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Abstract
Purpose Intravitreal injection is among the most frequent treatment strategies for chronic ophthalmic diseases. The last
decade has seen a serious increase in the number of intravitreal injections, and with it, adverse effects and drawbacks. To tackle
these problems, medical assistive devices for robotized injections have been suggested and are projected to enhance delivery
mechanisms for a new generation of pharmacological solutions. In this paper, we present a method aimed at improving the
safety characteristics of upcoming robotic systems. Our vision-based method uses a combination of 2D OCT data, numerical
simulation and machine learning to classify the range of the force applied by an injection needle on the sclera.
Methods We design a neural network to classify force ranges from optical coherence tomography (OCT) images of the
sclera directly. To avoid the need for large real data sets, the network is trained on images of simulated deformed sclera. This
simulation is based on a finite element method, and the model is parameterized using a Bayesian filter applied to observations
of the deformation in OCT images.
Results We validate our approach on real OCT data collected on five ex vivo porcine eyes using a robotically guided needle.
The thorough parameterization of the simulations leads to a very good agreement between the virtually generated samples
used to train the network and the real OCT acquisitions. Results show that the applied force range on real data can be predicted
with 93% accuracy.
Conclusions Through a simulation-trained neural network, our approach estimates the force range applied by a robotically
guided needle on the sclera based solely on a single OCT slice of the deformed sclera. Being real-time, this solution can be
integrated in the control loop of the system, permitting the prompt withdrawal of the needle for safety reasons.

Keywords Finite element modeling · Bayesian inference · Artificial neural networks · Force estimation in robotics

Introduction

Intravitreal injections are among the most common surgi-
cal interventions in ophthalmology with more than 4 million
injections worldwide in 2014 alone [1]. This procedure is
principally used in the treatment of diabeticmaculopathy and
for injecting vascular endothelial growth factor inhibitors in
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the treatment of age-related macular degeneration. Besides,
we observe an increasing demand for such therapy due to
the growing prevalence of diabetic patients and aging demo-
graphics. Intravitreal injections are mostly performed by
doctors, and the cost of such therapy has to be reduced. The
increasing workload and the reduced reimbursement make it
difficult for hospitals to handle the situation. The time spent
by the clinicians performing the injections has to be mini-
mized while preserving the precision and the safety of the
patient.

At the same time, robotic assistance in ophthalmologypro-
vides the ability to improve manipulation skills, along with
shorter and safer surgeries [2]. To this end, Ullrich et al. [1]
proposed a robotized intravitreal device capable of assisting
injections into the vitreous cavity. However, designing such
robotic systems requires to solvemultiple challenges in terms
of safety, cost and time efficiency and usability. The position
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accuracy and the orientation of the needle are of particu-
lar interest since the injection must be performed in a small
region (the pars plana) of the eye. If the region is missed,
damage of the eye lens or the retina might occur. In addition
to accurate positioning, the ability to estimate or measure the
force exerted by the needle on the sclera during the procedure
could offer an important additional safety for the patient [3].

As a matter of fact, the knowledge of the force plays
a central role in the control loop of surgical robots for
patient safety during robot-assisted interventions [4]. The
force can be either measured through force sensors or esti-
mated through vision-basedmethods. The use of force-based
control algorithms allows for an improved human–machine
interaction,more realistic sensory feedback and telepresence.
Beyond this, force sensing or force estimation can facilitate
the deployment of essential safety features [5]. A consider-
able amount of work relying on force sensors has previously
been done, focusing on the development of miniaturized
devices to ease their integration with actual systems. Force
sensors usually need tomeet several additional requirements,
such as being water resistant, sterilizable and insensitive to
changes in temperature [6]. The major limitation of conven-
tional sensors is thus the associated cost since most surgical
tools are disposable [5]. To overcome this point, alternative
solutions have been proposed, such as qualitative estimation
of forces based on images [6,7]. Mura et al. [7] introduced a
vision-based haptic feedback system to assist the movement
of an endoscopic device using 3D maps generated with a
shape-from-shading method where the 3D shape of the sur-
face is recovered from a 2D image of that surface. Haouchine
et al. incorporated the use of a biomechanical model of the
organ in addition to the 3D maps to estimate force feedback
in robot-assisted surgery. This approach is, however, limited
to the ability to evaluate tissue properties of the organ quan-
titatively [8].

