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Abstract
Purpose  The global health crisis caused by coronavirus disease 2019 (COVID-19) is a common threat facing all humankind. 
In the process of diagnosing COVID-19 and treating patients, automatic COVID-19 lesion segmentation from computed 
tomography images helps doctors and patients intuitively understand lung infection. To effectively quantify lung infections, 
a convolutional neural network for automatic lung infection segmentation based on deep learning is proposed.
Method  This new type of COVID-19 lesion segmentation network is based on a U-Net backbone. First, a coarse segmenta-
tion network is constructed to extract the lung areas. Second, in the encoding and decoding process of the fine segmentation 
network, a new soft attention mechanism, namely the dilated convolutional attention (DCA) mechanism, is introduced to 
enable the network to focus on better quantitative information to strengthen the network’s segmentation ability in the subtle 
areas of the lesions.
Results  The experimental results show that the average Dice similarity coefficient (DSC), sensitivity (SEN), specificity (SPE) 
and area under the curve of DUDA-Net are 87.06%, 90.85%, 99.59% and 0.965, respectively. In addition, the introduction 
of a cascade U-shaped network scheme and DCA mechanism can improve the DSC by 24.46% and 14.33%, respectively.
Conclusion  The proposed DUDA-Net approach can automatically segment COVID-19 lesions with excellent performance, 
which indicates that the proposed method is of great clinical significance. In addition, the introduction of a coarse segmenta-
tion network and DCA mechanism can improve the COVID-19 segmentation performance.
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Introduction

Due to the infectivity of the new coronavirus disease 2019 
(COVID-19) and the shortage of medical resources since the 
outbreak of COVID-19 in 2019, a large number of COVID-
19 automatic prediction and diagnosis systems based on 
deep learning technology have been proposed, such as mul-
tistep autoregression methods [1] and convolutional neural 

network approaches [2]. Although the existing automatic 
diagnosis system can improve the diagnostic efficiency and 
relieve pressure on medical systems, most of the existing 
COVID-19 automatic diagnosis systems directly diagnose 
entire computed tomography (CT) images [3]. Normal lung 
tissues and other diseased tissues will greatly interfere with 
the diagnosis system, which greatly affects the diagnostic 
accuracy [4]. To avoid this problem, it is necessary to extract 
the diseased tissues in the CT images and apply the auto-
matic diagnosis system to analyse the COVID-19-diseased 
tissues [2]. At present, most hospitals extract lesions by 
time-consuming and labour-intensive manual segmentation 
methods. To improve the efficiency of lesion extraction, it 
is necessary to propose an automatic segmentation system 
for COVID-19 lesions.

Since a fully convolutional neural network was proposed 
in 2015, a large number of studies have verified that deep 
neural networks can achieve state-of-the-art performance 
in medical image segmentation tasks [5, 6]. Due to their 
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efficiency and excellent generalization, numerous deep 
learning-based methods have been proposed for COVID-19 
lesion segmentation [7–10]. Although these methods have 
better segmentation accuracy than the direct use of U-Net, 
they still have the following problems. (1) The CT image 
input into the network contains nonpulmonary regions, 
which will cause the trained model to overfit. (2) The neural 
network lacks the spatial and channel information learning 
of CT images, and there is a large error in the small seg-
mentation area. (3) The choice of a single loss function is 
difficult. For the COVID-19 lesion segmentation task, to 
effectively control the balance between false negatives and 
false positives, it is necessary to select a suitable loss func-
tion to train the network.

A double U-shaped dilated attention network (DUDA-
Net) is proposed for automatic infection area segmentation 
in COVID-19 lung CT images to solve these problems. Our 
contributions mainly pertain to the following three areas. (1) 
A COVID-19 coarse segmentation method is proposed for 
the first time. The coarse segmentation network eliminates 
the interference of the nonpulmonary areas and improves 
the learning efficiency for the fine segmentation network. (2) 
A designed dilated convolutional attention (DCA) mecha-
nism, which acquires multiscale context information and 
focuses on channel information, is proposed to improve the 
ability of the network to segment small COVID-19 lesions. 
(3) DUDA-Net with a suitable loss function for COVID-19 
lesion segmentation has certain clinical value. In addition 
to improving the segmentation accuracy, it can reduce the 
segmentation time compared with manual segmentation 
methods.

