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Abstract Purpose The elimination of abdominal tumors by percutaneous cryoab-
lation has been shown to be an effective and less invasive alternative to open
surgery. Cryoablation destroys malignant cells by freezing them with one or more
cryoprobes inserted into the tumor through the skin. Alternating cycles of freezing
and thawing produce an enveloping iceball that causes the tumor necrosis. Plan-
ning such a procedure is difficult and time-consuming, as it is necessary to plan
the number and cryoprobe locations, and predict the iceball shape which is also
influenced by the presence of heating sources, e.g., major blood vessels and warm
saline solution injected to protect surrounding structures from the cold.

Methods This paper describes a method for fast GPU-based iceball modeling
based on the simulation of thermal propagation in the tissue. Our algorithm solves
the heat equation within a cube around the cryoprobes tips and accounts for the
presence of heating sources around the iceball.

Results Experimental results of two studies have been obtained: an ex-vivo
warm gel setup, and simulation on five retrospective patient cases of kidney tumors
cryoablation with various levels of complexity of the vascular structure and warm
saline solution around the tumor tissue. The experiments have been conducted in
various conditions of cube size and algorithm implementations. Results show that
it is possible to obtain an accurate result within seconds.

Conclusion The promising results indicate that our method yields accurate
iceball shape predictions in a short time and is suitable for surgical planning.
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1 Introduction

The treatment of abdominal tumors has undergone significant improvements with
the introduction of percutaneous procedures based on thermal ablation. The ad-
vantages of these minimally invasive procedures is that they lead to faster patient
recovery, shorter hospital stays, lower patient morbidity, and fewer, smaller skin
scars. Oftentimes, they also preclude total organ removal, preserve most of the
treated organ functionality, and enable the treatment of patients that cannot un-
dergo open surgery or organ resection.

Cryoablation is a percutaneous procedure that was first introduced in the
1960s [1,2]. Cryoablation interventions destroy malignant tumor cells by freezing
them with one or more needles, called cryoprobes, inserted into the tumor through
the skin under imaging guidance, e.g., CT, MR or ultrasound. Alternating cycles
of freezing and thawing by decompressing a gas through the cryoprobes tips pro-
duce an enveloping iceball that causes the tumor necrosis [3]. The recommended
temperature to achieve destruction of cancerous cells is -50°C to 0°C [4].

The numerous advantages of percutaneous cryoablation have made this proce-
dure very popular in the past two decades [5]. However, the difficulties of planning
an optimal position for the cryoprobes and of anticipating the final result is a lim-
itation in many cases [6-8|. Indeed, to be most effective, cryoablation requires
careful preoperative planning of the cryoprobes to be inserted. The goal is to find
the number and positions for the cryoprobes that are safe and that produce an
optimal iceball shape that covers the entire tumor with an additional margin to
ensure its complete ablation. The simulation of the iceball formation and its final
shape is required to ensure an effective treatment. However, simulating the iceball
generated from multiple cryoprobes while taking into account various factors, i.e.,
the surrounding anatomy and the injection of protective warm fluid is challenging.
Studies report success rates of 96% [9], with other cases being tumor recurrence
or complications such as hemorrhage. In addition, the synergistic effect created by
several cryoprobes depends on their actual location and influences the final shape
of the iceball [10].

This paper describes in more detail a new method presented at MICCAIT 2018
[11]. The approach is a fast and accurate GPU-based modeling of the iceball based
on the simulation of thermal propagation in tissue based on the solution of the
heat equation that accounts for the influence of heating sources around the iceball.
The paper is organized as follows. We start with a brief review of the relevant
state of the art. Next, we describe a fast GPU-based method for simulating the
cold propagation in tissue from the freezing cryoprobe tips and for modeling the
resulting iceball. We then present two experiments that validate our model: an
ex-vivo setup with warm gel and five retrospective patient cases of kidney tumors
cryoablation.



2 State of the Art

The accurate prediction of the iceball growth and final shape is essential to help
the clinician to ensure the maximal coverage of the tumor while preventing possible
damages to surrounding structures, and to choose the best insertion trajectories
for the cryoprobes that will create the desired tumor-enclosing iceball.

