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Abstract Intraoperative tracking of surgical instruments is an inevitable task
of computer-assisted surgery. An optical tracking system often fails to precisely
reconstruct the dynamic location and pose of a surgical tool due to the acquisi-
tion noise and measurement variance. Embedding a Kalman Filter (KF) or any
of its extensions such as extended and unscented Kalman filters with the optical
tracker resolves this issue by reducing the estimation variance and regularizing
the temporal behavior. However, the current rigid-body KF implementations are
computationally burdensome and hence, takes long execution time which hinders
real-time surgical tracking. This paper introduces a fast and computationally ef-
ficient implementation of linear KF to improve the measurement accuracy of an
optical tracking system with high temporal resolution. Instead of the surgical tool
as a whole, our KF framework tracks each individual fiducial mounted on it using
a Newtonian model. In addition to simulated dataset, we validate our technique
against real data obtained from a high frame-rate commercial optical tracking sys-
tem. The proposed KF framework substantially stabilizes the tracking behavior in
all of our experiments and reduces the mean-squared error (MSE) from the order
of 10−2 mm2 to 10−4 mm2.

Keywords Optical tracking · Computer-assisted surgery · Kalman filter · Robust
localization.

1 Introduction

Kalman Filter (KF) refers to a recursive algorithm which minimizes Mean Squared
Error (MSE) and refines the noisy measurements of a system through two stages:
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prediction and correction [15]. Since 1960, when KF was proposed, it has ex-
tensively been used in data fusion, tracking and prediction in numerous fields.
However, one of the main limitations of KF is that it can be only applied in lin-
ear systems. As a consequence, two notable extensions of KF called the Extended
Kalman Filter (EKF) [7] and Unscented Kalman Filter (UKF) [8] have been pro-
posed. EKF linearizes the system under consideration around the operating point
and then feeds to the KF. EKF has widely been used in robotics [1, 10, 11] and
unmanned aerial vehicle [12]. However, EKF is inherently limited by its computa-
tional complexity and long execution time originating from the linearization step.
To resolve this important drawback of EKF, researchers have introduced UKF.
Instead of linearization, UKF tackles the nonlinearity issue using an unscented
transform, where the nonlinear system transforms to a probability distribution
function. This innovation empowers UKF to handle a non-linear system faster
than EKF and allow real-time computation. Thus far, UKF has been incorpo-
rated in a variety of applications namely orientation tracking [9], mobile robot
controlling [16], aerodynamic parameter estimation [2] and spacecraft attitude es-
timation [14].

In recent years, computer aided applications including surgical tracking have
emerged rapidly. Optical tracking of the surgical tools often guides the clinicians
to perform high-precision surgical procedures [5]. Infra-red emitting diodes, com-
monly known as active fiducials, are embedded on the surgical tools to be used as
reference points to estimate the location and orientation of the tool. However, the
noisy observations often leads to an inaccurate estimation of the instrument’s pose
which can increase surgical errors. Numerous investigators have employed EKF
and UKF to reduce the tracking error by taking the expected noise statistics and
temporal constancy into account. Translational velocity and acceleration, and an-
gular velocity are used as the state variables in [4] to devise an EKF model. Taylor
series as well as Rodrigues formula [3] have been used to linearize the model and
prepare for Kalman filtering. Although encouraging results have been reported,
the mathematical formulation is computationally burdening. Hence, Vaccarella et
al. [13] have used UKF to track surgical navigation. A quaternion-based model
using translation, linear velocity, quaternion, and angular velocity as the state
variables has been adapted to avoid matrix singularity problem that originates
from using Euler angles in rotation tracking. Linear acceleration has been added
as a state variable in [6] for surgical tracking.

