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Abstract
Purpose Electrode bending observed after stereotactic interventions is typically not accounted for in either computer-
assisted planning algorithms, where straight trajectories are assumed, or in quality assessment, where only metrics related
to entry and target points are reported. Our aim is to provide a fully automated and validated pipeline for the prediction of
stereo-electroencephalography (SEEG) electrode bending.
Methods We transform electrodes of 86 cases into a common space and compare features-based and image-based neural
networks on their ability to regress local displacement (lu) or electrode bending (êb). Electrodes were stratified into six groups
based on brain structures at the entry and target point. Models, both with and without Monte Carlo (MC) dropout, were trained
and validated using tenfold cross-validation.
Results mage-basedmodels outperformed features-basedmodels for all groups, andmodels that predicted lu performedbetter
than for êb. Image-based model prediction with MC dropout resulted in lower mean squared error (MSE) with improvements
up to 12.9% (lu) and 39.9% (êb), compared to no dropout. Using an image of brain tissue types (cortex, white and deep grey
matter) resulted in similar, and sometimes better performance, compared to using a T1-weighted MRI when predicting lu.
When inferring trajectories of image-based models (brain tissue types), 86.9% of trajectories had an MSE≤ 1 mm.
Conclusion An image-based approach regressing local displacement with an image of brain tissue types resulted in more
accurate electrode bending predictions compared to other approaches, inputs, and outputs. Future work will investigate the
integration of electrode bending into planning and quality assessment algorithms.

Keywords Surgical planning · SEEG · Prediction of trajectory

Introduction

Stereo-electroencephalography (SEEG) is used to aid in the
localisation of the epileptogenic zone (EZ) in patients with
drug-refractory focal epilepsy [14]. SEEG typically requires
the placement of 10 to 16 depth electrodes to record elec-
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trophysiological brain activity from specific target regions.
Precise placement of electrodes is crucial since SEEG is used
to locate the EZ in patients with discordant non-invasive
anatomo-electro-clinical investigations or where no pathol-
ogy is present on MRI [2]. Electrode implantation errors
can lead to missing onset events due to the limited spatial
sampling of electrodes [14], and an increase in risk compli-
cations, such as haemorrhage [13,18].

To place electrodes, stereotactic neurosurgical techniques
rely on patient-specific imaging in combination with either
a frame, frameless system or robotic device to accurately
drill a small burr hole on the skull through which an elec-
trode is inserted to reach a target in the brain. Surgical
planning for these procedures consists of specifying an entry
point, drilling angle to the skull, and implantation depth for
each electrode whilst avoiding critical structures [17]. These
parameters may be optimised by computer-assisted plan-
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ning algorithms and together describe the intended target.
Electrode implantation accuracy is assessed post-operatively
from a computerised tomography (CT) image co-registered
toMRI.Quality assessment ismostly related to angle and dis-
tance (Euclidean or lateral shift) metrics of entry point and
target point between implanted and planned trajectories [8].
Even if the burr hole is accurately placed and oriented, and
the electrode is correctly inserted, deviations from planned
trajectories may occur due to the surgical technique used,
the structural and biomechanical properties of soft tissue
interacting with the tool, and the mechanical properties of
electrodes [8]. Electrode bending is typically not accounted
for in either planning algorithms, where straight trajectories
are assumed, or in quality assessment, where typically only
metrics related to entry and target points are reported.

In previous work, we modelled electrodes as elastic rods
where orthogonal material frames were computed between
interpolated points comprising the trajectory. The rate of
change between two consecutive frames, i.e. local bending
(Darboux vectors), was used as three degrees-of-freedom
(dof) labels for regression from handcrafted features using
random forests, a feed-forward neural network, and long
short-term memory gates [7]. This approach was later
extended to regress 3-dof local displacement since it is more
clinically relevant [6]. In that work, we proposed a neural net-
work directly or with Monte Carlo (MC) dropout to quantify
epistemic uncertainty (a measure of the inability to ascertain
the validity of the chosen model and related parameters) in
the prediction. Whilst these models framed electrode bend-
ing as a data-driven task, it remains unclear what the best
output label to regress is. For instance, electrode bending
could be characterised by a displacement offset from a rigid
trajectory (i.e. local displacement lu), or by a vector indicat-
ing the direction the electrode may deviate at that point in
space (i.e. electrode bending êb). Moreover, further investi-
gation is necessary to evaluate a more general or streamlined
approach to learn bending by using information directly from
medical images rather than handcrafted features along elec-
trode trajectories.