Materials and Method

Dataset

In this work, a public database1 obtained on March 30, 2020, 
from Radiopaedia [11] is employed to evaluate the perfor-
mance of the proposed system. The public dataset contains 
CT images of more than 40 COVID-19 patients, with an 
average of 300 axial CT slices per patient, and infections are 
labelled by two radiologists and verified by an experienced 
radiologist. In this work, CT slices are employed to auto-
matically segment the lesions. However, most of the data do 
not contain lesions, which easily causes a class imbalance 
problem. To avoid this issue, 557 CT slices are extracted 
from the public database. Figure 1 shows some CT samples 
of the dataset, which are utilized to train the neural network; 
the lung consolidations are marked in purple.

Image Preprocessing and Data Augmentation

To emphasize CT image characteristics and improve image 
quality, global histogram equalization [12] is applied to 
enhance the image contrast. The main idea of the global 
histogram equalization method is to equally redistribute each 
pixel value. By using this method, the COVID-19 infection 
area in a CT image becomes more obvious.

Deep neural networks are a kind of data-driven model. 
Small datasets can lead to overfitting. To avoid overfitting 

Fig. 1   Images in the CT dataset. 
Lung consolidation is marked 
in purple

1  https://​acade​micto​rrents.​com/​detai​ls/​136ff​ddd09​59108​becb2​b3a86​
630be​c049f​cb0ff/

https://academictorrents.com/details/136ffddd0959108becb2b3a86630bec049fcb0ff/
https://academictorrents.com/details/136ffddd0959108becb2b3a86630bec049fcb0ff/
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and improve the generalizability of the proposed system, 
data augmentation techniques are implemented. In this work, 
data augmentation techniques, namely Gaussian noise [13] 
addition and image rotation by 90°, 180° and 270°, are 
implemented to enlarge the training dataset fivefold. After 
data augmentation, the training set contains 2628 CT slices, 
and the test set contains 157 CT slices. In addition, 10% of 
CT slices in the training set are randomly selected as the 
validation set.

Network Structure

Recently, a large number of studies have shown that 
U-shaped convolutional neural networks perform better than 
traditional machine learning methods in medical image seg-
mentation. Since COVID-19 lesions appear only in the lung 
regions, using U-Net directly to segment the lesions will 
cause a high false-negative rate [14]. A U-shaped coarse-
to-fine segmentation network is proposed to improve the 
segmentation performance. The network structure is shown 
in Fig. 2.

In this work, the coarse segmentation network contains 
6 convolutional layers, 4 pooling layers and 4 transpose 
convolutional layers. First, CT images with a size of 
256 × 256 are fed into the coarse segmentation network. 
Then, through 4 iterations of 2 × 2 max-pooling layers and 
3 × 3 convolutional layers with strides of 1 in the encoder, 

multilevel semantic features with sizes of 128 × 128, 
64 × 64, 32 × 32 and 16 × 16 are acquired. Moreover, to 
iteratively recover the image resolutions, 3 × 3 transpose 
convolutional layers with a stride of 2 are introduced in 
the decoder. Furthermore, the high-level semantic feature 
maps in the decoder are densely concatenated with the 
low-level detail feature maps in the encoder to recover the 
details of the lung regions. In addition, batch normaliza-
tion is added after each convolutional and transpose con-
volutional layer so that the input feature maps of each layer 
maintain the same distribution as the input images, and the 
training convergence is accelerated [15].

The fine segmentation network contains 6 convolu-
tional layers, 4 transpose convolutional layers, 4 max-
pooling layers and 6 DCA blocks, and it is the same as the 
coarse segmentation network on the backbone, which is a 
U-shaped network. However, segmentation of the lesions 
is more difficult than segmentation of the lung areas. The 
lesions are unevenly distributed and have different sizes. 
The U-shaped network used alone performs poorly. To 
improve the lesion segmentation performance, a channel 
attention mechanism, namely a DCA block, is proposed to 
force the network to focus on the key regions and channels. 
In this work, a DCA block is added after the ordinary con-
volution operation of each layer in the fine segmentation 
network. The DCA block can obtain multilevel context 

Fig. 2   DUDA-Net structure
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information to reduce the error rate of the segmentation 
boundaries and improve the accuracy.

