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Abstract
Purpose Electromagnetic tracking (EMT) can partially replace X-ray guidance in minimally invasive procedures, reducing
radiation in the OR. However, in this hybrid setting, EMT is disturbed by metallic distortion caused by the X-ray device. We
plan to make hybrid navigation clinical reality to reduce radiation exposure for patients and surgeons, by compensating EMT
error.
Methods Our online compensation strategy exploits cycle-consistent generative adversarial neural networks (CycleGAN).
Positions are translated from various bedside environments to their bench equivalents, by adjusting their z-component.
Domain-translated points are fine-tuned on the x–y plane to reduce error in the bench domain. We evaluate our compensation
approach in a phantom experiment.
Results Since the domain-translation approachmaps distorted points to their laboratory equivalents, predictions are consistent
among different C-arm environments. Error is successfully reduced in all evaluation environments. Our qualitative phantom
experiment demonstrates that our approach generalizes well to an unseen C-arm environment.
Conclusion Adversarial, cycle-consistent training is an explicable, consistent and thus interpretable approach for online error
compensation. Qualitative assessment of EMT error compensation gives a glimpse to the potential of our method for rotational
error compensation.

Keywords Electromagnetic tracking · Hybrid navigation · Generative adversarial networks · Adversarial domain adaptation

Introduction

In minimally invasive surgery, electromagnetic tracking
(EMT) has the potential to partially replace continuous X-
ray navigation [9], reducing the radiation exposure to both
patients and surgeons. Such procedures are traditionally per-
formed under X-ray only (for example laparoscopy [1],
endovascular aneurysm repair (EVAR) [2]). Our vision is to
enable hybrid navigation in the clinical setting, where EMT
can replace X-ray as the primary continuous tracker, and
X-ray snapshots are only acquired intermittently. However,
in current practice EMT is susceptible to metallic distortion
caused by the C-arm, such that the surgeon can put little trust
in EMT in between snapshots.

Traditional error-compensating algorithms to increase
trust in EMT are offline in nature, resulting in tedious cali-
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bration and impractical clinical translation.We thus advocate
learning-based online error compensation where a general
purpose learning model is trained only once. Online com-
pensation of EMT error can be realized by implementing
data-driven models, which generalize among data from dif-
ferent environments. In previous works, we investigated
learning-based online EMT compensation by employing a
series of increasingly complex learning models (polynomial
regression [10], artificial neural networks (ANNs) [9]).

Despite giving increasingly better results, the interpre-
tation of the failure modes for these complex models is
a growing concern in learning literature [16]. Our major
focus is to develop an interpretable error compensation tech-
nique, which imposes two more constraints beyond mere
error reduction: explicability and consistency. Firstly, pre-
dictions need to be explicable; that is we need to know why
a certain point from C-arm domain is mapped to a specific
compensated point. Otherwise, compensation results could
be arbitrary and still fulfill topological constraints, giving a
false sense of reliability.
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Our second constraint is consistency among distorted
environments. Consistency is important for online error com-
pensation, where training data stem from environments with
varying distortion characteristics. If output is inconsistent
among input environments, changing distortion characteris-
tics of the electromagnetic field (e.g., by moving the C-arm
in the course of a surgical procedure) affect the coordinate
frame of compensated points. Such changes jeopardize the
X-ray-to-EMT registration, rendering our envisioned hybrid
setting infeasible.

To impose these two constraints, we approach the prob-
lem as domain adaptation with cyclic-consistent generative
adversarial networks (GANs) [4,17]. The main purpose of
our approach is to learn a mapping from points of domain C ,
which is the domain of C-arm-distorted points from environ-
ments similar to bedside, to domain L , which is the bench
domain with points collected in a distortion-free labora-
tory setting. Our approach is both explicable and consistent
by design and thus more interpretable than our ANN [9]
approach. While domain adaptation using GANs is quite
popular in the medical imaging setting [5], it has never been
studied before in the context of EMT error compensation.

Related work

Offline compensationmethods, such as interpolation schemes
or polynomial fits, are extensively described in the compre-
hensive reviews by Kindratenko et al. [6] and Franz et al. [3].
For the sake of brevity, we refer the reader to these papers
for a detailed comparison of offline methods.

An online compensation framework is proposed by
Sadjadi et al. in 2016 [14]. Their approach combines
Simultaneous Localization and Mapping (SLAM) and an
extended Kalman filter to rectify EMT measurements by
67%. Although this approach is promising, it presumes a
multi-sensor setup, which is hardly feasible in minimally
invasive applications with narrow access canals.

