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Abstract6

Purpose We aim to perform generation of angiograms for various vascular struc-7

tures as a mean of data augmentation in learning tasks. The task is to enhance8

the realism of vessels images generated from an anatomically-realistic cardio-9

respiratory simulator to make them look like real angiographies.10

Methods The enhancement is performed by applying the CycleGAN deep network11

for transferring the style of real angiograms acquired during percutaneous inter-12

ventions into a data set composed of realistically simulated arteries.13

Results The cycle-consistency was evaluated by comparing an input simulated14

image with the one obtained after two cycles of image translation. An average15

structural similarity (SSIM) of 0.948 on our data sets has been obtained. The ves-16

sel preservation was measured by comparing segmentations of an input image and17

its corresponding enhanced image using Dice coefficient.18

Conclusions We proposed an application of the CycleGAN deep network for en-19

hancing the artificial data as an alternative to classical data augmentation tech-20

niques for medical applications, particularly focused on angiogram generation. We21

discussed success and failure cases, explaining conditions for the realistic data aug-22

mentation which respects both the complex physiology of arteries and the various23

patterns and textures generated by X-ray angiography.24

1 Introduction25

Deep learning methods have quickly gained acceptance in the field of medical26

image analysis. However, in order to provide satisfying results, machine learning27
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techniques require a large amount of significant data. In the medical community,1

it is difficult to obtain medical data for a number of reasons. First of all, the large2

resource needed to collect and manage a database is a major hurdle. Secondly,3

obtaining expert annotations of imaging data for supervised and semi-supervised4

learning is a rather expensive and time-consuming process. Thirdly, legal consider-5

ations regulate the sharing of medical data, which varies from country to country6

and are subject to ethical committees and patient’s approval.7

For natural images research, data augmentation is widely used to increase the8

number of samples. However, standard data augmentation (mainly data warp-9

ing) should be used with caution in a medical context. Indeed, in the case of10

angiographies, vessels must not be unrealistically wide or narrow, as structural11

and anatomical information could be used for further analysis and diagnosis of a12

patient [7]. This is achieved by regulating the maximum amounts of translation,13

rotation and non-rigid deformation applied to obtain plausible physical variations14

of the medical images [11]. However, this often comes down as a lengthy and costly15

process that requires a medical expert’s intervention.16

In this paper, we are proposing a new approach to address the problem of17

an insufficient amount of training data in medical image analysis applications,18

such as vessel segmentation, detection, and classification from X-ray angiography.19

Such method has already been proven successful for the enhancement of realism20

of synthetic eye images [13], where the authors show an improvement of learning21

accuracy. We propose a solution of the given problem by applying CycleGAN [15]22

to perform a style transfer from real images obtained using X-ray based techniques23

to artificial images generated by the simulator [12] (Figure 1). The proposed ap-24

proach has the potential to become a more affordable and convenient way of gener-25

ating more training data while conserving the anatomical integrity of arteries and26

realistic X-ray patterns. Furthermore, because the generation process is entirely27

controlled, the annotations of those images can also be easily generated.28

The contributions of this work are the following:29

1. Proposition of an anatomy-based data-augmentation technique for X-ray an-30

giography.31

2. Evaluation of the CycleGAN method for images containing low contrast and32

a high amount of noise.33

Fig. 1 Image translation between two domains: simulated data (set A) and real angiograms
(set B).
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2 Related work1

2.1 Standard data augmentation2

Deep learning approaches require a large amount of data to train a model that3

not only provides good results on the test at hand but also avoids over-fitting.4

However, many domains, such as medical imaging, suffer from a shortage of data.5

A common approach is to take a smaller but labeled data set and augment it6

in a way that improves the effectiveness of models [9]. Amongst them, image7

augmentation [4,5, 8, 14] and data augmentation guided by expert knowledge [14]8

are some of the most popular techniques. The most generic approach for image9

augmentation is data warping. It consists of performing geometric transformations10

such as translation, reflection, and cropping, as well as changing its color scheme.11