The aim of this work is to: 1) assess two data-driven
approaches for predicting implanted electrode trajectories
using a total of 96 handcrafted features or using electrode
direction and a 3D image and 2) validate the predictive
capabilities of both approaches when regressing either local
displacement or an electrode bending direction in 86 cases
consisting of a total of 852 electrodes.

Novel contribution

Our main motivation is to predict electrode bending in
patient-specific SEEG electrode implantations. The main
contributions of this work are: 1) the design of a stream-

lined approach to overcome the limitations of approaches
using handcrafted features, 2) an investigation of the pre-
dicting capabilities of regressing local displacement versus
electrode bending direction, and 3) a fully automated pipeline
for visualisation and predicting SEEG electrode bending that
is publicly available to the scientific community.1

Methods

Data

Pre-operative T1-weightedMR (T1w) and post-operative CT
images of 86 refractory epilepsy SEEG implantation cases
comprising a total of 852 electrodes were acquired at the
National Hospital for Neurology and Neurosurgery (Queen
Square, London, UK) over a period of 5 years (2015-2020).
The electrodes were implanted by the same neurosurgeon as
specified by the plan using a frameless system. The surgical
technique has improved over timewith some cases implanted
manually and otherswith the use of a computer-assisted plan-
ning algorithm [17], using a rigid stylet short from target
point [16], and most recently 16 cases using a robotic system
[3]. T1w and CT images are co-registered with a rigid trans-
formation using NiftyReg (v1.5.43) [15]. From the T1w, we
obtained a parcellation of the brain anatomy using Geodesic
Information Flow (GIF) via NiftyWeb (GIF v3.0) [1]. An
image containing masks, referred as CWD, corresponding to
(c)ortex, (w)hite, and (d)eep grey matter was generated from
the parcellation. Smoothed 3D surface meshes of the scalp,
cortex, white, and deep grey matter were generated from the
CWD [7]. The position of the electrode contacts and bolts
(Ad-TechMed Instr Corp,USA)was identified automatically
as described in [9]. Electrode trajectories were interpolated
at 1 mm intervals using a shape-preserving piece-wise cubic
Hermite interpolation (PCHIP). For a trajectory defined by
entry, target, and contacts points, I interpolated points are
created 1 mm apart with positions xi , where xI−1 is the
target point. In this work, rather than using a planned tra-
jectory to characterise an electrode that is not subject to
bending, we use a rigid trajectory, which is defined as a
straight line in the direction of the bolt. Rigid trajectories
are similarly interpolated at 1 mm intervals. Electrodes were
stratified into six groups based on brain structures of the
entry and target point: superior frontal gyrus (sfg), middle
frontal gyrus (mfg), inferior frontal orbital gyrus (ifog), tem-
poral gyrus (tg), anterior/posterior cingulate gyrus (apcg),
and parietal/occipital lobes (po) (Supplemental Material
(SM) Table 1).

1 Source code: URL https://github.com/agranadoseu/SEEG-Electrode
-Bending.
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Fig. 1 Pipeline. SEEG electrodes are identified automatically from co-
registered pre-operative T1w, parcellation (GIF), and post-operative
CT images in the T1w space. Electrode trajectories are interpolated
at 1 mm intervals and then registered into MNI space via an affine
transformation. Electrodes in the MNI space are loaded into memory
and pre-processed to generate input data and labels for training both

regression models. To infer electrode trajectories, a trained model is
iteratively used to predict the next interpolation point from an initial
trajectory based on electrode bolt direction. Visualisation is used to
render electrodes of a patient, of all cases, and of predictions in relation
to anatomy

Pipeline

We transform rigid and implanted electrode trajectories into
the Montreal Neurological Institute (MNI) space and com-
pute inputs and labels in that space as follows.Wefirst register
with an affine transformation the patient-specific T1w to
the MNI152 template T1w [4] using NiftyReg [15]. The
computed affine transformation is then applied to electrode
trajectories and surface meshes, aligning these objects in
MNI space (Fig. 1). We normalise ([0,1]) and skull-stripped
the transformed T1w using ROBEX (v1.2) [11].