Although the aforementioned works have reported promising tracking results,
EKF and UKF require long execution times and are not suitable for high frame-
rate optical tracking applications. Multi-camera optical tracking system to assist
total knee arthroplasty (TKA) is such an application which operates at a temporal
resolution of approximately 200 fps. A robust and accurate localization of surgical
array is of paramount importance in TKA. However, tracking data obtained by the
current system yields high sensitivity to noise. Inspired by previous works, our aim
is to combine KF with the existing scheme to increase tracking and localization
accuracy of the system. However, the extended and unscented implementations of
KF might not be suitable for the system under discussion. Therefore, instead of
the whole array as a rigid body, this paper proposes to track each fiducial on the
surgical array individually, taking a linear KF into account. This simplification has
been possible due to the availability of sufficient temporal information obtained
from the high frame-rate system. The advantage of the proposed technique is
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twofold. First, being fast and computationally light, this framework is compatible
with the high frame-rate optical tracking system. Second, any unusual phenomena
such as occlusion of a particular fiducial can easily be detected by this scheme since
the temporal behavior of each fiducial is assessed individually. We have validated
the proposed technique against one simulated and three real datasets obtained
using an optical tracking system.

The rest of this paper is organized as follows. In Section 2, we describe the
mathematical model pertaining the proposed KF framework. Section 3 describes
the experimental setup and data acquisition protocols. In Section 4, the qualita-
tive and quantitative assessments of the proposed method are provided. Section 5
presents a brief discussion of our findings along with concluding remarks.

2 Methods

Let zk =
[
px,k py,k pz,k

]T
, k ∈ {1, 2, 3, . . . , n} denote the position measurement of

the center of a fiducial at time k. We assume that zk is corrupted with anisotropic
Gaussian noise. Our purpose is to exploit the expected noise statistics of the
measured data to minimize the measurement noise and stabilize the temporal
tracking using KF.

2.1 State variables and update equations

We consider 3D components of translation ttt =
[
tx ty tz

]T
, velocity vvv =

[
vx vy vz

]T
and acceleration aaa =

[
ax ay az

]T
as our state variables. Since we assume a con-

stant acceleration motion model, the update equations for the state variables are:

tttk = tttk−1 + vvvk−1∆t+
1

2
aaak−1∆t

2 (1)

vvvk = vvvk−1 + aaak−1∆t (2)

aaak = aaak−1 (3)

where ∆t denotes the time interval.

2.2 Kalman filter pipeline

The Kalman filter consists of two steps. The first step predicts the current state
and state covariance matrix based on the estimates of the previous time step
and the state update model. The second step takes the actual measurement into
account to refine the predictions made in the first step. The state update model
described earlier obtains x−k , the prior estimate of the current state, using the
following linear equation:

x−k = Axk−1 (4)

where xk−1 =
[
tx vx ax ty vy ay tz vz az

]T
denotes the posterior state estimate

of the previous time step. A describes the motion model and is defined as follows:



4 Md Ashikuzzaman* et al.

A =



1 ∆t 1
2∆t

2 0 0 0 0 0 0
0 1 ∆t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 ∆t 1

2∆t
2 0 0 0

0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 ∆t 1

2∆t
2

0 0 0 0 0 0 0 1 ∆t
0 0 0 0 0 0 0 0 1


(5)

The prior estimate of the state noise covariance matrix P−
k is obtained as

follows:

P−
k = APk−1A

T +Q (6)

where Pk−1 refers to the posterior estimate of the state covariance matrix obtained
from the previous time step. Q denotes the process covariance matrix. Taking P−

k

into account, the Kalman gain Kk is calculated as follows:

Kk = P−
k H

T (HP−
k H

T +R)−1 (7)

where R stands for the measurement covariance matrix. H obtains a prediction of
the measurement using the state prediction and is defined as:

H =

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

 (8)

Once the priori estimates and the Kalman gain are calculated, the actual mea-
surement is incorporated to fine-tune the state prediction. We use the difference
between predicted and actual measurements to obtain the posterior state estimate
according to the following equation:

xk = x−k +Kk(zk −Hx−k ) (9)

The posterior estimate of the state covariance matrix is calculated as follows:

Pk = (I −KkH)P−
k (10)

The refined measurement zk,r is calculated using:

zk,r = Hxk (11)

The workflow is outlined in Algorithm 1.