In addition, the activation function of the last layer of the 
coarse segmentation network and the fine segmentation net-
work are sigmoid functions, and the other layers all use the 
rectified linear unit (ReLU) activation function. The sigmoid 
and ReLU functions are defined as follows:

DCA Mechanism

Concatenation of high-level and low-level features in 
the U-shaped network can lead to feature channel redun-
dancy. Therefore, it is necessary to propose a channel 
attention mechanism to suppress redundant channels and 
focus on key feature channels. Generally, the squeeze-
and-excitation (SE) mechanism is one of the most typical 
cross-attention modules. The main procedure of the SE 
mechanism is to acquire the global distributions of feature 
maps by applying global average pooling and obtain the 
channel weights by introducing a two-layer dense neural 
network. Due to their simplicity, SE blocks are widely 
used in current methods. However, global average pooling 
in SE blocks can lead to information loss. To avoid the loss 
of information and introduce multiscale context informa-
tion, a DCA module is proposed in this paper. The DCA 
mechanism not only focuses on channel information but 

(1)ReLU ∶ x → max{0,x}

(2)Sigmoid ∶ x →
1

1 + e−x

also introduces parallel dilated convolution with different 
dilation rates to acquire multiscale receptive fields, which 
is conducive to learning scale-invariant features without 
information loss. The overall structure of the DCA block is 
shown in Fig. 3. The height, width and number of channels 
of the input features are H , W  and C , respectively. The size 
of the output feature maps is still H ×W × C . The main 
procedures of the DCA blocks are as follows:

Step 1: Implement a 3 × 3 convolution on each input 
feature map to extract the low-level features. The convo-
lution operation is defined by Eqs. (3) and (4), in which I 
is the input, V  is the output, vn is the convolution output 
of the nth convolution kernel, kn is the nth convolution 
kernel, and Is is the sth input.

Step 2: Feed the initially extracted features into parallel 
dilated convolutional layers with rates of 2, 4, 6 and 8 to 
obtain multiscale context information. A dilated convolu-
tion is designed to insert holes into the standard convolu-
tion to expand the receptive fields. The dilated convolution 
can enlarge the receptive fields without information loss. 
Therefore, it is adopted in numerous semantic segmenta-
tion networks to replace the pooling layers. A schematic 
diagram of the dilated convolution receptive fields is 
shown in Fig. 4. The mapping relationship of the dilated 
convolution can be expressed by Eq. (5), where D is the 

(3)Fcov ∶ I → V , I,V ∈ RH×W×C

(4)vn = kn ∗ I =

C∑
s=1

kn ∗ Is

Fig. 3   Structure diagram of the DCA blocks
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dilated convolution output, vd
n
 is the dilated convolution 

output of the nth dilated convolution kernel, kd
n
 is the nth 

dilated convolution kernel, and vns is the sth input.

Step 3: Perform global average pooling on the output 
feature maps of each dilated convolutional layer (Eq. (7), 
in which gn represents the output of the nth global average 
pooling layer). By implementing global average pooling, the 
feature maps are squeezed into 4 vectors with C channels.

Step 4: Apply a 1 × 1 convolution to these 4 feature vec-
tors for dimension reduction (Eq. (8), in which G ∈ R1×1×C 
is the input of the 1 × 1 convolution and L ∈ Fcov(G,w) is the 
output of the 1 × 1 convolution).

Step 5: Introduce a 2-layer dense neural network to 
acquire the channel weights of the initial feature maps. First, 
the 4 feature vectors are concatenated to form a feature vec-
tor with C channels. Second, the concatenated feature vector 
is fed into the dense neural network. Finally, the output of 
the fully connected neural network is generated by Eq. (9), in 
which the input is defined as x and the output is defined as a.