Various research groups have proposed methods for computing the iceball shape
to assist clinicians in preoperative planning. Butz et al. [12] developed one of the
first simulations of a cryoablation iceball. In this early work, the iceball is modeled
as a 3D ellipsoid forming around the cryoprobe tip without taking into account
its surroundings. The iceball model is used in conjunction with a single cryoprobe
placement optimization algorithm. Recent works describe advanced mathemati-
cal models to accurately simulate the growth and the final shape and size of the
iceball in a simple, homogeneous gel surrounding, and in realistic soft tissue con-
ditions. Most of these works base their models on the Pennes heat propagation
equation [13]. However, the complexity, numerical sensitivity, and computational
cost of this model motivated researchers to develop simplified models, which in-
troduce unknown inaccuracies. Deng et al. [6,14] describe a simplified model for
multiple cryoprobes planning that simulates the iceball growth in an aquasonic
clear ultrasonic gel. The shape of the iceball resulting from various cryoprobes is
investigated in a laboratory environment. Ge et al. [15] incorporate surrounding
gel models into the simulation but do not validate their results with real soft tis-
sue properties. In subsequent papers [16,17], the authors describe a model that
accounts for the presence of vascular systems during freezing. Nabaei et al. [18]
investigate the effect of blood vessels adjacent to tumors. Their theoretical study
shows that large blood vessels (>4mm diameter) significantly affect the shape of
the iceball, as the blood flow heat prevents the cold from propagating. Other stud-
ies describe advanced models validated in gel [19], or tailored to other organs, e.g.,
the prostate [8] and the lungs [20, 21].

None of the works discussed above focuses on the iceball simulation computa-
tion time, which can limit the scope of the preoperative planning by reducing to a
handful the scenarios that can be simulated and tested. Indeed, the optimization of
cryoprobes placement requires to iterate over many possible candidate cryoprobe
configurations and to simulate the iceball at each iteration. Thus, the reduction
of the computation time becomes important. In a recent study, Keelan et al. [22]
focused on cryosurgery simulation and the implementation on graphic processing
units. Their results showed computation times of about 200 s. with CPU, while
an implementation using 512 GPU cores could decrease computation time to 2
seconds. In another study, Talbot et al. [7] describe a GPU-based method to com-
pute the iceball resulting from multiple cryoprobes. Their method significantly
decreases the iceball modelling computation time to <30 secs, but does not take
into account the surrounding structures.

An alternative to cryoablation is hyperthermia, in which tumor necrosis is
induced by extreme heat propagation instead of cold. The most common hyper-
thermia procedure is radio frequency ablation (RFA). As for cryoablation, several
groups have investigated the modelling of the isothermal surface to predict the
outcome and to evaluate the damages to adjacent structures.

Similarly to cryoablation surgery, the presence of adjacent cooling structures
close to tumor and the acceleration of computation times are two major challenges
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of RFA simulation. Villard et al. [23,24] described a simplified ellipsoidal model
that takes into account nearby vascular structures. The influence of blood vessels
near the tumor was also investigated more recently in [25]. Advanced models for
RFA have also been described in [26,27]. None of these works attempts to re-
duce the simulation computation time. Rieder et al. [28] describe a GPU-based
implementation of heat propagation for RFA procedures. Their model, which was
developed for a single probe, is based on weighted distance fields, and has been
simplified to allow real-time computation. In another study of multi-probe RFA
simulation [29], computation time was accelerated up to 3 min using the GPU.
All of works which described above use Finite Element Method (FEM) as a solu-
tion for bioheat equation while Lattice Boltzmann method (LBM) [30] and Finite
Difference (FD) [31] were also suggested as an alternative solution to compute
bioheat equation. The computational time of both methods can be massively high
and GPU implementation is one of the options to overcome this limitation.

To the best of our knowledge, few studies have developed a fast implementa-
tion while using a realistic mathematical representation of heat propagation that
accounts for the influence of surrounding anatomical structures, and have been
evaluated on clinical cases. In this study, we propose a FEM solution of bioheat
equation which is computationally efficient and validated in both gel and preop-
erative MR so it can be used with a probe placement optimization algorithm.

3 Materials and Methods
3.1 General formulation

The general formulation of heat equation describes the distribution of heat over
time ¢ in a region defined in a Cartesian coordinate system [13]. The spatial prop-
agation of heat in (z,y, 2) is described by the partial differential equation:

oT 0 oT
ot = o0 Eegg) T

0 orT 0 or

ox 0z
where T is a temperature, I is the internal heat generation function, ¢ is time, and
constants K and C are the spatial thermal conductivities in z,y, 2z and the heat
capacity, respectively.