Deep learning has already been suggested to improve
existent characteristics of robot-assisted surgeries such as
instrument segmentation and detection [9], as well as force
estimation. For instance, in [8], interaction forces in mini-
mally invasive surgeries are estimated with recurrent neural
networks using camera acquisitions combined with kine-
matic variables and deformation mappings. In a follow-up
paper, Aviles et al. [10] used a neuro-vision-based approach
for estimating applied forces in the same context. In [11],
authors used two neural networks to classify muscle force
exertion levels to prevent musculoskeletal disorders based
on features extracted from video data and blood volume
changes. However, in all these approaches an intermediate
step to determine the surface deformation is required.

Our method consists of estimating contact forces directly
from an OCT image of the scleral deformation without
the need for a specific image feature extraction method
beforehand, as in [8,10]. This work is built on top of our pre-

vious paper [12]. The technique relies on an image classifier
for estimating force quantiles during robotized intravitreal
injections. An imperative requirement for machine learning
algorithms to work is the huge quantity of data to train on.
Currently since intravitreal injections are executed manu-
ally, there is no available information on the force induced
by the needle. Hence, we propose to build a biomechani-
cal model of the sclera to generate a very large number of
force-OCT image pairs, which are then used for training
any supervised machine learning method. We will show that
this approach allows us to avoid the need for large data sets
of real OCT images. The simulations are parameterized to
match experimental results and compensate for the absence
of real data. The parameterization can be carried out with
different approaches. In our previous work [12], we man-
ually matched the simulations with some real acquisitions
performing a grid search. Alternatively, simple optimization
algorithms can be used to minimize the errors between the
output of the simulation and the OCT image over the set of
possible parameters. However, in the view of an online esti-
mation of the parameters, we choose to use a reduced-order
unscented Kalman filter [13] to estimate the stiffness of the
scleras which is themain contribution of this paper compared
to [12]. We then train a two-layer image classifier algorithm
with the generated images and their corresponding forces.
This solution allows a straightforward force estimation pro-
cess to take place. This two-stage process makes it possible
to classify force ranges with 93% accuracy while requiring
very few experimental data, as demonstrated on several ex
vivo porcine eyes undergoing robotically controlled needle
insertions.

Method

In this work, we first construct a numerical model of the
interesting portion of the eye to synthesize images of the
deformed sclera under needle-induced forces. To be as close
as possible to the actual organ behavior, we propose to use
Bayesian inference as ameans of identifyingmaterial param-
eters. Then, a data generation process takes place in order to
train a neural network.

Numerical simulation

Biomechanical model We simulate the deformation of the
sclera under needle-induced forces bymodeling the eye as an
elastic half-sphere subject to Dirichlet boundary conditions
(see Fig. 1a). Since applied forces and resulting deforma-
tions remain small, we choose to describe the stress–strain
relationship as linear, using Hooke’s law (1):

σ = 2με + λtr(ε)I (1)
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Fig. 1 a Simplified model of the
sclera. b Deformed hexahedral
mesh. Note that the colors of the
hexahedra are just for visibility

where ε is the strain, σ is the stress, and λ and μ are the
Lamé’s constants derived from the Young’s modulus E , and
the Poisson’s ratio ν. The Young’s modulus is a measure of
the stiffness of the material, while the Poisson’s ratio char-
acterizes the compressibility of the material. The linearity of
Hooke’s law leads us to a simple relation σ = Cε where C
is the constitutive matrix for a homogeneous and isotropic
material. Then, Dirichlet boundary conditions are added to
prevent rigid body motion of the sclera, while a constant
pressure is applied to the inner domain boundary to simulate
the intraocular pressure (IOP), as illustrated in Fig. 1a. The
intraocular pressure plays an important role in the apparent
stiffness of the eye and its variability is well studied, as high
eye pressure can be an indication for glaucoma. It is worth
mentioning that the common IOP measurement devices are
influenced by the stiffness of the eye. The value measured
by the tonometer is not absolute but linearly related to the
Young’s modulus [14]. The external force due to IOP is given
by fp = S × P where S is the surface area of the eye (in m2)
and P the intraocular pressure, given in Pa. Note that fp is
normal to the surface. To simulate the needle pushing on the
sclera, we apply a local force fn in a small region of interest
near the virtual needle tip. The external forces of the system
are then formed by the IOP, the force induced by the nee-
dle and the gravitational force fg applied in the negative y
direction.