3 Experimental setup and data acquisition

In this section, we first describe the simulation experiment conducted to generate
synthetic dataset. Then we describe the experimental setup and data collection
protocol.
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Algorithm 1: Workflow of the proposed Kalman filtering algorithm

Input: Initial state covariance matrix P0, process covariance matrix Q
and measurement covariance matrix R

Output: Refined measurements of fiducial positions
1 for all fiducials and k ∈ {1, 2, 3, . . . , n} do

2 Estimate x−k : Priori state estimate using process model matrix A and
previous state estimate xk−1;

3 Calculate P−
k : Priori estimate of the state covariance matrix using A,

Q and previous state covariance estimate Pk−1;

4 Compute Kk: Kalman gain using P−
k and R;

5 Estimate xk: Posterior state estimate using Kk, x−k and measurement
zk;

6 Calculate Pk: Posterior state covariance estimate using Kk and P−
k ;

7 Extract the refined position measurements from xk
8 end

3.1 Simulated dataset

We designed a surgical array with four coplanar fiducials. The marker geometry is
defined by the mutual distances among the centers of the fiducials. The distances
from fiducial 1 to 2, 2 to 3, 3 to 4 and 4 to 1 are 481.04 mm, 121.66 mm, 28.28
mm, and 382.88 mm, respectively. The motion model of the marker as well as the
fiducials is stated below.

Let X0 =
[
xf yf zf

]T
denote the initial position of the center of a fiducial.

Xk, the position of the fiducial at time sample k, can be calculated by Xk =

TTT k

[
XT

0 1
]T

where TTT k ∈ R4×4 refers to a transformation matrix explaining the
pose of the marker at time k. TTT k is defined as follows:

TTT k =

[
RRRk tttk
O 1

]
(12)

where RRRk ∈ R3×3 denotes a 3D rotation matrix. O ∈ R1×3 refers to a zero vector.
We consider a constant acceleration translation model. Therefore, the translation
update model is governed by Eqs. 1-3. Considering the time interval ∆t to be tiny,
the rotation matrix RRRk at time sample k is calculated using the following forward
kinematics:

RRRk ≈ RRRk−1 +∆tR
′

R
′

R
′

k−1 (13)

whereR
′

R
′

R
′

k−1 refers to the temporal derivative of the rotation matrix at time sample
k − 1 which is defined as follows:

R
′

R
′

R
′

k−1 = ωωωRRRk−1 (14)

where ωωω ∈ R3×3 denotes a skew symmetric matrix which is obtained from the
angular velocity vector ω =

[
ωx ωy ωz

]
and defined as:



6 Md Ashikuzzaman* et al.

(a) multi-camera system (b) Surgical array

Fig. 1: Experimental set up of a multi-camera system

www =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (15)

We assumed a constant angular velocity vector
[
0.001 0.001 0.001

]
for our sim-

ulation experiment. The initial translational velocity vector was considered to be[
0 0 0

]
whereas the translational acceleration vector was set to

[
0.1 0.1 0.1

]
. The

initial positions of fiducials 1 to 4 were set to
[
−180 180 1230

]T
,
[
170 −150 1230

]T
,[

50 −130 1230
]T

and
[
70 −110 1230

]T
, respectively. We choose this order of initial

positions to imitate the experimental set-up. Considering 200 temporal samples
per second, the fiducial positions for 5 seconds were obtained. Once the ground
truth fiducial positions are generated, anisotropic zero-mean random Gaussian
noise with a variance of 0.15 mm2 in X and Y directions was added to obtain
noisy measurement data. To emulate the real scenario, the noise variance in Z
direction was considered to be 40% higher than the other two directions.

3.2 Real datasets

The experimental setup includes a multi-camera optical tracking device which is
mounted horizontally on a stable arm above a sturdy table (see Fig. 1(a)). The
tracker is connected to a host computer that is used to operate the tracker and col-
lect the data. The experiment uses a single medical array with four calibrated fidu-
cials (see Fig. 1(b)). The fiducials emit high-intensity near-infrared light with 850
nm wavelength. The tracker is equipped with infrared filters and reconstructs the
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3D position of each fiducial using a standard linear triangulation stereo method.
The position of the array is determined by matching the reconstructed 3D points
against the calibrated geometry of the array. The resulting pose and 3D points are
sent to the host at a rate of approximately 200 fps. The host stores the data in a
relational database for later analysis.

