mistakes (table 3). Into our study, the most important part of the
mistakes are due to multiple targets annotations for activities (“block” and “other
block”) or missing instrument that are mainly caused by the software design. In-
deed, it is possible to have multiple targets for one activity and it is required to
specify each element, even if only one is available. Others errors are due to inat-
tention or to inversion between left and right. We also noticed a decreasing of
errors along the learning of the software. For inter-observer variability study, all
observer performed annotations on the following order: sessions 1, 4, 3, 2 and 5.
The number of mistakes decreased progressively with this order (respectively 16,
12, 11, 4, and 4 mistakes). Thirdly, manual annotation introduces variability. This
variability is more important if several observers are involved in the process; most
of the RSD are superior for the inter-observer variability study (table 6) than for
the intra-observer one (table 5). This variability is not significant for the granular-
ity level of phase and step, but is for activities and especially for their duration.
Indeed, for activities shorter than one second (“catch” and “touch”), the RSD
was superior to 9% on the intra-observer variability study and superior to 18%
on the inter-observer one. Differences in the number of occurrences are not signif-
icant (respectively p=0.7517 and p=0.7907) whereas the duration differences are
(p=0.0005 for “catch” and p=0.0062 for “touch“) and could be the consequence
of different causes such as:

– Each observer has its own interpretation of the beginning and the end of each
activity, even if a precise description is provided;

– The software used to annotate is not able to navigate frame by frame within
the video. It could be difficult for observers to start or stop activity at the
exact transition frame.

Automatic annotation is 700 less time-consuming than manual one and is very
reproducible. However, automatic annotation is restricted by the available infor-
mation in the VR simulator. As shown on table 7, the automatic annotation is not
able to detect any action verb “touch”. This is due to the available flags which do
not allow distinction between catching and touching actions. Indeed, both actions
start when a tool-tip is in contact with a block but are differentiated by the user
intention. This intention is reflected by the side of the tool-tip in contact with
the block. If it is the interior side, the intention is to catch the block, in other
cases is to touch it. Currently, available flags do not differentiate tool-tip sides,
resulting in more occurrences of “catch”. We are currently working on this issue.
Moreover, since “touch” actions are very short, the mean duration is impacted by
this miss-detection. This could explain the significant differences (table 8) between
automatic and manual annotations for “catch” verb (number of occurrences and
duration).

In addition to the annotation duration, automatic annotation requires effort
on simulator development and configuration file creation. Nevertheless, the aim of
this work is to propose a way to generate data thanks to existing simulators, thus
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the efforts to develop simulator are not inherent to this work. On the other hand,
the creation of the configuration file for automatic annotations requires similar
effort than the task definition for manual ones. In both cases, vocabulary and
rules are necessary. Automatic annotation requires rules definition in accordance
with available flags. These additional efforts are only realized once, whereas efforts
for manual annotation is achieved for each new session. Obviously, the amount of
work is also proportional to the number of actions involved in the simulated task.
When simulators address complex and more realistic tasks with a lot of different
actions, the workload proportionally increases for creating the configuration file,
as well as for manual annotation.

Surprisingly, for action verb “hold”, the differences in term of duration and
number of occurrences are significant for automatic annotation versus inter-observer
variability study (respectively, 0.0025 and 0.0005) but not for other configurations.
This could be explained by:

– The fact that, as for activities shorter than one second, each observer had its
own interpretation of the beginning and the end of each activity;

– The observer who participated to the intra-observer variability study is the
person who defined the rules for both types of annotation (automatic and
manual).

Thus, it makes sense that the observer of this intra-observer variability study has
an annotation behavior closer to the automatic one than the observers of the
inter-observer variability study.

6 Conclusion

Automatic annotation has multiple advantages compared to manual. It is faster,
accurate and not subject to any variability. Requiring collision and kinematic data
only, it could capture actions even if the field of view is blocked or if they take
place outside of it. Automatic annotation could also be computed online with a
delay of N samples (parameter used for flag filtering) which eases the data cap-
ture during surgical training. Moreover, if all activities could be interpreted by
the provided flags, it does not introduce any mistake into the annotations as re-
gard to human-based observations. From the authors perspectives, easily providing
semantic information with raw data (e.g. images, kinematics, etc.) from virtual en-
vironment helps to understand surgical behavior with a dual objective: improve
pedagogical guidance for trainees and also generate meaningful dataset for future
artificial intelligence development in the context of computer-assisted surgery.
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