Finite Element simulation We solve the equation for the
constitutive model using a finite element method. The eye-
ball is considered as nearly spherical and is discretized using
a quadrilateral surfacemesh of a half sphere of radius 12mm,
discretizedusing theCatmull–Clark subdivisionmethod.The
obtained quadrilateral surface is extruded conforming to the
scleral thickness in order to generate almost regular hex-
ahedra (see Fig. 1b). Scleral thickness plays an important
role in the deformation of the sclera. Under a given force,
a thick sclera is less deformed than a thin one; therefore, it
is important to take this thickness into account. Finally, the
deformation is specified by the nodal displacements u and
the nodal forces f, according to the following equation:

Ku = fp + fg + fn (2)

The matrix K is the stiffness matrix and can be computed
thanks to the elastic parameters of the material E and ν sim-
ilarly as in [15] .

To compute accurately the deformation of the sclera, the
finite element mesh needs to be sufficiently fine (to avoid
discretization errors). In our simulation, we use a mesh com-
posed of 14,643 hexahedral elements, resulting in about 5 s of
computation time to obtain the static solution of the deforma-
tion. All our experiments are run on a Dell Precision laptop
equipped with an Intel Core i7 2.90 GHz, a Quadro M1200
Graphics ProcessingUnit and 16Go ofRAM.Since this com-
putation has to be repeated thousands of times to generate
the training data set, we take advantage of the linearity of
the model and pre-compute the inverse of K to speed up the
generation of the training data. This leads to a substantial
computational speed-up (×10).

Model parameterization

Our finite element simulations depend on parameters of the
constitutive model and the geometry of the eye: Young’s
modulus, Poisson’s ratio, intraocular pressure and scleral
thickness. It is therefore essential to understandwhichparam-
eters can be assumed constant and which ones vary (and
within what range) to properly generate training data.

Data from the literature [16] report a thickness for corneal-
scleral limbus in porcine eyes ranging from 630 µm to
1030 µm. We perform thickness measurements on porcine
eyes and get a variation in thickness of more than 35%.
Hence, we choose to consider the thickness as a parameter
in the training, and we simulated scleras with five different
thicknesses: 400µm, 500µm, 600µm, 700µmand 800µm.

The IOP is also known to vary from patient to patient and
can be measured using a tonometer. So if we were to apply
our method on a patient, we could use this information to
parameterize the simulations used for the training. However,
this is different for the porcine eyes used in our study. The IOP
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decreases gradually with postmortem time [19] and is halved
only 3 h after death. The IOP we measured ranged from 1
to 4 mmHg which is very small and does not affect much the
deformation of the sclera. Therefore, we considered the IOP
constant equal to 2 mmHg (266 Pa) for our experiments and
simulations.

The Poisson’s ratio, ν, is a constant value for the sclera
according to the literature [17] and can be set to ν = 0.45.
This leads to a nearly incompressible behavior during the
deformation. With this in mind, we can reasonably assume
that our training data set can be generated from numerical
simulations in which the thickness, Poisson’s ratio and IOP
are known and constant.

The value of Young’s modulus E , however, is more diffi-
cult to estimate as it varies depending on the porcine breed
and experimental conditions. Therefore, values from the
literature are not directly applicable. On the other hand,
measuring it using a ‘classical’ experimental biomechanics
approach would be burdensome. For this reason, we propose
to use a Bayesian approach to estimate the value of E using
observations from our OCT images. Such an approach could
also be used to perform data assimilation on actual patients.