In [4] elastic deformations are the main source of variation in mammography12

at a lesion level. In [5, 28] data warping is used to obtain more data samples of13

fundus images depicting retinal blood vessels for further segmentation. Same is14

applied in [8] for augmenting datasets of brain tumors. Tumors do not have a15

definite shape and therefore may exhibit large spatial and structural variability,16

which is not the case for other objects, such as heart vessels which have definite17

unchangeable structure.18

In [14] geometric and color augmentation is combined with specialist knowledge19

about skin lesion symmetry (anti-symmetry). Lesion segmentation is approximated20

to ellipse whose axes are then used for controlling varied distortions of the original21

lesion sample. The segmentation mask is used so that symmetry is preserved and22

further classification of lesions could be done.23

2.2 GAN-based methods for data augmentation24

Another approach is to synthesize new data using generative adversarial networks25

(GANs) [2]. The idea is to use two competing neural networks: a generator and26

a discriminator (or adversary). A generator is generating a sample learning from27

the distribution of training data. A discriminator is evaluating how similar is the28

output of the generator to true data samples, by calculating the adversarial loss29

and acting like a two-class classifier: generated image either belongs to a target30

distribution or it does not. For medical image synthesis, GANs have become a31

more generic solution [45] as they allow creating more variety of data (appearance32

of a specific pathology, different imaging protocols) comparing to traditional data33

augmentation. GAN-based methods include unconditional and conditional medical34

image synthesis.35

The first group of methods implies that image is generated from noise without36

any additional information. Liver lesions [16], lung nodules [1], and brain MR37

images [17] generation are some of many successful cases. In [29], unconditional38

GANs are used for obtaining synthetic fundus patches to obtain more data for39

segmentation task.40

The second group (conditional GANs) are methods where additional informa-41

tion is provided to generate images with desired properties. An image is the most42

common condition used for such supervision, which was first offered in “pix2pix”43

framework [3]. The task of mapping is done using paired examples for training44
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when every image from a source domain A has a corresponding pair from a target1

domain B. During training, a generator takes an input image, realA and tries to2

map it to target domain B, measuring success by comparing a generated image,3

fakeB, to ground truth, realB, which serves as a strict condition. Successful appli-4

cations of conditional GANs for vessels include those for synthesizing retinal fun-5

dus images, all using vessel map as conditional information for generator [18–21].6

In [22] a task of generating synthetic X-rays of the lumbar spine is tackled using7

conversion from sagittal to coronal radiographic projections of the trunk.8

2.3 Data augmentation for vessels9

Mentioned applications of both standard and GAN-based approaches for data10

augmentation of vessels images come down to tasks done on publicly available11

datasets: retinal fundus imaging (datasets DRIVE [23], STARE on which most12

of the vessels computer vision tasks are trained and tested so far); lung vessels13

CT imaging (VESSEL12 challenge [24] for vessel segmentation); coronary arteries14

(CAVAREV [25], CoronARe challenge [26] for 3-D reconstruction, this dataset has15

projections of thorax with left coronary tree only; IVUS dataset [27] of ultrasound16

images for vessel segmentation). In recent work [30], cerebral vasculatures data is17

synthesized and coupled with real clinical data to achieve a state-of-the-art perfor-18

mance of a deep learning model. To our best knowledge, there are no solutions for19

tackling the problem of insufficient data when it comes to computation of biophys-20

ical measurements in pediatric interventional cardiology where a little amount of21

data is available. With this work, we, therefore, want to start closing this gap and22

initiate further research into generating cardiac angiography data.23

2.4 Enhancing realism of angiograms24

While standard data augmentation techniques imply producing more data by25

warping given samples to achieve variety, our idea is to first simulate varied cardiac26

angiograms and then to enhance them for obtaining realistic images. This puts our27

approach closer to GAN-based methods which allow generating data with addi-28

tional conditions. For our work, we wish to generate realistic images from simulated29

images, where the vessel’s geometry is properly preserved, while also introducing30