This continuous formulation can be approximated by a discretization in which
Ax = Ay = Az is the spacing between a cell (7,7, k) and its neighbours in the
z,y, z directions. The discrete formulation approximation is then:

At.B
TS =T i+ =———F—a-H; ik 2
1,7, i.J, Cijn(Az)3 100 (2)
where C; j 1 is the volumetric heat capacity. The new temperature T;"7} after a

time step At is computed by adding to the previous temperature T; ; 5 the heat
flow coefficient H; ; ;, multiplied by a relaxation factor 8 € [1, 2] (in our simulations,
B was set to 1.95).

In this formulation, the volumetric heat capacity C; ;  at cell (4,4, k) depends
on the current temperature and is defined as:
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cf T gk < Tl
crtcy
Ci’j»k = Tmuq—l mi + f2 ’ Tml < Ti,j,k < Tmu (3)
Cu Ti7j,k: > Tmu

where ¢y and ¢y, represent the effective thermal capacities of frozen and unfrozen
tissue, respectively, ¢; is the latent heat when the phase transition occurs, and T,
and Ty are the lower and the upper limits of the phase transition.

The heat flow H; ;1 for cell (¢,7,k) is computed from its six neighbours:

Hijw =61 i (Ticigk = Do) + 81 e (Tigrgh — Do)+
Rigot ke (Tig—1k = Tijjk) + R gyt e (Tigre — Tik)+ (4)
Bi gkt -(Tijk—1 = Ti k) + K j g1 (T jkrr — Tijik)

In this equation, x;_1 o B s B l—1 denote the thermal conductances
2J9 2 27 (L 2
between cell (3, j, k) and the previous adjacent cells in the z,y, z directions, respec-
tively. Similarly, it L gk Fijrtko Fijhtd denote the conductances between cell
(4,4, k) and posterior adjacent cells, as in [32].
The thermal conductance «; gl I8 defined as:
Jok+3

AxAy

- = 5
Iiz,],k"r% AZ/(QKi,j,k) + AZ/(QKiyj’k_;'_l) —+ Ri,j7k+% ( )

where K, ; ; and K ; 41 are the thermal conductivities of the current cell (3, j, k)
and its adjacent cell (4, j, k+1). The five other  values in Eq. 4 are defined similarly.
In Eq. 5, the first two terms of the denominator represent the thermal resistances
of cell (i,7,%k) and cell (i, 4,k + 1) respectively. The third term, denoted Ry jkyts
is optional [32], and represents the thermal resistance at the interface between the
two adjacent cells. Since the cells contain tissue with similar properties, this term
has no impact on heating flows and is neglected in the rest of the paper.

Moreover, in our case the cells being isotropic (Az = Ay = Az), Eq. 5 can
finally be simplified:

Kijktl = 2 (6)
DETE 1K+ 1K et

The thermal conductivity K; ;5 of a cell (4, , k) is defined as:

f}gf p T gk < T
Ki,j,k = fg u’ Tml < Ti,j,k < Thmu (7)
Ku Tijk > T

where Ky and K, are the effective thermal conductivities for frozen and unfrozen
tissue, respectively.

To avoid numerical instability in the heat transform equation, the time step
At is set to 0.05 secs, which satisfies the stability criterion [32]:

Ciji(Az)?

At < Y

Vi, g k (8)
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where

YKk = itk TR ik TR Rt e F R e 1 R G (9)

To simulate the growth of the iceball using this formulation, the 3D heat prop-
agation is computed iteratively within a cubic grid of voxels centered at the cry-
oprobe tip, or at the centroid of the tips when several cryoprobes are used. To
obtain a high accuracy, a very fine grid can be used, but at the cost of efficiency.
In this study, we use a grid resolution of Az = Ay = Az = 1 mm, which is smaller
than the diameter of the thinnest cryoprobe used in the procedures (IceRod by
Galil Medical, diameter 1.5 mm); this value proved to be an appropriate trade-off
between accuracy and speed.

In the simulation cube, the voxels located in the active part of the cryoprobes
are labeled as the source of cold — their temperature is kept constant during the
freezing cycles at the freezing temperature. Similarly, during active thawing cycles,
they are kept constant at the active thawing temperature. During passive thawing
cycles, the temperature in these voxels is computed as for normal tissue. Boundary
conditions are represented by the voxels at the boundaries of the cube, which are
set to be to the temperature of the environment.