Neural networks for error compensation are employed by
Kindratenko et al. in 2005 [7]. The authors use two-layer
feedforward networks to compensate EMT error in an offline
setup. In our previous work [9], we show that ANNs not only
work for offline compensation, but are capable of general-
izing among different distortion scenarios (online) as well.
The ANNs learn a nonlinear transform which reduces dis-
tance error betweenmeasuredpoints. Effectively, thismethod
adjusts the topology of input points tominimize their distance
loss. As illustrated in Fig. 6, correcting only the topology can
lead to inconsistent behavior.

In this paper, compensation is performed by translating
individual points from C-arm to laboratory domain using
generative adversarial neural networks (GANs). This adver-
sarial domain adaptation approach is based on theCycleGAN

[17] architecture, which is originally developed for the appli-
cation of image-to-image translation. While the topology-
optimizing ANN fails silently (Fig. 3), predictions made by
our proposed online approach are interpretable by design.

Materials

Our data-driven compensation approach uses measurements
we acquired during our previous work [9] and was collected
using an Ascension 3D Guidance trakSTAR system (stated
accuracy of 1.4 mm), a 180-type sensor (6 DOF, 1.8 mm in
diameter) and mid-range field generator. Custom C++ soft-
ware is used for data collection with the trakSTAR system.
We use a calibrated Lego board to collect data in three posi-
tional degrees of freedom (DoF), as proposed by us earlier
[10]. The calibrated phantom, placed in three different ele-
vations, allows us to measure varying positions on x-, y- and
z-axes of the EMT system. For each measuring point, 500
samples are collected and averaged to reduce random noise.
Displacement distances between points on the Lego board
are then used as ground truth to calculate displacement error.
This metric, based on relative displacements, eliminates the
need for an additional measurement standard (e.g., a ruler).
Positional error of displacements we use for training, valida-
tion and evaluation is listed in Table 1.

Similarly to variousACEMT systems, theDC-based trak-
STARprovides a quality estimate with eachmeasuring point,
indicating the amount of metallic distortion. Each measur-
ing point is constituted by (x, y, z, q, φx , φy, φz), where q
denotes the system’s quality estimate and φx , φy and φz

denote rotation around x, y and z axes.
In our phantom study (Section “Bedside evaluation on

aortic phantom”), we place the sensor at different positions
inside an acrylic glass phantom,manufactured at Universität-
sklinikum Würzburg, Germany. The phantom resembles a
human aorta in life size. A 3D-printed Lego adapter holds the
sensor cable (Fig. 1) in place.Measurements for the phantom
study and other bedside measurements are taken in vicinity
of a Ziehm Vision RFD C-arm device. In the bench setting,
measurements are taken in an office roomwithout significant
sources of metallic distortion.

Our learning models are implemented in Python using the
PyTorch [13] framework.

Methods

To fulfill the explicability constraints we identified for inter-
pretable online error compensation, we modify a domain
adaptation approach that is originally used for image transla-
tion tasks. Instead of translating between two image domains
(e.g., photorealistic vs. abstract), our goal is to translate EMT
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Table 1 Datasets collected in varying distances to c-arm and in a laboratory setup. Bold values indicate lowest RMSE and std. dev. among all
datasets

Scenario #points Displacement RMSE (mm) Displacement std. dev. (mm)

Training Laboratory1 60 0.367 0.202

c-arm 8 cm 60 1.292 1.264

c-arm 11 cm 60 1.064 0.917

c-arm2 50 cm 60 0.639 0.309

Validation c-arm 10 cm 60 1.101 0.989

c-arm3 30 cm 60 0.743 0.372

Evaluation c-arm 7 cm 60 1.386 1.389

c-arm 9 cm 60 1.192 1.139

c-arm 12 cm 60 1.025 0.833

Number of displacements, RMSE and standard deviation are noted for each dataset. Distances to c-arm are measured from X-ray source to base
board center. 1: only 2 of 3 z-layers used for training, c-arm2: gantry rotated at 60◦, c-arm3: gantry rotated at 30◦

Fig. 1 Hybrid navigation experiment with Aortic phantom. a phantom
with EMT sensor inside, bC-arm, c EMTfield generator, d sensor cable
fixture on Lego board

measurements from the bedside (high error, C-arm) to the
bench (low error, laboratory) domain. Since the objective of
this translation task is intuitive, we expect this compensation
to be explicable.