radiographic noise and angiography-related artifacts. An input image is artificial31

data and an output image is realistic-looking data.32

This modification can be interpreted as an image-to-image translation task and33

is a core of many cross-modality image synthesis applications of GANs. Some of34

them require paired data, like in the “pix2pix” framework [3]: PET (positron emis-35

sion tomography) to MR (magnetic resonance) translation of brain images [31], T1-36

and T2-weighted MRI to MRA (magnetic resonance angiography) translation of37

brain images [32], CT (computed tomography) to PET translation of thorax [33]38

and liver images [34]. Paired data is obtained by co-registering different image39

modalities.40

We want to avoid expensive and time-consuming labeling. Frameworks like41

CycleGAN [15] and similar methods [35, 36] relax this labeling constrain. Cycle-42

GAN does not use any labeled examples and instead of building image-to-image43
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mapping, creates a translation between domains. In order to maintain a meaning-1

ful mapping between images from source and target domains, a second GAN is2

introduced which maps an output of the first generator back to the original input.3

The intuition behind this is similar to language translation: to check whether a4

French sentence has been correctly translated to Spanish we can translate it back5

to French and compare with the initial sentence to evaluate the "quality" of the6

translation. In CycleGAN model (Figure 2), this role is performed by an addi-7

tional component in the loss function called cycle-consistency-loss, which ensures8

forward and backward cycle consistencies:9

Lcyc(G,DA, B,A) = Ea∼pdata(a)[|F (G(a))− a|1] + Eb∼pdata(b)[|G(F (b))− b|1].

Other two components are adversarial losses for two generators. Thus, the10

objective of CycleGAN includes three losses: adversarial loss for the first generator,11

adversarial loss for the second generator and cycle-consistency loss.12

L(G,F,DA, DB) = LGAN1
+ LGAN2

+ λcyc(G,DA, B,A),

where λ controls the relative importance of the objectives.13

Fig. 2 (a) CycleGAN model contains two mapping functions G : A→ B and F : B → A, and
associated adversarial discriminatorsDB andDA.DB encouragesG to translateA into outputs
indistinguishable from domain B, and vice versa for F . (b) forward cycle-consistency loss: for
each image from the domain A: realA → fakeB = G(realA) → fakeA = F (G(realA)) ≈
realA;(c) backward cycle-consistency loss: for each image from domain B: realB → fakeA =
F (realB)→ fakeB = G(F (realB)) ≈ realB. (d) CycleGAN architecture which includes two
generator and two discriminator neural networks.
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CycleGAN framework, within the last years, became already widely used for1

various cross-modality translations tasks, such as: MR to CT translation of my-2

ocardium [37], cardio-vascular volumes [38], musculoskeletal [39], brain [40] im-3

ages; T1 to T2 translation of brain images [41–43]; Real to Synthetic translation4

of endoscopy images for monocular depth estimation [44].5

Theoretical ability to do cross-domain translations in an unsupervised fashion,6

empirical proofs of accomplishing this task for various medical image applications7

encouraged us to refer to CycleGAN model. We, therefore, have an objective of8

expanding the quality of simulated cardiac angiography data by enhancing its9

realism using CycleGAN framework.10

3 Methodology11

3.1 Data description12

X-ray angiography sequences - or angiograms, are two-dimensional X-ray moving13

sequences. They are used in percutaneous interventions for the treatment of vas-14

cular disease. 2D X-ray angiography allows for the visualization of the arteries in15

real-time during the intervention [7] and the guidance of catheters.16

Data acquisition. The angiographies used in our proposed work were ac-17

quired from different patients with congenital heart disease from the Sainte-Justine’s18

Hospital (Montreal, Canada). These data were collected offline and anonymized19

after approval by the Sainte-Justine’s Institutional Ethics Review Board. The an-20

giograms were acquired by a C-arm Infinix-CFI BP (Toshiba Medical). Samples21

are given in Figure 3. The angiograms comprise different vascular structures such22

as pulmonary, aorta, right coronary artery (RCA) and left coronary artery (LCA).23

Fig. 3 Examples of angiograms (5 frames of each sequence only).