The knowledge of the elasticity parameters is key to build
a good model of the sclera. The Young’s modulus defines
the ratio of stress to strain. The goal of this work being the
estimation of the force range based on the shape of the sclera,
it is therefore very important to correctly estimate E to avoid
introducing errors in the force prediction. Since the exact
value of E is not a priori known (only its average value
based on data from the literature), we describe it as a stochas-
tic parameter associated with a Gaussian probability density
function (PDF). Initially, E ∼ N (μ0, σ0) with μ0 the mean
value of E reported in the literature, and σ0 its standard devi-
ation. The aim of the assimilation process is to reduce the
standard deviation σ in order to find the most likely value
for μ. For this, the PDF of the parameter E is then trans-
formed based on observations. Although our stress–strain
relation is linear, we choose to model the transformation
of the PDF using a reduced-order unscented Kalman filter
(ROUKF) [13] which can handle nonlinear processes and is
computationally efficient.

Data set generation

Once the model is correctly parameterized, we generate a
synthetic data set {(fnk, Ik)}Nk=1 of N sampleswhere fnk is the
needle-induced force for sample k and Ik is the correspond-
ing simulated image of the deformation. The forces range
from 0.0 to 0.06 N and are applied at random locations and
normally to the scleral surface for each of the different thick-
nesses. For each sample, a 2D cross-section of the complete
3D mesh is extracted in order to simulate the OCT image Ik .
The simulated images have to be informative of the scleral

thickness and its deformation, hence a binary image suffices
for our purpose. Therefore, the images are post-processed
with a contour detection algorithm (findContours OpenCV
function) and binarized (threshold function).

Neural network image classification

We look into modeling a function that can estimate the range
of forces applied by a needle when observing a single OCT
image and the deformation within it. To do this, we make
use of an artificial neural network (NN) to provide a robust
and reliable function capable of estimating forces applied to
the sclera. In our case, the input to the model is the cross-
sectional OCT image that depicts anatomical information of
the sclera, from its surface to 1 millimeter below. In order
to provide high-frame rate imaging, we opt to use 2D OCT
cross-sections as the imaging modality over 3D volumetric
OCT scans that are more common but slower to acquire. In
our setup, we use the low-cost solution introduced in [18] to
image 2D OCT cross-sections.

While we are interested in estimating the force applied by
the needle, we choose to categorize the applied forces into
three interval ranges. This reduces the need to be sensitive
to exact force values, which not only is unnecessary in this
instance, but also allows us to set up our inference task as
a classification problem, whereby forces are grouped into
ranges of clinical relevance.

To do this, our NN consists of two fully connected hidden
layers and a classifier as output layer (see Fig. 2). The input
layer has 5600 neurons (corresponding to the size of the input
images 140×40), while the hidden layers have 600 neurons.
These optimal values are found through a grid search. We
use ReLu activations throughout the network and a softmax
activation at the output layer. The network was implemented
using Tensorflow and the Keras Python library.

Given the above simulation model presented in “Numer-
ical simulation” section, we can train our NN with virtually
an infinite amount of synthetically generated data. With the
objective of stopping an incumbent needle from damaging
the sclera, we use our simulation model to generate OCT
images with forces between 0.0 and 0.06 N applied on the
Finite Element mesh of the sclera. This range was then
divided into three ranges, or classes, consisting of:

– Class 0: force values smaller than 0.005 N
– Class 1: force values from 0.005 N to 0.03 N
– Class 2: force values bigger than 0.03 N

whereby class 0 corresponds to virtually no danger to the
sclera, class 1 indicates a considerable force, and class 2
is a dangerous force that should trigger a needle removal
signal. The complexity of our problem makes it challenging
to establish a clear cut between ‘nodanger to the sclera’ and ‘a
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Fig. 2 Artificial neural network used for image classification. The input is an image of size 140 × 40 pixels resulting in an array of size 5600

needle removal is advised.’ For this reason, we introduced an
intermediate class which can be seen as a gray area between
the two bounding classes. If the force is classified in this
gray area, it becomes the clinician’s responsibility to stop or
continue the insertion.

We train our NN from scratch using a gradient descent and
the cross-entropy loss. A 0.8 dropout factor between layers
was used to help with generalization.