Step 6: Multiply the feature vector obtained in step 5 by 
the initial feature maps obtained in step 1 to generate weighted 

(5)Fd
cov

∶ V → D, V ,D ∈ RH×W×C

vd
n
= kd

n
∗r vn =

C∑
s=1

kd
n
∗r vns

(7)gn = Fgap(vn) =
1

H ×W

H∑
i=1

W∑
j=1

vn(i, j)

(8)L = Fcov(G,w)

(9)

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

⋮

aC

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

w11 w12 w13 ⋯ w1C

w21 w22 w23 ⋯ w2C

w31 w32 w33 ⋯ w3C

⋮ ⋮ ⋮ ⋱ ⋮

wC1 wC2 wC3 ⋯ wCC

⎤⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⋮

xC

⎤⎥⎥⎥⎥⎥⎥⎦

feature maps (Eq. (10), in which M ∈ RH×W×C is the result of 
multiplication).

Step 7: Apply a residual connection to prevent information 
loss and network degradation (Eq. (11), in which O ∈ RH×W×C 
is the output of a DCA block).

Hyperparameters

Furthermore, the selection of hyperparameters is essential. In 
this work, an Adam [16] optimizer with an initial learning 
rate of 0.001 is used to train the network. When the loss value 
does not decrease after training for 3 consecutive epochs, the 
learning rate is reduced by half. In addition, early stopping 
is used to prevent overfitting; that is, when the loss value has 
not decreased for 10 consecutive epochs, training is stopped. 
In addition, the batch size and epoch number are set to 16 and 
50, respectively.

Experimental Results and Discussion

DUDA-Net is programmed in Keras, and all the experiments 
are carried out on a server with 4 NVIDIA RTX 2080 Ti 
GPUs. In this work, the DSC, intersection over union (IoU), 
accuracy (ACC), sensitivity (SEN) and specificity (SPE) are 
introduced to verify the network performance (Eqs. (12) to 
(16)), where FN, FP, TN and TP are the numbers of false-
negative, false-positive, true-negative and true-positive sam-
ples, respectively [17].

(10)M(∶, ∶, c) = V(∶, ∶, c) × a(c)

(11)O = M + V

(12)DSC =
2TP

2TP + FP + FN

(13)IoU =
TP

TP + FP + FN

(14)ACC =
TP + TN

P + N

Fig. 4   Schematic diagram of 
the convolution receptive fields: 
a 3 × 3 convolution; b 3 × 3 
dilated convolution, rate = 2; 
and c 3 × 3 dilated convolution, 
with rate = 4
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Loss Function Comparison

The selection of an appropriate loss function is significant 
after the construction of DUDA-Net. Generally, Dice loss 
(DL) is commonly applied in most image segmentation net-
works. However, in the COVID-19 lesion segmentation task, 
the proportion of lesions in the CT images is small, which 
can cause class imbalance problems. To avoid this problem, 
weighted cross-entropy (WCE) loss, balanced cross-entropy 
(BCE) loss, generalized DL (GDL) and Tversky loss (TL) 
are introduced. To determine the optimal loss function for 
COVID-19 segmentation tasks, the performances of DUDA-
Net with different loss functions, namely the WCE loss, 
BCE loss, DL, GDL and TL, are compared. As indicated 
in Table 1, the accuracy of DUDA-Net with WCE loss is 
the best, as the accuracy can reach 99.14%. The GDL out-
performs other loss functions in terms of the SPE, which 
reaches 99.85%. Moreover, the TL outperforms the other 
loss functions in terms of the DSC (87.06%), IoU (77.09%) 
and SEN (90.85%), and compared with those of the subop-
timal loss function, the DSC, IoU and SEN of the TL are 

(15)SEN =
TP

TP + FN

(16)SPE =
TN

TN + FP

improved by 0.48%, 0.74% and 2.3%, respectively. Since the 
ACC and SPE obtained by DUDA-Net with the TL are only 
0.08% lower and 0.26% lower than those of DUDA-Net with 
the WCE and GDL, respectively, the TL is the optimal loss 
function for COVID-19 segmentation tasks.