Grouping the data. To prove the proposed approach works, we needed to24

experiment first with smaller data sets, separating X-ray scans of different vessels.25

Thus, we grouped all angiography sequences into two categories: RCA and LCA.26

Frames of different sequences of each category can be seen in Figure 4.27
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Fig. 4 Result of grouping angiographies into two different categories (4 randomly selected
frames of each category only): right coronary arteries, left coronary arteries.

Analyzing the data. X-ray angiography is known for different imaging ar-1

tifacts. Some sequences depict sternal sutures which means the patient had pre-2

vious operations. While this can alter the result of segmentation, for our goal3

it is a realistic-looking-data style we want to achieve. We can see guiding wires4

and catheter as these are tools used during catheterization to introduce the con-5

trast agent. Visibility of vessels depends on the diffusion of the contrast agent6

in the blood flow. Therefore, the vessels are not always entirely visible on the7

angiograms [7]. This results in many empty frames containing only background8

information which are not useful for our applications. Hence, we removed these9

frames from sequences.10

3.2 Simulating artificial data11

The data domain set is composed of artificial data which we want to modify in12

order to make it look like the target domain, i.e. real angiograms.13

XCAT simulator. Artificial images were obtained using XCAT 2.0 motion14

simulator [12]. It is a CT simulation tool based on the 4D extended cardiac-torso15

phantom, a whole-body computer model of the human anatomy and physiology16

based on NURBS surfaces. XCAT provides an accurate representation of the com-17

plex human anatomy and has the advantage, that the shape of its organs can18

be altered to realistically model anatomical variations and patient motion [12].19

Those biological constraints make this tool particularly adapted to our process20

of obtaining more realistic data. Using XCAT, we obtained projection images of21

different vessel types. They already can be directly used as training data e.g. for22

segmentation and reconstruction tasks [6]. However, despite realistic anatomy, the23

textures of projections are still not realistic enough and a learning model trained24

solely on simulated data might fail when applied to real data during validation or25

testing, given all the artifacts present in real data which the simulator does not26

create.27

Simulator parameters. The main advantage of XCAT is its ability to sim-28

ulate anatomically diverse patient models as we choose the gender of a patient,29

indicate whether a patient is healthy or has any (e.g. heart) lesions, change the30

motion mode (respiratory, cardiac motion, or both), etc. For our proposed work,31

we used only one set of parameters (default), as the calculation of CT projections32
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is time-consuming due to mathematical complexities behind the simulator [12].1

Apart from the simulator parameters, we can modify the projection parameters2

which affect the acquisition process, e.g. the angle of projection. Even though the3

shape of the vessel is preserved when rotating, the final images will serve as com-4

pletely different samples for training any model. Examples of simulated images are5

presented in Figure 5.6

Fig. 5 Examples of simulated images of two vessel types: first frames of right coronary ar-
teries and left coronary arteries sequences, with different angiographic views (lateral, cra-
nial,caudal,left anterior oblique, right anterior oblique).

3.3 Data sets and training details7

The CycleGAN framework requires two data sets: set A and set B. In our case, set8

A, or source domain, is the artificial data from the simulator and set B, or target9

domain, is real, clinical, data.10

We formed small data sets by grouping together sequences of real data com-11

prising up to three angiographic view projections, and sequences of artificial data12

from similar views, e.g. 0-40 degree angulation for RCA and 0-20 degree angulation13

for LCA. As we can see in Figures 4 and 5, real and simulated images have many14

differences in textures. Additionally, real data contain specific structures such as15

catheters, wires, balloons, and stents unseen in simulations. We limited our data16

sets by choosing RCA and LCA with fewer objects in images. We first grouped17

together training data: trainA, trainB, and then selected a few images from each18

of the sets as testing data: testA and testB accordingly, and removed them from19

training data. RCA data set: the training set size was 130 for simulated, 154 for20

real data. LCA data set: 138 for simulated, 16 for real.21

We used the implementation of CycleGAN by X. Hu 1. All the networks were22

trained from scratch with a learning rate of 0.0002. The weight for the cycle23

consistency loss λ was 20 for RCA and 30 for LCA (default is 10). Each model24

was trained for 200 epochs. After every 10 epochs, we launched the testing phase,25

i.e. translating of testing images into real style and back, and saved the results.26