Results

In this section, we first describe how data acquisition on
ex vivo porcine eyes was performed. Then, we present the
virtually generated data set, and associated training, with
an emphasis on the parameterization of the biomechanical
model. Finally, we validate the neural network on unseen
real data to demonstrate the high level of accuracy of our
approach at classifying contact forces.

Experimental set up

To validate the predictive accuracy of the NN on real data,
we acquired a collection of {(fnk, Ik)}Mk=1 ofM samples from
ex vivo porcine eyes. Five porcine eyes were obtained from
the local abattoir and transported to the experiment room
while kept at low temperature. Experiments began within
3 h of death, and we ensured they were completed less than
10 h postmortem. During the tests, the eyes were moisturized
with water and fixed with super glue on a 3D-printed holder

to ensure fixed boundary conditions on the lower half of the
eyeball. We choose super glue as it preserves the tightness of
the eyeball. We then measured the IOP with a tonometer and
obtained, for all the eyes, an IOP close to 2 mmHg (about
266 Pa). The intraoperative pressure is lower than usual since
it decreases dramatically after death [19]. However, we did
not inject any fluid during the experiments to compensate for
this low IOP.

A surgical robotic arm that was designed for high-
precision drilling during robotic cochlear implantation [4]
was used to measure the force applied by a needle. The
robotic arm is fitted with a six-axis force/torque sensor
(Mini40, ATI) at its wrist underneath a quick release for
the end effector. After mounting a 22G Fine-Ject needle
(0.7 × 30 mm) at the tip of the end effector, the robotic arm
guided the needle forward along its axis. The needle was
positioned as close as possible to the B-scan without inter-
secting it to bypass the generation of shadows in the OCT
image. The margin between the needle and the B-scan was
considered in the simulation. The robot was programmed to
move toward the center of the eye along a path normal to
the sclera. Contact and insertion forces, in the direction of
motion, were continuously recorded during the insertion pro-
cess.We also recorded the associated OCT images by storing
B-scans over time. The custom-designed OCT device uses a
840 nm±40 nmwavelength light source, with anA-scan rate
of 50 kHz for a resulting 2D image of resolution 512 × 512
pixels with 12 bits per pixel, corresponding to an area of
15 × 4 mm2. In these images, the black bands surrounding
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Fig. 3 Continuous acquisition
of the robot force sensor and
corresponding punctual OCT
images for one eye. The vertical
lines give the imaging times

Table 1 Distribution of samples
in the three force ranges and
scleral thickness for each eye

Eye ID 1 2 3 4 5 Total

Scleral thickness in µm 800 500 650 560 800 –

Number of samples in class 0 0 1 2 2 2 7

Number of samples in class 1 11 2 0 1 1 15

Number of samples in class 2 14 2 3 2 2 23

Total 25 5 5 5 5 45

theOCT focus are removed leading to images of size 140×40
pixels.

In Fig. 3, a fragment of the collected data including 5
complete acquisitions is shown. To each trial corresponds
one OCT image captured at a punctual time and a continuous
flow of force values. The forces are filtered so that the noise
is reduced. As the imageswere collected at a lower frequency
than the forces, the corresponding forces were averaged over
an interval of 2 s around the imaging time. The vertical lines
correspond to the imaging times. The relaxation properties
of soft tissue explain the slight decrease in the force a few
seconds after the force is applied. The computed average
force is used as ground truth for the following supervised
learning. For each eye, one position near the corneal-scleral
limbus was selected and the needle moves forward 0.5 or
1 mm in the same direction. Note that the pierced samples
are excluded from the data set. Overall, 45 valid trials were
performed on different eyes. The spread of each acquisition
among the force classes is depicted in Table 1.