In the following,we detail themodified domain adaptation
architecture, the protocol and parameters we use for training.
Subsequently, we describe how error in laboratory domain is
compensated by a post-processing step, which uses a simple
linear regression model.

Domain adaptation by adversarial training

We employ cycle-consistent adversarial training for inter-
pretable EMT compensation. Similar to the work of Zhu and
Park et al. [17], we make use of two different GAN models,
one for each direction of domain translation (C-arm to labora-
tory, laboratory toC-arm).As illustrated in Fig. 2, the training
process connects both GANs to achieve cyclic consistency.
Since input data from laboratory and C-arm (Table 1) are
unpaired and translation is thus under-constrained, adversar-
ial training benefits from this additional cycle-consistency
constraint.

Each of the two GANs consists of a generator network
and a discriminator neural network. The generator receives
an input point andgenerates a domain-adapted point,whereas

the discriminator judges whether the generated point stems
from the target domain. The generator’s objective is to trick
the discriminator by generating points close to its target
domain, given an input point from the original domain. For
instance, GCL takes a point from C-arm environment and
tries to generate a corresponding laboratory point, and DCL

learns to judge whether this point actually is a valid labora-
tory point. Ideally, both parties in this adversarial two-player
game achieve the Nash equilibrium [4,12].

Our two generator models (and discriminator models,
respectively) share an identical structure. Generators receive
a (x, y, z, q, φx , φy, φz) point (normalized to [0, 1]) as input
and produce a vector (ẑ, q̂, φ̂x , φ̂y, φ̂z), where ẑ, q̂ , φ̂x , φ̂y ,
φ̂z denote domain-translated values for z, quality and orien-
tation.

To ensure that points fromC-armdomain are not translated
to arbitrary points in the laboratory domain, the generators
do not alter the x and y positional components. We focus
only on compensating the z component, since of all posi-
tional components, it is the most susceptible to error (for the
trakSTAR system). Error in the x–y plane is compensated in
a fine-tuning step further described in section “Fine-tuning”.

Training protocol

Our training protocol is similar to that of CycleGAN, but
includes additional loss terms tailored to the problemof EMT
error compensation. In particular, we compute the genera-
tor loss as weighted sum of individual penalties, which are
described in the following:
Adversarial Loss Ladv is a binary cross-entropy (BCE) loss
term, which reflects how well each generator can fool its
corresponding discriminator. It is computed as

Ladv = BCE
(
DCL(GCL(xC )), lvalid

)

+BCE
(
DLC (GLC (xL)), lvalid

)
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Fig. 2 Cycle-consistent GAN
architecture for unsupervised
domain adaptation. GCL
translates points from C-arm to
laboratory domain and, once
trained, is used for
compensation

where lvalid denotes the discriminator labelwe assign to valid
points, that is the label the discriminator assigns to points that
are deemed to originate from the target domain. l f ake is the
label our discriminator assigns to points that do not stem from
the target domain.

Cycle lossAsdescribed in the originalCycleGANpaper [17],
we enforce cycle-consistency by adding a loss term Lcycle:

Lrecov,L = |GCL(GLC (xL)) − xL |
Lrecov,C = |GLC (GCL(xC )) − xC |
Lcycle = Lrecov,L + Lrecov,C

Lrecov,L indicates how well an input point is recovered
after translating it from domain L to domain C and back to
L (C → L → C in Lrecov,C , respectively).

Compensation loss In addition to the CycleGAN losses, we
also penalize distance error only in the laboratory domain (we
cannot enforce error to be low in generated C-arm samples)
as a means of regularization. Compensation loss is computed
as Lcomp = MSE(dGCL , dtrue) where dGCL and dtrue are
distances between pairs of points, which stem from GCL or
ground truth data, respectively.

The total generator loss is Ltotal = λadv · Ladv + λcycle ·
Lcycle+λcomp ·Lcomp with coefficients λadv = 0.5, λcycle =
10 and λcomp = 10−5, which we determine empirically.

Prediction uncertainty

Although neural networks are known to generalize well to
unseen data, predictions made under a lack of knowledge
are uncertain. Fortunately, this uncertainty can be approxi-
mated by training the same architecture multiple times, but
initialized with different random seeds (deep ensembling
[11]). Computing the standard deviation among the resulting

predictions yields an approximation of model-inherent (epis-
temic) uncertainty, and averaging the predictions is expected
to yield better prediction accuracy, since we combine the
knowledge of multiple models. We choose to sequentially
train 10 different initializations in an ensemble as a compro-
mise between training time and accuracy.