3.2 Propagation of cold in the human body near heating sources

In the human body, heat is generated by metabolism, mostly from blood perfusion
and reactions within the tissue cells. This heat production interferes with the cold
propagation coming from the cryoprobes and influences the final size and shape
of the iceball. Due to this phenomenon, the iceball growth is slower in-vivo than
ex-vivo. To take this into account in the simulation, we add the thermodynamic
properties of the human body in the last term of Eq. 1, which represents the
internal heat generation:

oT 0 oT
o = o0 Eegg) T

S8y + (1 50) 4 (D) AT =) +- Q. (10)
where C} denotes the heat capacity of blood, w;, is the blood perfusion rate, T
is the tissue temperature, T, is the arterial temperature, Ty is the temperature at
time ¢, and Qmn, is the metabolic heat rate of tissue.

The blood perfusion rate wy,(7T') depends on the current temperature and is
defined as:

0 Tijk < Tmu
wy Tij > Tmu

wy(T) = { (11)

The discrete approximation of Eq. 10 is then:

new At.p

gk = Tij+ 3 Hijx + Copwp(Ti jx)(Ta — Tijx) + Qm (12)

Ci jx(Ax)

Another important source of interference with the propagation of cold in the
human body is the presence of a major blood vessel or of injected warm protective
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(a) (b) (o) (b)

Fig. 1: In-silico validation. Iceball created at the end of simulation by one to four (a-
d) evenly spaced cryoprobes (gray lines, left to right) arranged in parallel at 20mm
intervals. The boundaries of the isothermal surfaces are shown for temperatures
of 0°C (blue) -20°C (red) and -40°C (green).

liquid or gas close to the tumor and the iceball. The presence of these heat sources
can significantly impair the normal propagation of cold and thus change the final
shape of the iceball. To model this phenomenon, the voxels of the cube that cor-
responds to these structures are labeled, and their temperature is kept constant
and equal to the source temperature during the entire simulation. In this paper,
we assume that all sources of heat are constant and homogeneous.

3.3 Validation in-silico

We first validated the results of our model and simulation with an in-silico study
using gel properties. The goal was to measure the performance of our simulation
in terms of accuracy and computation times under theoretical conditions.

To achieve this goal, we ran various simulations using parameters that repro-
duced the conditions used in the physical experiment described in [33]. In that
paper, the authors used a thermocouple matrix structure that was designed to
measure the iceball temperatures in an ultrasound gel at 37°C. To simulate the
same conditions, we used the thermophysical properties of a similar gel [34].

Since this experiment uses a gel, there is no internal heat generation. Thus, we
use Eq. 1 and omit the last term, I(x,y,2,t). Since the gel was maintained at a
temperature of 37°C from the outside, the boundary conditions were applied with
a fixed temperature of 37°C on the external voxels of the cube.

We simulated the propagation of cold with one to four evenly spaced cryoprobes
arranged in parallel at 20mm intervals in a cube of 100 x 100 x 100 mm?®. The
configurations of cryoprobes is illustrated on Fig. 1 while the cube can be seen
on Fig. 4. The experiment was conducted with the specifications of two types of
cryoprobes from Galil Medical: IceEdge 2.4 mm (10G) and IceRod 1.5 mm (17G).

Each experiment simulated three cycles: 10 mins of freezing, followed by 5
mins of passive thaw, followed by 10 mins of freezing. We used the parameters
provided by the manufacturer to model the action of the cryoprobes. For IceFEdge,
the freezing temperature at the cryoprobe’s tip was set to —138.0°C, and the
length of the active freezing part was set to 28mm starting at 5.2mm from the tip.
For IceRod, the freezing temperature was set to —119.4°C, the length of the active
freezing part was set to 31lmm at 4.2mm from the tip.

For all settings, we computed the diameters of the resulting 0°C, -20°C and
-40°C isotherm surfaces at their largest sections, perpendicularly to the probe’s
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(b)

Fig. 2: Intraopertaive MRI scan validation. (a): representative MRI slice with the
superimposed iceball contour (white); (b): visualization of the structures of interest
after segmentation: kidney (brown), tumor (green), artery (red) and vein (blue).

axis. The isotherm surfaces are illustrated respectively in blue, red and green on
Fig. 1. We then compared our simulation results with the dimensions measured in
the physical world as reported in [33].