Definition of labels for regression

We compute two types of labels that characterise electrode
bending at trajectory points xi : a) local displacement lu and
b) electrode bending êb. Local displacement lu (pink arrow
in Fig. 2; Eq. 1) is a 3-dof vector that measures the offset (in
mm) from a projected point xp located 1 mm away from an
interpolated point xi in the direction of the electrode trajec-
tory v̂i . Electrode bending direction êb (green arrow in Fig.
2; Eq. 2) is a 3-dof unit vector with origin at xi and pointing

towards xi+1. A new predicted point x̃i+1 can then be found
via either Eq. 1 or Eq. 2 depending on if local displacement
or bending direction is defined. Note that the formulations
are equivalent as v̂i + lu = êb. For the model architecture
and inputs described in Sec. 3.4.1, we regress one of these
labels.

v̂i = xi − xi−1

|xi − xi−1|
xi+1 = xi + 1 ∗ v̂i + lu, where

xp = xi + 1 ∗ v̂i and lu = xi+1 − xp (1)

êb = xi+1 − xi
|xi+1 − xi |

xi+1 = xi + 1 ∗ êb (2)

Machine learning algorithms

Models

Handcrafted features (HcF). Similar to previous work [6,7],
we computed features related to electrode implantation,
bending, structure, and collision at each interpolated point
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Fig. 2 Schematic definition of an implanted electrode (solid lines) that
deviated from a rigid trajectory (dashed lines). Trajectories are inter-
polated at 1 mm intervals, and the deviation at each interpolated point
xi from rigid trajectory is defined as global displacement gu. Electrode

bending is characterised either by local displacement lu plus electrode
direction v̂i or by a unit vector êb between interpolated points xi and
xi+1

(SM Table 2). We normalised continuous variables and
encode categorical variables into one-hot encoding vectors
including when a stylet was used (yes, no, no informa-
tion available), type of anatomical region (cortex, white,
deep matter), entry points by lobe (frontal, central, tempo-
ral, parietal, occipital), and target points by region (frontal,
central, temporal, parietal, occipital, insula, cingulum). In
total, there are 96 features used as inputs to a neural net-
work model composed of a parametric rectified linear unit
(PReLU) activation, followed by three hidden blocks, and a
fully connected layer (Fig. 3 top). Each hidden block con-
sists of a fully connected layer with five neurons, a PReLU
activation layer, and a dropout layer.
End-to-end (E2E). We use a multiple-input model archi-
tecture where inputs are comprised of the 3-dof electrode
direction v̂i (Eq. 1) and a one-channel 9× 9× 9 image win-
dow at interpolated points (Fig. 3 bottom). The window size
is specified such that it is large enough to capture local infor-
mation along the trajectory, whilst small enough to run the
convolutional and max pooling layers. We study windows
constructed from T1w, GIF, and CWD images. The elec-
trode direction v̂i input passes through a fully connected layer
with 5 neurons followed by a rectified linear unit (ReLU)
activation. The image window input passes through a 3D
convolutional layer with a kernel size of 3 × 3 × 3 and zero
padding, followed by a leaky ReLU activation unit, and max
pooling of size 2× 2× 2. These two input layers are stacked
into two sequential blocks consisting of a fully connected
layer followed by a leaky ReLU activation unit, a 1D batch
normalisation layer, and a dropout layer. The first block con-
sists of 32 neurons, whilst the second consists of 8 neurons.

A final fully connected layer with 3 neurons is used to infer
the outputs.

Training

The proposed algorithms were trained using the Adam opti-
miser with a weight decay of 10−3 to minimise the mean
squared error (MSE) loss function L = 1

N

∑N
n=1(yn − ŷn)

2,

where yn is the ground truth label (lu, or êb), and ỹn is the
inferred output, corresponding to the predicted bending of
the nth point along the trajectory of an electrode with a total
of N points. Models were trained for 200 epochs with vali-
dation performed every 5 epochs. We dynamically reduced
the learning rate lr = 10−3 by a factor of 10 when the train-
ing epoch loss stopped improving (i.e. on a plateau) using a
scheduler.