Model Comparison

Furthermore, to verify that the coarse segmentation net-
work and DCA blocks in the fine segmentation network can 

improve the segmentation performance, two kinds of net-
works, namely DUDA-Net without coarse segmentation and 
DUDA-Net without DCA blocks, are constructed, and their 
performances are compared. As indicated in Fig. 5, the DSC, 
IoU, ACC, SEN and SPE of DUDA-Net without coarse 
segmentation reach 62.60%, 48.47%, 99.33%, 91.54% and 
99.44%, respectively. By introducing coarse segmentation, 
the DSC, IoU and SPE are improved by 24.46%, 28.42% and 
0.15%, respectively. In addition, the DSC, IoU, ACC, SEN 
and SPE of DUDA-Net without DCA blocks reach 72.73%, 
60.68%, 98.88%, 90.81% and 99.51%, respectively. By intro-
ducing DCA blocks, these metrics are improved by 14.33%, 
16.41%, 0.18%, 0.04% and 0.08%. As indicated by Fig. 6, 
the largest area under the receiver operating characteristic 
(ROC) curve (AUC) obtained by DUDA-Net reached 0.965. 
Compared with those of DUDA-Net without coarse seg-
mentation and DUDA-Net with DCA blocks, the AUCs of 
DUDA-Net are improved by 0.238 and 0.051, respectively. 
Obviously, coarse segmentation can significantly improve 
the performance of the network, and when both coarse seg-
mentation and DCA blocks are used at the same time, the 
network achieves the best segmentation performance.

Moreover, the segmentation results of the lesions are indi-
cated in Fig. 7. Although DUDA-Net without the coarse 
segmentation network can segment some small lesions, there 
are disturbances from the nonpulmonary areas, and mis-
judgement occurs in some areas. In the case of DUDA-Net 

Table 1   Results of different loss function experiments

The bold figures in Table are the optimal performance

Loss DSC IoU ACC​ SEN SPE

WCE 79.33% 65.75% 99.14% 79.32% 99.56%
BCE 79.51% 66.04% 99.07% 88.55% 99.21%
DL 86.58% 76.35% 99.05% 86.56% 99.72%
GDL 85.00% 74.26% 98.98% 79.27% 99.85%
TL 87.06% 77.09% 99.06% 90.85% 99.59%

Fig. 5   Results of the ablation experiment: a DUDA-Net without coarse segmentation, b DUDA-Net without DCA blocks and c DUDA-Net
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without using DCA blocks, the segmentation error of small 
lesions and boundaries is large. Moreover, compared with 
DUDA-Net without the coarse segmentation network and 
DCA blocks, DUDA-Net locates the lesion more accurately. 
The results indicate that the introduction of a coarse segmen-
tation network and DCA blocks can contribute to removing 
the disturbances of the nonpulmonary areas and improving 
the segmentation performance of the small lesions.

To further illustrate the superior performance of 
DUDA-Net, the performance of DUDA-Net is com-
pared with that of several typical medical segmentation 
networks: a fully convolutional network (FCN), U-Net, 
U-Net +  + , bidirectional convolutional long short-term 
memory U-Net with densely connected convolutions 
(BCDU-Net) and residual channel attention U-Net (RCA-
U-Net). As indicated in Table 2, DUDA-Net outperforms 
5 other kinds of typical models in DSC, IoU, ACC and 

SEN. In addition, compared with the suboptimal model, 
DUDA-Net can improve the DSC, IoU, ACC and SEN by 
4.46%, 6.67%, 0.03% and 0.07%, respectively. Moreover, 
the prediction samples of these segmentation networks are 
shown in Fig. 8, and the results further verify that DUDA-
Net outperforms other networks. The FCN and U-Net can 
precisely segment large lesions. However, the performance 
of these two models on small lesions is not ideal. Fur-
thermore, the segmentation performance of U-Net +  + , 
BCDU-Net and RCAU-Net is better than that of FCN and 
U-Net, but the error rates of these 3 models on bounda-
ries are still very high. Compared with that of these five 
typical models, the overall performance of DUDA-Net on 
small lesions is better. In addition, the testing time of these 
methods is also provided. It takes 16.51 s for DUDA-Net to 
generate the prediction results for 55 testing samples. This 
indicates that the introduction of the coarse-to-fine scheme 