3.4 Validation on intraoperative MRI images

To validate our simulations in human body conditions, we conducted a second ex-
periment using retrospective preoperative and intraoperative MRI scans of actual
renal cryoablation procedures. Datasets of five patients were used, with different
levels of complexity of the anatomical environment surrounding the tumor: tu-
mor located close to major blood vessels, close to warm saline solution injected to
protect sensitive organs nearby from being frozen, or far from heating structures.

The procedure performed by the surgeon differs from that of the gel experi-
ment. The cryoablation process consisted of four cycles: 10 mins of active freezing,
followed by 9 mins of passive thawing and 1 min of active thawing, and again
10 mins of active freezing. The active freezing temperature of IceRod was set to
—119.4°C; the active thawing temperature was set to 52.0°C. During the cryoab-
lation, for some of the cases a saline solution at 37.0°C was continuously injected
around the kidney.

The preoperative and intraoperative MRI scans of all patients have a resolution
of 256 x 232 x 25 voxels with a 1.5 x 1.5 x 5 mm? voxel size. Images were acquired
before cryoablation and at the end of the cryoablation process.

In the cases where a saline injection was performed between the preoperative
and intraoperative images, the segmentation of the structures of interest was par-
ticularly challenging due to the deformation of the internal organs. Moreover, on
the preoperative image the kidney and vessels are clearly visible, but there is no
cryoprobe and no iceball. The intraoperative image contains the iceball and the
cryoprobes, but the kidney is partly hidden by the iceball, deformed by saline solu-
tion, and the vessels are not always very easy to see. Therefore, we chose to register
the preoperative images to the intraoperative images before the segmentation in
order to be able to delineate all shapes in the same aligned space.
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Table 1: Thermophysical properties of biological tissue and blood [15].

Definition Symbol Unit Value
Metabolic heat rate Qm w.m 3 4200
Latent heat q kJ kg3 2500
Upper limit of phase transition T K 272
Lower limit of phase transition Tl K 265
Thermal conductivity of frozen tissue Ky W.m~ 1K1 2.0
Thermal conductivity of unfrozen tissue Ky W.m— 1 K-! 0.5
Specific heat of frozen tissue cy Jkg LK1 1800
Specific heat of unfrozen tissue Ccu J.kg’l.K*1 3600
Specific heat of blood ch Jkg P.K~1 3850
Blood perfusion rate per unit tissue volume wp kgm~3.s~1 0.29

For each patient, we first registered the preoperative and the intraoperative
MRI scan using interactive deformable point-based registration [35]. Then, on the
registered preoperative MRI scan, we interactively segmented the kidney and the
tumor using interactive segmentation. To obtain the ground-truth models of the
structures of interest, we segmented on the intraoperative MRI scan the injected
saline solution when it was present, the renal vessels (vein and artery) when they
were close to the iceball, and the final iceball after the second freezing cycle.
Note that during a cryoablation procedure, the iceball, which corresponds to the
0°C iso-surface, appears clearly as a black hole in the MRI scan (Fig. 2). We
also segmented the cryoprobes, and used their positions as an input to reproduce
the same setup in our simulations. Both the interactive segmentation and the
registration were performed using MITK [35] and under the supervision of an
experienced radiologist. Fig. 2 shows an example of a case.

The simulations were performed with commonly used soft tissue parameters
accounting for frozen/unfrozen state [15], summarized in Table 1.

To measure the accuracy of our model and simulation, the Hausdorff distance
and the Dice coefficient were computed to compare the similarity of the segmented
and simulated iceball at the end of the process. This shape comparison was per-
formed only for the 0°C iso-surface that corresponds to the iceball shape visible
on the MRI image.

3.5 Parallelization

We implemented the method described above in three different setups. The first
one is a simple, single-thread version. It consists of a sequential examination of the
cube voxels to compute the new temperature at each voxel based on its previous
state and those of its neighbours.

The second version is a multi-thread version that supports running in parallel
several simulations. In this version, the cube is split into layers. The number of
layers corresponds to the number of cores available on the computer CPU. The
simulation within each layer can be run independently, as the currently computed
temperatures only depend on the previous state but not on each other, so the
different threads are not concurrent.