Network and training parameters

Our discriminator models have three layers each, with 16
nodes per layer. All layers use LeakyReLU activations with
a leak of 0.2, except for the last layer, which is Sigmoid-
activated. The discriminators are trained with soft labels
(uniform distribution of 0.0..0.2 and 0.8..1.0, respectively)
[15].

The generators also have four layers each, with 16 nodes
per layer. Similar to the discriminators, the generator’s layers
use LeakyReLU activations, but with a leak of 0.01. The last
layer uses linear activation.

Generators and discriminators are optimized under the use
of Adam optimizer [8] both with a learning rate of 0.0005,
which linearly decays to 0 after 100 epochs. Whereas the
generators share a common optimizer, the discriminators are
both trained by individual optimizers. During training, we
use minibatches with a batch size of 16. The whole train-
ing for each model in the ensemble lasts 200 epochs. This
training protocol is similar to that of the original CycleGAN
implementation [17].

Fine-tuning

As the cycle-consistent GAN model does not affect the x
and y components of input points, there still exists positional
error on the x–y plane.Assuming that the points compensated
by GCL always lie in the laboratory domain, we can apply
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Fig. 3 X-ray snapshot of aortic
phantom with sensor inside.
(Please find an animated video
in supplementary material.)
Arrow points to EMT sensor tip
(dark rectangle). White circles
are manually annotated sensor
center points. Red, yellow and
green overlays show
uncompensated,
ANN-compensated and
domain-adapted EMT points,
respectively

a compensation approach tailored to the laboratory domain.
For the sake of simplicity, we choose to fit a linear regres-
sion model that compensates distance error similarly to our
previous work [10], using input features (x, y, z, q).

Results

Wefirst perform a bedside phantomevaluation of online error
compensation. Afterward, we compare our domain adapta-
tion approach to the ANN we have previously proposed [9].

Bedside evaluation on aortic phantom

To assess the quality of our online compensation method in
a realistic hybrid bedside setting, we combine EMT and X-
ray imaging in a pilot phantom study. Figure 1 shows the
measuring setup used in this experiment, in which the EMT
sensor is placed inside an aortic phantomwhich is positioned
close to the C-arm. Since the C-arm gantry is rotated to 90◦,
this setup is different from anything the CycleGAN has seen
during training. Using a custom 3D-printed Lego fixture, we
pull out the sensor in 13 steps of 8 mm. For each individual
step, an X-ray snapshot is created in the median plane, which
corresponds to the x–z plane of the EMT coordinate system.

The EMT sensor can be clearly distinguished from its
background on the X-ray (Fig. 3). We could therefore anno-
tate the EMT sensor’s center points in all 13 snapshots by
hand. Points measured by EMT are scaled to pixel dimen-
sions and translated to match the annotated point (leftmost
in Fig. 3). Rotation angle of the whole trajectory is estimated
from compensated φy at the first measuring point. We use
the same transform for all three sets of points (uncompen-
sated, ANN and CycleGAN) and omit the fine-tuning step,
to allow for better comparison between uncompensated and
compensated trajectories. Figure 3 shows that our compen-
sated points are close to the annotations, indicating that our
domain adaptationmodel generalizeswell to the unseen envi-
ronment.

Since our compensations alter rotation angles φx , φy and
φz as well, the phantom study in the C-arm environment
also allows for a pilot qualitative assessment of rotational
error compensation. Although we cannot directly measure
the actual orientation of the sensor inside the phantom, we
can make three assumptions:

1. The sensor tip is heading in positive direction of the
tracker’s x-axis throughout the whole experiment. We
expect azimuth angle to be constant and close to zero.

2. Elevation is almost constant and near zero. Since the aortic
phantom is slightly curved, elevation should decreasewith
higher x.

3. Roll angle is hard to determine absolutely (only rel-
atively). However, we know that it does not change
substantially during the experiment, as the cable is not
twisted and is rigidly attached to the Lego block.

Figure 4 shows orientations over positions on the x-axis,
which aremeasured in our phantomstudy. It illustrates that all
three assumptions hold for compensated values: (1) Azimuth
is constant and close to zero degrees (gray line), (2) elevation
is almost constant at about 2◦, and (3) roll is nearly constant.
Contrary to this, raw measurements violate all three assump-
tions.