Inference

Regardless of the label regressed during inference, predicted
trajectories are computed as follows. First, an initial trajec-
tory of 5 points (5 mm) is extracted from a rigid trajectory in
the direction of the bolt. Then, we iteratively extend the tip of
the electrode by one point (1 mm) up to a specified depth. At
each iteration, we generate inputs at the position of the last
interpolated point, regress either lu (Eq. 1) or êb (Eq. 2), and
compute the next point xi+1. At inference time, we used the
dropout layers to build stochastic models where the outputs
are described as a probability distribution, which is approx-
imately equivalent to having probability distributions of the
model weights. This allows for variance in HcF and E2E
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Fig. 3 Architecture of machine learning algorithms.HcF:A total of 96
features are generated at each interpolated point along electrode trajec-
tory and used as inputs to three hidden blocks (each with linear, PReLU,
and dropout layers). E2E: Electrode direction and a 9 × 9 × 9 image
window (either from T1w, GIF or CWD) are used as inputs to a lin-

ear and a convolutional/max pooling layer, respectively. The resulting
layers are stacked together and pass through two fully connected layers
(eachwith linear, LeakyReLU, batch normalisation, and dropout layers)

model predictions to be computed. In particular, epistemic
uncertainty can be computed as a Bayesian approximation to
a Gaussian process, using MC dropout [5]. This is achieved
by computing T random forward passes which are averaged
to compute the final prediction. We use dropout probability
of 0.1 and 200 forward passes.

Experiment design and validation

We study the predicting performance of lu and êb in HcF
and E2E models reporting performance across anatomical
groups (SM Table 1). We evaluate the benefit of quantify-
ing uncertainty and study three distinct types of inputs (T1w,
GIF, CWD) for the E2E approach. A model is trained for
each anatomical group with tenfold cross-validation, where
we first randomly selected 10% of the cases (8 cases; 86
electrodes) as a hold-out test set and then split the remaining
cases into tenfold, 9 for training (70 cases) and 1 for valida-
tion (8 cases). We then run inference on the hold-out test set
to compute predicted trajectories and report MSE of these
trajectories against the ground truth for the best perform-

ing models. In the remaining of the manuscript, we denote
MSEt to refer to theMSE of the model cross-validation, and
MSEi to refer to theMSE of predicted trajectories. Note that
small values are expected for MSEt since lu refers to a local
displacement (see vector in pink in Fig. 2, close-up view),
whereas values in the order of millimetres are expected for
MSEi , since these relate to the actual trajectories and are a
better indicator of performance for our proposed approach.

Implementation

The proposed system is implemented in Python (v3.7). Med-
ical images are processed in SITK (v1.2.4), and visualisation
of electrodes and surface meshes is done in VTK (v9.0.1).
Machine learning algorithms are implemented in PyTorch
(v1.5.1) and trained on a Nvidia DGX cluster using Docker
containers.
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Fig. 4 Visualisation of the SEEG electrode trajectories dataset used
in our study. Smoothed surface meshes (wireframe mesh) generated
from parcellation of relevant entry and target points of implanted elec-
trodes. For each electrode, rigid trajectories (translucent white tube),
implanted trajectories (translucent coloured tube - note that colours are
randomly allocated), and contacts (spheres) are rendered in 3D.We also

render vector fields at interpolated points along the trajectory, includ-
ing electrode direction êb (green arrows), local displacement lu (as a
unit vector for visualisation in red arrows), and global displacement gu
(white arrows). We illustrate electrode trajectories for one case (centre)
and for the entire dataset consisting of 86 cases (right)

Results

Data

Electrode trajectories transformed intoMNI space are shown
inFig. 4 and inSMFig. 2 across groups.The left imageofFig.
4 illustrates, for one implanted electrode (yellow), the lu (red)
and êb (green) labels. Note that lu has been normalised (unit
vector) to aid in its visualisation.Rigid trajectories (white) are
displayed with a corresponding vector field (white arrows)
indicating the amount of global displacement gu at interpo-
lated points. Global displacement gu is shown in SM Fig. 1
across anatomical regions.