The third version has been implemented using the CUDA toolkit for NVidia’s
GPUs. To optimally use the parallelization capabilities of the GPU processing
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Fig. 3: Computation of the temperature at each voxel within the simulation cube
with the different methods. Left: single thread version, one voxel (red) is computed
at a time. Middle: multi-thread version, one voxel (red) per layer (blue, green,
purple, yellow) are computed at the same time. Right: GPU version, a large number
of voxels are computed at the same time.

units, we linearize the matrix representing the temperatures cube. The compu-
tation of the different voxels is shared at best between the available threads and
blocks, according to the hardware.

For all methods, two matrices are used to model the cube and store the tem-
peratures at times t — 1 (previous state) and ¢ (current state) and swapped at each
time step. In the multi-thread and GPU versions, it avoids concurrency clashes.
The computation of voxels is illustrated on Fig.3.

As can be seen in Eq.12, the computation of the temperature at each voxel is
depending on multiple parameters, such as time and space sampling, relaxation
factor 3, or the thermophysical properties detailed in Table 1. Some of them are
constant over time and space, but other values have to be recomputed for each
voxel. As we wanted this algorithm to be generic and compatible with other situ-
ations in the future (other types of thermal ablations, other types of experimental
settings), we decided to pass all the constant data as arguments to the GPU ker-
nel. This comes at the cost of time spent in memory transfer, but allows for a
better flexibility. This reduces slightly the performance, as the gain in computa-
tion time is reduced by the time necessary for memory transfer. To improve speed,
the constants could be programmed in the code directly, at the cost of flexibility.
The heat capacity C; ;1 and the thermal conductivity K; ;j at cell 4, j, k must be
recomputed for each voxel, as they depend on the state of the corresponding cell,
which itself depends on its previous temperature.

4 Results
4.1 Validation in-silico

Fig. 4 shows the results of the experiment with the gel parameters. Table 2 sum-
marizes the maximum diameters of the ground truth isothermal surfaces at 0°C,
-20°C and -40°C (from [33]) and of the simulated iceballs, for the IceRod and the
IceEdge cryoprobe models.
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Fig. 4: Heat propagation simulation with different probes configurations, shown at
end of the simulation (a-d). IceEdge parallel cryoprobes are evenly spaced 20mm
apart (left to right). The figures show the largest 2D cross-sections of the iceball
in the cryoprobe’s axis. The color map is in the range [—138.0,37]°C.

Table 2: Maximum diameters (mm) of ground truth and simulated iceball.

Cryoprobe # of Ground truth [33] Simulation
needles 0°C -20°C ~40°C 0°C 20°C ~20°C
1 43 33 24 40 29 21
IceEdge 2 62 52 42 61 51 1
3 69 59 49 64 53 piV)
4 75 66 56 71 61 50
1 36 26 18 39 27 18
IceRod 2 57 a7 37 60 18 39
3 62 52 4 61 50 40
4 69 59 50 67 57 a7

The results of the simulation are very close to the measurements, with a mean
error of 0.28 mm, i.e. 5.8% of the diameter of the reference iceball. Note that
the configuration of the multi-cryoprobe thermocouple matrix structure used in
[33], which was designed with a minimum spacing of 5mm between the measuring
thermocouples, which is a potential source of inaccuracy.

The simulation results were obtained with desktop PC equipped with a core-i7
3.40GHz CPU with 16Gb RAM and a GeForce GTX-1060 GPU with 6GB memory.
The mean computation times of the simulation in CPU single thread and GPU
implementations were of 540 secs. and 84 secs. respectively for a simulation in a
100x100%100 mm?® cube. The GPU implementation was on average x6.4 faster
than the CPU implementation.

4.2 Validation on intraoperative MRI

The second experiment was conducted on a datasets of the five patient cases who
underwent renal cryoablation. The cases have various characteristics in terms of
the location of the tumor with respect to the blood vessel, the use of the dissection
saline solution, and the number of cryoprobes as detailed in Table 3.

Simulations were performed for six different cube sizes: 60 mm, 70mm, 80 mm,
90mm, 100 mm, and 120mm, to evaluate the performance in terms of the compu-
tation time vs. results accuracy. The hardware used was the same as described in
the in-silico experiment.
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Fig. 5: Tlustration of the simulation results at the end of the second freezing
cycle of patient cases 2 (a~-d) and 4 (e-h). In each group of 4 images, the top
images (a,b and e,f respectively) show a representative intraoperative axial MRI
slice (a and e full, b and f detail), with the 80 mm cube (green), the ground-
truth iceball contour (white), the computed iceball contour (red), the blood vessels
(dark blue) and the saline solution for case 4 (light blue). Images (c,g) show a
detail of the same intraoperative axial MRI slice with the labels of the voxels
inside the cube superimposed on them: freezing source (yellow), vessels and saline
solution heating sources (blue) and iceball contour (red). Images (d,h) depict the
temperature color map showing the 0°C iso-surface (black); blue is the minimum
freezing temperature of —119.4°C and red is the maximum body temperature of
37°C. Note that the freezing sources are not visible on image (g) as the displayed
slice does not intersects any of them, but image (h) shows the proximity of two of
them.
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Table 3: Characteristics of the patient cases.