We ran 3 recording sessions under different conditions. For the first recording,
the array was left in a static position relative to the tracker and was positioned
slightly off-center of the tracker’s optical axis. The array was recorded for about
2 minutes, providing 23, 452 data points.

The second recording was performed on an array undergoing rotational and
translation motion, emulating the scenario of a real surgical environment. The
recording lasted for about 30 seconds and obtained 6000 temporal data points.

The third dataset was acquired from a static array where one of the fiducials
was partially occluded using a 220 GRIT diffuser (Edmund Optics, Barrington,
USA). This experiment aimed at imitating the scenario of a real surgical room
where fiducials are often blocked by translucent materials such as a drop of blood.
The experiment was repeated 4 times, each time occluding one of the 4 fiducials.
The array of interest was recorded for about 2 minutes and 22, 897 data points
were obtained.

4 Results

We examine qualitative and quantitative tracking performance of the proposed
Kalman filtering scheme by employing simulation and real datasets obtained from
multi-camera system. We use MSE and error variance for the quantitative analysis,
with MSE defined as:

MSE =

∑n
k=1(pr,k − pg,k)2

n
(16)

where pr,k and pg,k denote measured and ground truth positions, respectively.
We obtain Q by calculating the covariance matrices corresponding to zero-mean
Gaussian random noise with variances of 0.001 mm2 and 0.01 mm2 for simulation
and real datasets, respectively. For all datasets, R is obtained by computing the
covariance of anisotropic zero-mean Gaussian random noise with a variance of
0.15 mm2 in x and y directions and 0.21 mm2 in the z direction.

4.1 Simulated data

The tracking results for one of the fiducials of the simulated array in all three
directions are reported in Fig. 2. To maintain the conciseness, in the plots, we
show the last 200 samples out of 1000 temporal samples obtained from 5 seconds
of acquisition for only one fiducial. KF achieves a similar level of noise suppression
in other fiducials. These results show that KF minimizes the measurement noise
and substantially improves the tracking quality. In x and y directions, the filtered
outputs exhibit almost no difference with the ground truth positions of the fidu-
cials. Since the noise model is anisotropic and the variance is 40% higher in the
z direction, the tracking error in this direction is slightly higher. Fig. 3 shows the
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Fig. 2: Temporal tracking plots for fiducial 1 of the simulated array. Columns 1-3
refer to x, y and z directions, respectively.
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Fig. 3: Squared error plots for fiducial 1 of the simulated array. Columns 1-3 refer
to x, y and z directions, respectively.

Table 1: Quantitative values of MSE and error varaince for the simulated dataset.