Model validation

Results of the tenfold cross-validation for lu and êb labels
are shown in Table 1. Values indicate the mean and stan-
dard deviation (in 10−3 mm) of MSEt across folds for the
hold-out test set. Notice that MSEt errors are lower for lu
than êb labels since local displacement is the distance from
a projected point along the electrode direction, whilst êb is a
unit vector representing the direction of bending. E2Emodels
trained faster than HcFmodels when regressing êb, although
no substantial time differences were observed between mod-
els when regressing lu (SM Table 3).
HcF vs E2E. The results in Table 1 indicate that the predictive
performance of the streamlined end-to-end (E2E) approach
that uses only electrode direction and a 3D image window
outperformed the handcrafted (HcF) approach comprising 96
features. Improvements are particularly observed in the apcg
group followed by sfg, mfg, ifog, and po groups for lu.
E2E image window. T1w and CWD image inputs resulted in
better predictions compared to GIF. For lu, CWD performed

similarly, and sometimes better, than T1w in sfg, mfg, ifog,
and tg groups. However, performance for CWD was twice
as worst in apcg, and po groups. For êb, models using T1w
image inputs outperformed CWD in all groups except apcg.
Stochastic models. Dropout in neural networks, which con-
sists of randomly setting elements of the inputs to zero, is used
as a way to avoid overfitting and is mathematically equiva-
lent to an approximation to a Gaussian Process probabilistic
model [5]. We use MC dropout to compute the predictive
mean and uncertainty by collecting results of stochastic
forward passes. This enables us to model how the estima-
tion of the neural network parameters affects the inference
step. In this work, models using MC dropout outperformed
models that directly predicted the outputs. Improvements
were negligible in HcF models. In E2E models, we observe
improvements of ≈ 7% when using GIF as input for both lu
and êb labels, ≈ 11% when using T1w or CWD inputs in lu
labels, and 28% or 40% of êb models when using CWD or
T1w, respectively.

Trajectory validation

MSEi computed between predicted and implanted trajecto-
ries of 860 trajectories was below 1 mm for 208 electrodes
(24.2%) when predicting êb using T1w as input. This
increased to 708 (82.3%), or 747 (86.9%) when predicting
lu using T1w or CWD as input, respectively. For the best
performing model, E2E CWD lu, MSEi is plotted in Fig.
5 (top) across regions and folds, along a horizontal (dashed)
line indicating the 1 mm threshold. On average, apcgwas the
group with the lowest MSEi , whereas electrodes predicted
for the group po had the highest errors, followed bymfg. Note
that the first fold was the least accurate, followed by the sec-
ond fold, whereas the MSEi shows the remaining folds are
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compared to the MSE of rigid vs implanted trajectories for
sfg: 0.1(0.1), apcg: 0.09(0.1), tg: 0.27(0.3), ifog: 0.1(0.05),
mfg: 0.34(0.7), and po: 0.25(0.19). We found a negligi-
ble positive correlation between electrode length and MSEi

across anatomical groups (SM Fig. 3). In Fig. 5 (bottom),
we illustrate how predicted electrode trajectories sometimes
bend correctly in the interface between greymatter andwhite
matter, but then do not predict bending occurring deeper.

Discussion

In contrast to previous work [6,7], we increase the number of
cases nearly fourfold and omit features related to diffusion
MRI. Additionally, the HcF network proposed in this work
is narrower and deeper than that proposed in earlier work
[6]. Model simplicity in this work may have resulted after
data stratification. Whilst the cases included in this study
span across a total of 5 years with differences in scanner
and surgical techniques, our data are from only one centre
and electrode manufacturer (Ad-Tech), which may limit the
generalisability of our work. Also, although we transform
electrodes into MNI space using an affine transformation,
we highlight that anatomical structures in this space still dif-
fer across patients. Therefore, we investigate the predictive
capabilities of the proposed models in patient-specific cases
given the inputs.

In this work, we formulate the learning problem based
on the brain structures corresponding to the entry and tar-
get points of electrodes rather than a single group with all
electrodes. Although cases are balanced across groups, the
number of electrodes differs with ≈ 90 electrodes in ifog,
and apcg groups, followed by 117 in po, ≈ 155 in sfg, and
mfg, and 242 in the tg groups. This is important to consider
since predicting electrode trajectories in po regions are more
difficult to predict.