Patient case Nearby vessels | Saline solution | Number of cryoprobes
1 yes 4
2 yes 4
3 yes 3
4 yes yes 4
5 5

Fig. 6: 3D views of: (a) ground truth (white) and simulated (red) iceballs, four
cryoprobes (gray), blood vessels (dark blue) and saline solution (light blue); (b)
simulated iceball (red) and theoretical ellipsoids (yellow) using measurements pro-
posed in [33].

Fig. 5 and 6 show examples of the simulation results. Fig. 5 shows the simulated
temperature distribution for cases 2 and 4 in a cube of 80 mm. Note how the
presence of the blood vessels and the saline solution significantly influence the
iceball shape.

Fig. 6a shows 3D views of the ground truth and simulated iceballs, the four
cryoprobes, the blood vessels and the saline solution. Note that the simulated
iceball is tightly fit around the blood vessels and is deformed by the saline solution.
Fig. 6b shows the simulated iceball and the theoretical ellipsoidal iceball. Note
the synergistic effect, the influence of the blood vessels and the saline solution
that yield different iceball shape. This example illustrates the importance of a
simulation based on an accurate simulation model rather than a theoretical one.
The actual iceball differs significantly from theoretical ellipsoids and is smaller,
which could lead to an insufficient ablation of the cancerous cells and a recurrence
of the disease, or unexpected damages to surrounding structures.

Table 4 lists the Dice coefficients and the Hausdorff distances for the five patient
cases and for the six cube sizes. These measurements indicate a close similarity
between the two shapes, with an average Dice coefficient >0.79 in all cases.

However, this comparison is subjected to the possible errors in the manual
segmentation which can introduce inaccuracies. The ground truth segmentation
of the iceball in the MRI scans has an intrinsic uncertainty resulting from the
scan resolution and structures contrast and the manual delineation process itself,
which depend on subjective human factors [36]. As it is difficult to quantify this
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Table 4: Dice coefficient and Hausdorff distance (HD, in mm.) measurements be-
tween the computed and the ground truth iceball segmentation shape at the end
of the process (after the second freezing cycle), and computation times (in s.)

Case 60mm 70mm 80mm 90mm 100mm 120mm
Dice HD Time|Dice HD Time|Dice HD Time|Dice HD Time|Dice HD Time[Dice HD Time
0.68 13.2 11.1(0.71 12.4 17.3|0.71 12.3 25.20.71 12.3 36.2 [0.71 12.3 48.3 (0.71 12.3 83.0
0.82 5.1 11.6 {0.83 5.0 17.3|0.83 5.0 25.3|0.83 5.0 36.5|0.83 5.0 48.7(0.83 5.0 84.9
0.88 5.3 11.4(0.89 5.3 17.7|0.89 5.3 26.3|0.89 5.3 36.7(0.89 5.2 49.9(0.89 5.2 85.0
0.75 7.8 11.3|0.80 7.5 17.6 |0.80 7.5 26.4|0.80 7.5 37.0(0.80 7.5 50.0|0.80 7.5 86.2
0.80 9.8 11.5|0.81 9.8 18.20.81 9.8 26.5|0.81 9.8 37.6 (0.81 9.8 50.3|0.81 9.8 87.8
Avg.|0.79 8.20 11.4|0.81 8.0 17.6 |0.81 8.0 26.0|0.81 8.0 36.8|0.81 8.0 49.4[0.81 8.0 85.4

T W N~

uncertainty, the Dice coefficient and Hausdorff distance measures incorporate it in
the comparison between the segmented and simulated iceball volumes.