1 Xiaowei Hu, "Tensorflow implementation for learning an image-to-image translation with-
out input-output pairs", https://github.com/XHUJOY/CycleGAN-tensorflow, 2017
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4 Results and discussion1

4.1 Visual examination2

Based on the convergence of losses, we chose the optimal number of epochs for3

training each model: for RCA it was 50, for LCA it was 160 epochs. Each model4

was still trained for 200 epochs (Figure 6) for further analysis of how this and5

other hyper-parameters (e.g. λ coefficient) are influencing training.6

Fig. 6 Results of tests after different number of epochs.

Firstly, we observe that the longer the training is, the better is the quality of7

output images, i.e. they are more smooth and don’t have chalkboard artifacts like8

outputs on early stages of training (Figure 7).9

Fig. 7 Chalkboard artifacts that are especially visible on images produced by models trained
for a small amount of epochs.

Furthermore, we see that over the time of training the RCA model starts10

deforming vessel shapes, while LCA model displays only slight distortion. This is11
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Fig. 8 Clinical objects that are visible in the later RCA results: models trained for 150 and 170
epochs. Highlighted are wires and catheters generated by CycleGAN trained on RCA dataset.

due to λ which is s a key hyperparameter for preserving the structure of vessels.1

A small λ would fail to prevent big distortions, while a too large value would2

suppress fine details in the resulting image. Additionally, we see more various3

clinical objects, such as catheters and wires (Figure 8), appearing in RCA results4

(even if a vessel shape itself may get deformed). This is possible because the number5

of available training images from domain B (real angiographies) is much larger for6

RCA data set than the one for LCA (154 against 16). Therefore, the more variety7

in training data, the more variety is possible in resulting images (given, domains8

are still corresponding).9

We observe that CycleGAN model is able to transfer radiographic noise and10

texture of real X-ray angiography images onto simulated ones, often together with11

additional clinical objects (if they are present in training data). Quality of transla-12

tion depends on the amount of training data available, the number of epochs and13

λ weight of cycle-consistency loss.14

4.2 Quantitative evaluation15

Quantitative evaluation of generative models is often a challenging task, especially16

when experimental setting doesn’t imply having ground truth images for testing17

and validation. So, for analyzing the performance of our model beyond the vi-18

sual judgments, we utilized two ideas: cycle-consistency and vessel segmentation19

(Figure 9).20

During its training, CycleGAN model is using cycle-consistency loss as the dif-21

ference between realA and fakeA which it aims to minimize. To evaluate quanti-22

tatively and show which level of cycle consistency our model reached, we measured23

the similarity between input images and output images after one cycle of trans-24

lations, as shown in Figure 9. We used NRMSE (normalized root mean squared25

error), SSIM (structure similarity), and PSNR (peak signal-to-noise ratio) met-26

rics, which are the most common metrics for measuring image similarity. Results27

are given in Table 1. According to all the metrics, RCA performs better at A to28

B translation than LCA, having lower error (average of 0.029), higher structural29

similarity (average of 0.960) and higher PSNR value (31.303). LCA, on the other30

hand, has the highest error (0.27) while for other models this metric is almost31

equal to 0.1 (and even less, 0.03, for RCA).32

Second criteria we used for quantitative evaluation of the obtained model is33

segmentation of input and output images to measure how well vessel shapes are34
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Fig. 9 Visual representation of our evaluation approach. (a) in translation A → B → A
we compare simulated (realA) with fake_simulated (fakeA) images for measuring cycle
consistency, and compare segmented simulated (realA) with segmented enhanced (fakeB)
images for measuring shape preservation; (b) vice versa for translation B → A→ B