Stochastic identification of the Young’s modulus

According to the collected porcine data, theYoung’smodulus
E of the biomechanicalmodel is estimated using theROUKF.
The PDE of E is transformed based on observations taken on

the OCT images acquired during the experiment on an eye
(see Fig. 4a). We consider the corresponding ground truth
force (measured with the robot’s force sensor) to run the sim-
ulations. According to [17], we setμ0 and σ0 to 0.49MPa and
0.34MPa, respectively. We estimated the Young’s modulus
for each eye independently based on all OCT images where
observation points can be extracted. We extract 10 observa-
tions on each OCT image for a given eye (see Fig. 4a). The
finite element mesh is registered to the OCT image using
rigid registration. To each observation in the OCT (yellow
dots) corresponds a predicted observation attached to the
model (red dots). During the assimilation, the known force
is applied and the observations obtained are used by the filter
correction phase to compute the Kalman gain. We employ
the simplex version of the ROUKF, and since we only want
to estimate one parameter, two evaluations of the model are
performed in each prediction phase of the assimilation pro-
cess (i.e., there are two sigma points). The evolution of μ

and σ with the iterations of the ROUKF for eye 1 is shown
in Fig. 5. After convergence, we see that the final value of
μ is 0.27 MPa, as reported in first column of Table 2. When
applied to other porcine eyes, estimated values of E vary
only slightly, as seen in Table 2. Therefore, we consider the
Young’smodulus E to be constant across all our experiments,
with an average value of 0.25 MPa. Using this values leads
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Fig. 4 a Observation points in the real OCT image. b Predicted observations (in red) and real observations (in yellow) for the first estimation of E
and c for the final estimation of E

Fig. 5 Variation of μ and σ for the Young’s modulus estimation using the ROUKF for 24 OCT images. The value of the parameter converges to
0.27 MPa

Table 2 Meanand standard deviation of the estimatedYoung’smodulus
in 4 different porcine eyes after performing a data assimilation with a
ROUKF

Eye 1 Eye 2 Eye 3 Eye 4

μ in MPa 0.27 0.22 0.24 0.29

σ in MPa 4.7e−3 6.7e−3 3.9e−3 4.9e−3

The fifth eye is not included since the observations required in the
assimilation process are not consistent across the OCT acquisitions for
this eye

to very good visual agreement between the OCT images and
the simulations for the three force ranges for all the eyes (see
Figs. 6 and 7) thus validating the assumption of linearity from
“Numerical simulation” section.

Labeled data generation for neural network training

Data set generation To run our simulations, we used the
Simulation Open Framework Architecture.1 We generated
3200 images of deformed scleras undergoing normal forces
going from 0.0 to 0.045N for the smallest thickness. For each
of the other four thicknesses, we generated 4000 images of
deformed scleras where the forces vary from 0.0 to 0.06 N
at different random locations. For each thickness, the simu-
lation took approximately half an hour. In Fig. 7 are shown

1 https://www.sofa-framework.org/.

different examples of the output of the simulation (bottom)
matching the OCT images (top).

Overall, we created a data set having 19,200 synthetic
images within 2 h and a half (see Fig. 8b). In Fig. 7, we show
some synthetic images.

Neural network training The generated labeled data set is
split such that 90% of the images are used for training and
the remaining 10% are left for validation. All in all, 17,280
images are used to train the artificial neural network that is
validated on the other 1920 images. Figure 8a depicts the
accuracy and the loss of the neural network on both training
and validation data sets over each epoch. The validation accu-
racy curve displays 100% accuracy when classifying unseen
synthetic images. This curve is above the training accuracy
curve probably because of the high dropout applied during
the training.

Validation on unseen real data

Our work aims at classifying force levels using only OCT
data of the deformed scleras as input. All the OCT images
collected during the experiments are filtered to obtain inputs
similar to the synthetic ones (see Figs. 8b, 9a, b).

Once the OCT images have been processed to look like
the simulated ones, we can use them as input to the NN and
perform force predictions. For each OCT acquisition, the
force measured by the robot is converted into a class label
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Fig. 6 Real OCT images of the eye used for the data assimilation and matching simulated images with E = 0.25 MPa for the three force ranges

Fig. 7 Real OCT images of the sclera and their matching simulated images with E = 0.25 MPa for the three different force ranges

Fig. 8 a Loss and accuracy curves for training and validation sets. b Fragment of the training data set generated by our numerical simulation

Fig. 9 a Unprocessed OCT image. b Filtered OCT image

(0, 1 or 2) and is taken as the ground truth (target class). A
class with label 0 corresponds to a minimal force for which
there is no risk of damaging the sclera. A class with label
1 corresponds to forces ranging from 0.005N to 0.03N and
indicates that the sclera is being considerably deformed. A
force class with label 2 means that the sclera is potentially
being damaged and that awithdrawal of the needle is advised.