Quantitative comparison

In Fig. 5, we see that the domain adaptation approach is more
consistent among distorted environments and yields results
close to laboratory points. Even C-arm points without a cor-
responding laboratory point in the training set are matched
to their corresponding point in the laboratory domain, indi-
cating that our method generalizes well.

On the other hand, topology-based compensation by our
previously proposed ANN [9] does not yield consistent out-
put among input environments. Actually, ANN-compensated
points are still close to the input points on the z-axis and sev-
eral millimeters away from corresponding laboratory points.
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Fig. 4 Measured and
CycleGAN-compensated
rotation angle (azimuth,
elevation, roll) over x position,
during sensor retraction in aorta
phantom study

Ablation experiment

Adversarial training with cycle consistency is beneficial for
compensation performance, compared to training a single
GAN translating C-arm to laboratory points. Vanilla GAN
without cycle loss worsens overall compensation perfor-
mance, as we show in Table 2.

Our fine-tuning step brings an additional boost in accuracy
to the proposed CycleGAN setup (Table 2). However, this
step comes with the cost of introducing another source of
predictive uncertainty.

Discussion

Comparing our domain adaptation approach to previously
proposed topology-based compensation [9], we see that
online compensation performance is not only a matter of
RMSE, but needs to be assessed with interpretability in
mind. Predictions made by the topology-based method are
hardly explicable (as seen in Fig. 5). We can only hypoth-
esize that the ANN tries to fulfill topological constraints to
minimize distance error, without developing an understand-
ing of what makes a plausible compensated point. Figure 6
illustrates how domain adaptation is explicable and consis-
tent by design, whereas topological compensation is not.

We train a modified CycleGAN on positions from various
environments, achieving a translation of distorted (C-arm) to
undistorted (laboratory) points. The CycleGAN-based setup
is capable of reducing error in different unseen C-arm sce-
narios, while still producing consistent results. Since we
can show that points are mapped to their correct laboratory
counterparts—regardless of these being directly present in
the training set—our approach is also explicable. Hence, our
domain adaptation approach is interpretable by design.

Conclusion and future work

In this paper, we present an approach for online positional
error compensation for EMT, which focuses on interpretabil-
ity. Interpretable online error compensation raises trust in
EMT, making it suitable for hybrid navigation, where the
surgeon has to rely on EMT until the next X-ray image is
taken. With reliable, online-compensated EMT navigation,
radiation exposure can be reduced to a minimum, thus bring-
ing less harm to patient and surgeon.

Our cycle-consistent adversarial domain adaptation appr-
oach for EMT error compensation is interpretable by design
and generalizes to unseen scenarios, as we demonstrate in
a prototype hybrid scenario. As our method was originally
designed to only compensate positional error, it is surprising
to see that it has potential to correct rotational inaccuracies as
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Fig. 5 CycleGAN-adapted (top) andANN-compensated (bottom)mea-
suring points from C-arm at 7 cm (left), 9 cm (center), 12 cm (right),
compared to corresponding laboratory points. Although laboratory

points at z close to -18 mm are not present in the training set, all
CycleGAN-compensated C-arm points still map to their laboratory
counterparts

Table 2 Comparison of
tracking error (RMSE &
standard deviation) and
prediction uncertainty σpred for
different online architectures in
evaluation setups from Table 1.
Bold values indicate lowest
error on individual datasets

Method Dataset RMSE (mm) ↓ σerror (mm) ↓ σpred (mm) ↓
CycleGAN 7 cm 1.295 1.264

9 cm 1.090 0.949 0.370

12 cm 1.007 0.722

CycleGAN 7 cm 1.100 1.117

+ Fine 9 cm 0.811 0.759 0.7681

Tuning 12 cm 0.622 0.530

GAN 7 cm 1.400 2.744

9 cm 1.176 1.890 0.654

12 cm 1.030 1.256

1Linear regression only: σpred = 0.673 mm
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Fig. 6 Schematic comparison of
domain adaptation (top) versus
topological (bottom)
compensation schemes

well. However, specialized measuring standards need to be
developed to verify the results on rotational error compensa-
tion. Further, we plan to investigate the applicability to other
EMT devices, many of which feature a metallic distortion
(quality) estimate similar to the trakSTAR’s.

In the future, we plan to investigate rotational compen-
sation. Once our approach yields verifiable results on the
rotational axes, it is ready for further bedside evaluations
incorporating feedback of surgeons who use the hybrid sys-
tem. Finally, more evaluations on the bedside bring us closer
to make hybrid EMT navigation clinical reality.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-021-02324-
1.
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