We note that there is an additional phenomenon that reduces the accuracy of
the simulated iceball. The interventions were all performed under MRI guidance
using an MRI-compatible cryoprobe. The insulation of the cryoprobes is not suf-
ficient to avoid a residual freezing along its body, resulting in an elongated shape
along the cryoprobe, sometimes called by clinicians a “comet tail” (Fig. 7). When
the freezing shaft is modeled as the only source of cold, without accounting for the
residual cold along the body, the simulated iceball will not reproduce this comet
tail, thereby leading to an inaccuracy of up to 10mm in the direction of the entry
point. This explains why the Hausdorff distance may be >10mm.

A second source of inaccuracy is that the simulations where performed consid-
ering that all cryoprobes were used at full power during the intervention. However,
there are situations in which the interventional radiologist reduces the power of
one or several cryoprobes to protect a particular structure. This indeed occurred
in patient case 5, as illustrated in Fig. 7b. In this case, the ground truth and the
simulated iceball shapes will exhibit a looser match, as the simulation is less faith-
ful. However, note that in this case the upper boundary of the ground truth and
simulated iceball fit tightly.

In this study, we chose to fix the relaxation factor 8 to 1.95. To test if this
choice had influenced the results, we performed some additional experiments. With
the 80mm cube, we computed the values of Dice and HD for each patient, using
various values of B8 chosen in the range [1,2]. While there are differences in the
results according to the values of 3, these differences are not significant in 4 out of
the 5 cases: < 3% Dice, < 1.5mm HD. For the case where there is a difference, the
difference in Dice is 11% and the difference in HD is 2.2mm, which is most likely
within the range of uncertainty and error of the many factors in the segmentation,
model and simulation. Consequently, we conclude that the sensitivity to the value
of beta is very moderate and that beta can be set to a fixed value.

In terms of computation times, the results in Table 4 indicate that the 80mm
cube yields comparable accuracy than those of larger cubes with a significantly
shorter computation time: 26.0 secs vs. > 36.8 secs on average. It seems enough
to simulate an iceball with a reasonable accuracy even if the borders of the iceball
seem close to the boundaries of the cube. The 7T0mm cube provides results quite
comparable to the 80mm cube, and could be a reasonable alternative as well. The
60mm cube computes results twice faster, at the cost of a slightly lower accuracy.
However, since the difference in accuracy is sub-millimetric, it is an option to be
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Fig. 7: (a) detail of an intraoperative axial MRI showing the “comet tail” effect
in patient case 1. Superimposed are the cube (green), the ground-truth iceball
contour (white), the computed iceball contour (red), and the saline solution (light
blue); (b) detail of patient case 5 showing the two lower probes that were set to
60% of their freezing power. Both cases were computed within a 60mm cube.

Table 5: Computation times (in seconds) for the single thread, multi-thread, and
GPU implementations for a 80 x 80 x 80mm? cube.

Patient case Single thread | Multi-thread GPU
1 361.986 152.056 25.240

2 446.945 169.855 25.340

3 449.754 161.105 26.356

4 374.193 151.726 26.363

5 451.389 162.521 26.474
Average 416.853 159.453 25.955

considered to further reduce the computation time when needed. This of course
depends on the number of cryoprobes used and the size of the resulting iceball that
has to fit in such a small cube. In case of larger ablation volumes, larger cubes
should be used.

Table 5 lists the computation times of the single-thread, multi-thread, and
GPU variants of the algorithm, for the medium-sized cube of 80 mm. The results
clearly show the advantage of the GPU computation. Note that the computation
times do not depend on the complexity of the scene or on the number of heating
structures. They only depend on the size of the cube and on the duration of the
simulation process.

5 Conclusion

We have presented a new method for fast GPU-based iceball modeling based on
the simulation of thermal propagation in the tissue based on the solution of the
heat equation that accounts for the presence of heating sources around the iceball.
Experimental results of two studies — an ex-vivo warm gel setup, and simulation
on five retrospective patient cases of kidney tumors cryoablation with various
levels of complexity of the vascular structure and warm saline solution around the
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tumor tissue — indicate that our method yields accurate iceball shape predictions.
The accurate results and short computation times indicate that our method can
be effectively incorporated in a comprehensive cryoablation preoperative planning
system that optimizes the number and location of cryoprobes and that takes into
account the presence of blood vessels and warm saline solution.

Directions of future work include comprehensive experimental studies on larger
datasets, more elaborate in-vivo and ex-vivo experimental results for ground truth.
The simulation model can be extended to account for the comet tail effect and
for the inclusion of cryoprobes with various properties, types, and power delivery
characteristics.
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