MSE (mm2) Error variance (mm2)
Without KF With KF Without KF With KF

Fiducial 1, X 2.1× 10−2 3.33× 10−4 2.09× 10−2 2.47× 10−4

Fiducial 1, Y 2.24× 10−2 2.51× 10−4 2.24× 10−2 2.41× 10−4

Fiducial 1, Z 4.49× 10−2 4.87× 10−4 4.49× 10−2 4.39× 10−4

Fiducial 2, X 2.17× 10−2 7.51× 10−4 2.17× 10−2 6.49× 10−4

Fiducial 2, Y 2.3× 10−2 2.35× 10−4 2.30× 10−2 2.35× 10−4

Fiducial 2, Z 4.28× 10−2 9.46× 10−4 4.27× 10−2 5.67× 10−4

Fiducial 3, X 2.28× 10−2 8.07× 10−4 2.28× 10−2 7.22× 10−4

Fiducial 3, Y 2.25× 10−2 4.23× 10−4 2.25× 10−2 4.2× 10−4

Fiducial 3, Z 4.32× 10−2 8.44× 10−4 4.32× 10−2 7.62× 10−4

Fiducial 4, X 2.36× 10−2 5.05× 10−4 2.35× 10−2 3.69× 10−4

Fiducial 4, Y 2.02× 10−2 3.87× 10−4 2.02× 10−2 3.66× 10−4

Fiducial 4, Z 4.14× 10−2 4.5× 10−4 4.13× 10−2 4.43× 10−4

square error plots for all fiducials in all three directions. Since KF requires some
time in the beginning to adapt with the motion trajectory, we consider the first
0.5 second as the burnout period and therefore, disregard the first 100 temporal
samples during error calculation. MSE and error variance values reported in Ta-
ble 1 substantiate our visual assessment, showing a reduction in the tracking error
from the order of 10−2 mm2 to 10−4 mm2.
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Fig. 4: Temporal tracking plots for the real dataset collected from static marker.
Columns 1-3 refer to x, y and z directions, respectively.
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Fig. 5: Temporal tracking plots for array undergoing rotational and translational
motion. Columns 1-3 correspond to x, y and z directions, respectively.

4.2 Real dataset

Our first experiment analyzes the performance with the dataset acquired from
the static digitizer, where the ground truth velocity is zero. Since this dataset is
collected from a steady marker, position constancy of all fiducials in all three di-
rections is expected. Fig. 4 shows that current tracking system exhibits extensive
variation around the expected positions. It is evident from this figure that com-
bining KF with the existing system resolves the issue of measurement variation by
stabilizing the position tracking in all three directions.

In the second experiment, we investigate the tracking performance of the
marker that undergoes rotational and translational motion. The results of noisy
measurement of the positions of one of the fiducials along with the KF measure-
ments are presented in Fig. 5. Like the previous experiment, we show the last 200
temporal samples out of a total of 6000 samples to keep the figures comprehensible.
The position plots show that the Kalman filtered outputs manifest substantially
lower fluctuation compared to the raw measurement. It is observed that KF notice-
ably stabilizes the measurements of the first fiducial and slight variations around
182.3 mm, -184.63 mm, and 1230.88 mm are observed in x, y and z directions,
respectively. Similar tracking performance is achieved for the other three fiducials
as well.

The third experiment examines the performance of the proposed KF when the
fiducial of interest is blocked by a translucent material. Fig. 6 reports the temporal
regions where fiducials 1 and 3 are blocked. In all three directions of both fiducials,
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Fig. 6: Tracking results for blocked fiducials. Rows 1 and 2 correspond to fiducials 1
and 3, respectively whereas columns 1-3 refer to x, y and z directions, respectively.

extensive discontinuities are observed at the instants of disposal and removal of the
glass diffuser. However, during the stable placement of diffuser, the first fiducial’s
y and z positions are overestimated and underestimated, respectively whereas the
x position remains unaffected. In case of third fiducial, the z measurement exhibits
large upward shift whereas slight overestimation and underestimation are noticed
in x and y directions, respectively. In all cases, the output of KF follows the
trend of the actual measurement, but with substantially lower variance. Besides,
the proposed scheme successfully suppresses the spurious spikes introduced by
diffuser placement and withdrawal.

5 Discussion and conclusion

As reported in Fig. 6, the proposed implementation of KF follows the trend of
the incorrect position measurement when any of the fiducials moves out of the
field-of-view or gets blocked by a translucent material such as a drop of blood.
Although it reduces the estimation variance, it cannot amend the step-like over or
underestimation of fiducial position, likely caused by light diffraction. The rigid-
body model incorporated in EKF and UKF implementations empowers the system
to adapt with the situation of fiducial occlusion and reconstruct the surgical tool
with modest tracking error. However, since this scheme tracks the instrument as
a whole, it cannot notify the surgeon which of the fiducials is blocked or out of
field-of-view (FOV). This drawback can potentially be resolved with the proposed
KF framework.

Herein, we proposed a fast implementation of linear KF on a high frame-rate
tracking system where a Newtonian model was taken into account to track each
fiducial of a surgical tool individually. Besides facilitating real-time surgical track-
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ing, this technique efficiently suppresses acquisition and estimation noise experi-
enced by an optical tracking system. In addition, high performance in dynamic
localization of intraoperative instruments proves that the proposed framework
eliminates the requirement of rigid-body constraint while tracking a surgical tool
at high temporal resolution.
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