The performance of the classification is reported in the
confusion matrix in Table 3. Each row of the table gives
the instances in a target class, and each column gives the

Table 3 Confusion matrix

Target Prediction Precision

Class 0 Class 1 Class 2

Class 0 5 2 0 0.71

Class 1 0 2514 1 0.93

Class 2 0 0 2523 1.00

Recall 1.00 0.88 0.96

instances in a predicted class. For each category, we high-
lighted the correct decisions in italic and show that the overall
accuracy of the classifier is very high (93%). For all the exper-
imental data set, the lowest score of the NN was obtained for
the force class 0 with 71% accuracy. For target class 2, the
precision reached 100%. In Fig. 10 are shown the raw force
values (measured with the robot’s force sensor) and the force
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Fig. 10 Filtered force values corresponding to the 45 OCT acquisi-
tions. The three misclassified samples are overestimated. Note that we
only kept the samples under 0.06N which is the point of rupture of

the thinnest scleras. To correctly account for the elements above that
point of rupture, the puncturing process should be included in ourmodel
which would complicate the simulation without bringing any gain

range thresholds. The plot shows that the forcesmeasured are
uniformly spread throughout the force ranges. Note that the
three misclassified samples are close to the upper bound of
the force range and they are overestimated. We believe that
misclassification of contact forces in the lowest ranges has a
limited impact since the risk of damaging the sclerawith such
forces is almost null. On the other hand, it is essential that
the forces of range 2 are predicted correctly, which appears
to be the case on our (limited) data set.

Conclusion and discussion

This paper introduces a method for improving the safety fea-
tures of robotized intravitreal injections. We show that our
vision-based method, which combines numerical simulation
and neural networks, can accurately predict the level of force
applied by a needle, using only 2DOCT images of the scleral
deformation. By being real-time, this classification can lead
to an immediate withdrawal of the needle once it reaches a
certain alarm threshold. To cope with the issue of performing
a large number of experiments to populate our training data
sets, the NN is trained on synthetic images generated from
simulations of sclera deformations. To automatically param-
eterize the simulations from the experimental data, we use
a Kalman filter which performs data assimilation using the
sequence of OCT images.

In order to use our method in clinical practice (e.g., in
vivo eyes), further simulation efforts should be performed.
For instance, anatomically reasonable boundary conditions
should be considered such as muscle fixation and eye move-
ment should equally be included. It also seems essential to
include the intraocular pressure as an additional input in the
data set. Indeed, IOP is known to play a role in the defor-
mation of the sclera and cornea of patients. To perform the
prediction, a measure of the IOP would simply need to be
performed on the patient using a tonometer. The reason we

have not done it yet comes from the inaccuracy of the IOP
measurement which is influenced by the stiffness of the eye.
This coupling makes it more challenging to parameterize our
simulations.Another improvement of themethodwould be to
use adaptive force thresholds depending on the scleral thick-
ness and stiffness as for thinner or softer scleras, the puncture
force is lower. The simulated images could also be improved
tomatch actual surgical scenarios better. In particular, adding
the shadows generated by the needle in theOCT imagewould
be an essential feature. We also propose to address the sen-
sitivity of the NN predictions to image framing and scaling
by randomly cropping each simulated image, and augment-
ing the data set with these additional images. Note that in
this paper, the optical interference phenomenon happening in
OCT is not simulated. Instead, the synthetic and real images
are binarized. This skeletonization is a way of filtering the
complicated aspects of the OCT images that are a priori non-
informative for our purpose. Training a network directly from
the OCT images without the skeletonization would lead to
a significantly more complex problem requiring the simula-
tion of light propagation and the use of convolutional neural
networks.

Finally, the objective of this paper was to estimate a force
range, but it would also be pertinent to estimate the location
and the angle of the force as a slight error in the latter might
damage the retina or the eye lens. In this context, we could
augment the data set by including various needle insertion
angles and locations.
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