Although we were unable to confirm whether lu or êb
labels were better predictors of electrode bending from the
tenfold model cross-validation, we confirmed that lu has
a higher predictive performance than êb when computing
trajectories via inference. Our results indicate that the HcF
approach was outperformed by an E2E approach that only
uses electrode direction and a 3D imagewindow, particularly
when usingCWD images for lu. Thismeans that for sfg,mfg,
ifog, and tg data groups, a mask of the main brain structures
is as good as, and sometimes better than, using the T1w inten-
sities. However, for apcg and po regions, T1w has a greater
predictive performance, indicating perhaps the T1w intensi-
ties provide additional information for these electrodes. This
suggests that deviation from rigid trajectories can be mostly
explained at interfaces/boundaries between brain structures,
which we hypothesise is related to the different biomechan-
ical properties of these tissues.
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Fig. 5 Electrode trajectory prediction of lu using E2E CWD model.
Top: Strip plots of MSEi between implanted and predicted trajectories
across regions (left), and across folds (right). Notice that these colours
are used to plot inferred trajectories in the figures below.Mean (standard
deviation) is shown for each group and across folds 3 to 10. Bottom:
Examples of inferred trajectories (case-electrode) of all folds across
groups for good (+) and difficult (-) cases. Implanted (yellow—ground

truth) and rigid (white) trajectories are shown. Inferred trajectories are
coloured: a) according to the anatomical group (see top-left strip plot)
when predictions are within MSEi=1 mm, b) in light blue when pre-
dictions overestimate bending (i.e. bending is predicted in the same
direction in relation to the ground truth but is overestimated), and c)
in red when predictions result in the wrong direction in relation to the
ground truth

When inferring trajectories iteratively for best perform-
ing models, bending most often occurred at the interface
between the cortex and white matter. However, when bend-
ing occurred, our approach was sometimes unable to predict
bending observed in deeper points along the trajectory,
resulting in trajectories that were overestimated. This has
implications to our approach since errors accumulate as
trajectory inference is an iterative process in our current
formulation. Rather than predicting iteratively local displace-
ment at interpolated points, predicting the entire trajectory
at once may result in more accurate predictions. Folds 1
and 2 had reduced performance compared to the other eight

folds when inferring trajectories. Whilst investigating this,
we noticed that model cross-validation of CWD lu is also
affected by folds 1 and 2, and MSEi decreases consider-
ably if this twofold is discarded for sfg, mfg, ifog, tg, apcg,
and po to 0.0007(0.001), 0.0303(0.046), 0.0003(0.0005),
0.0005(0.0009), 0.0006(0.0015), and0.0015(0.002), respec-
tively (see Table 1; last column). However, it is still unclear
why these folds had reduced performance. Furthermore,
whilst the MSEi=1 mm threshold was used as a reference
to compare best performing models, MSEi of folds 3-10 in
Fig. 5 suggests that this threshold could be reduced to better
capture the quality of predictions.
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Conclusions and future work

We presented two machine learning approaches based on
handcrafted features and convolutional neural networks for
predicting deviations of implanted SEEG electrodes from
rigid trajectories in MNI space. Models were trained and
tested using tenfold cross-validation on a dataset of 86 ret-
rospective SEEG implantation cases from a single centre.
We found that a streamlined end-to-end (E2E) approach
that predicts local displacement and that uses an image
containing only the masks of cortex, white, and deep grey
matter (CWD) along the electrode trajectory showed the
best performance, followed closely by a similar approach
that uses a T1-weighted MRI image. However, using global
displacement as a label for regression and accounting for
spatiotemporal predictions may be an alternative to local dis-
placements that remains to be investigated. Further studies
are required to assess the generalisability of pre-trainedmod-
els to other manufacturers and surgical centres. Furthermore,
our work could be extended to other stereotactic interven-
tions, such as deep brain stimulation, where brain shift may
play a bigger role in electrode deflections. More impor-
tantly, further research will investigate the incorporation of
electrode bending prediction and uncertainty quantification
into planning algorithms. With the advent of new tech-
nologies for neuroprosthesis [12] and even brain computer
interfaces [10], the work proposed here is a step forward
towards more accurate patient-specific predicted implanta-
tions.
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