DATASET
and translation direction

NRMSE SSIM PSNR DICE
mean st.dev mean st.dev mean st.dev mean st.dev

RCA A->B 0,029 0,010 0,960 0,003 31,303 2,927 0,718 0,015
RCA B->A 0,088 0,028 0,738 0,018 21,960 2,787 0,589 0,032
LCA A->B 0,270 0,192 0,935 0,022 17,474 7,200 0,637 0,074
LCA B->A 0,085 0,008 0,761 0,007 21,486 0,795 0,454 0,030

Table 1 Different similarity metrics (NRMSE, SSIM, PSNR) for evaluation of cycle-
consistency loss, and Dice scores for evaluation of vessel preservation given for each data
set and each translation direction.

preserved (Figure 9). First, manual segmentation of vessels was done for input1

testing images and corresponding output images produced by CycleGAN (with2

the white color marking vessels, and black color marking background). Then, an3

overlap of obtained binary images was calculated using the Dice metric. Results of4

segmentation evaluation are presented in Table 1 (last column) and examples of5

segmentation are given in Figure 10. Both images of overlays and Dice scores values6

display that RCA and LCA models are performing better at A to B translation7

(RCA A to B, LCA A to B) than at the opposite one. In the enhanced images,8

original physiology of vessels is preserved, though their shapes seem to be slightly9

thinner which have caused Dice scores to be 0.718 and 0.637 for RCA and LCA10

data sets, respectively.11

Recommendations. Based on the different results explored above, authors ad-12

vise to take into consideration the following:13

1. Sizes of training sets for GANs. The number of 100-150 real images should be14

sufficient for training a good model, while a small number (10-50) may lead to15

slow convergence and overfitting.16

2. Weight of the cycle-consistency component in the loss function (λ). A large λ17

(e.g. 30) suppresses fine details as well as extra variations in the resulting image,18

while a too small value (e.g. 10) fails to prevent deformations. An average value19

(e.g. 20, as used for RCA data set) should be optimal for our task.20
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Fig. 10 Segmented images overlayed on top of each other for visual comparison. White color
marks segmentations of original input images, and red color marks segmentations of images
produced by CycleGAN.

3. Number of epochs. As we see on Figure 6, the more epochs we train our model1

with, the fewer image artifacts we obtain (chalkboard ones, white spots, found2

at early stages), but the more overfitting to a training set our models are.3

Providing this, we recommend evaluating results obtained after a different4

number of epochs to choose the best model for further style transfer.5

5 Conclusions and future works6

We introduced a new application of unsupervised image translation for generat-7

ing realistic-looking angiograms from simulated ones. Our approach can be used8

with the purpose of obtaining more data for training and evaluating medical im-9

age processing methods for vessels specifically. We used CycleGAN and tuned its10

parameters to achieve the best results for RCA and LCA data sets.11

One of the promising applications of our pipeline is generating more data and12

compiling it into a public dataset of coronary artery 2D images with corresponding13

annotation information.14

Another application of the method is implementing a cross-modality translation15

but specifically for angiograms. The objective is to train models that learn style16

(e.g. noise and artifacts distribution) specific to different acquisition systems so17

that available angiography data could be used together for training and testing of18

other learning models.19

Finally, results of B to A translation (real → simulated) suggested another20

area of application: unsupervised vessel segmentation where source domain is real21

angiograms and target domain is segmentation masks of simulated images, which22

can be obtained by applying Hessian-based filters.23

Future works include experimenting with more data sets (other angiographic24

views, types of vessels i.e. aorta and pulmonary, bones, etc.); using obtained mod-25

els as pre-trained models for other data sets; keeping empty background frames in26

training data; adding catheters, wires as a style; improving evaluation of method27

by implementing a "real vs fake" perceptual study with human observers; training28

similar models with different modality vessel images and with segmented images.29
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