Fig. 6   ROC curve of the ablation experiment and the AUC indicator: a DUDA-Net without coarse segmentation, b DUDA-Net without DCA 
blocks and c DUDA-Net

Fig. 7   Prediction results of the 
ablation experiment: a the CT 
image, b the ground truth, c the 
results of DUDA-Net without 
coarse segmentation, d the 
results of DUDA-Net without 
DCA blocks and e the results of 
DUDA-Net
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can cause an increase in computational complexity. In fact, 
compared with the efficiency, the proposed method focuses 
more on the segmentation precision. Therefore, DUDA-
Net is still regarded as the optimal model with reasonable 
computational complexity.

Gradient-weighted class activation mapping (Grad-CAM) 
is applied to acquire the class activation maps of DUDA-Net. 
As shown in Fig. 9, the network model is more inclined 
to learn the features from the lesions during the training 
process.

Table 2   Results of different 
typical models

The bold figures in Table are the optimal performance

Method DSC IoU ACC​ SEN SPE Testing time

FCN [18] 52.96% 36.55% 98.12% 44.71% 99.62% 6.85 s
U-Net [19] 59.81% 42.90% 98.29% 51.97% 99.65% 7.54 s
U-Net +  + [20] 69.98% 54.51% 98.46% 65.74% 99.74% 9.99 s
BCDU-Net [21] 79.29% 65.69% 98.94% 90.78% 99.64% 11.29 s
RCA-U-Net [22] 82.60% 70.42% 99.03% 77.79% 99.77% 10.42 s
Ours 87.06% 77.09% 99.06% 90.85% 99.59% 16.51 s

CT Image   Ground Truth    FCN U-Net U-Net++ BCDU-Net RCA-U-Net Ours

Fig. 8   Prediction results of each model

Fig. 9   Heat map of the DUDA-
Net results
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In addition, the proposed DUDA-Net model is compared 
with several existing works on the same dataset. As indicated 
in Table 3, the proposed network outperforms the existing 
works in terms of the DSC, SEN and SPE. By introducing 
DUDA-Net, the DSC, SEN and SPE are improved by 8.46%, 
4.14% and 0.28%, respectively. The results indicate that the 
proposed method can better achieve state-of-the-art segmen-
tation performance. Zhou et al. [23] applied a single U-Net 
model with SE blocks as a channel attention mechanism. 
In fact, the SE blocks learn the channel weights by imple-
menting global average pooling, which can lead to informa-
tion loss; as a result, the channel weights learned by SE 
blocks are inaccurate. Compared with those of the original 
SE blocks, the channel weights learned by the DCA mecha-
nism are more accurate, as multiscale context information 
is introduced by implementing parallel dilated convolution. 
In addition, Zhou et al. [23] directly segmented whole CT 
images, and disturbances from unrelated regions can result 
in poor segmentation performance. To address this issue, 
a coarse segmentation model is proposed in DUDA-Net to 
segment the lungs. Omar et al. [24] proposed a network to 
segment the lungs, which was followed by fine segmenta-
tion. However, the original images are concatenated with the 
lung images, and the disturbances from unrelated regions are 
preserved; as a result, the generalizability of the method in 
[24] is poor. Qiu et al. [9] proposed an attentive hierarchical 
spatial pyramid (AHSP) module for effective lightweight 
multiscale learning, but the lack of network parameters leads 
to low accuracy. Therefore, compared with that of current 
methods, the performance of DUDA-Net is better.

Conclusion

An automatic lesion segmentation system was developed for 
COVID-19 in this study. The highlights of the proposed sys-
tem are as follows. (1) A coarse-to-fine segmentation scheme 
is introduced. To prevent disturbances from unrelated 
regions, lung areas are segmented by a coarse segmentation 
network, which is followed by a fine network to obtain the 
fine details of COVID-19 lesions. The experimental results 
indicate that the coarse-to-fine scheme can improve the DSC 
by 24.46%. (2) A DCA module is proposed, and parallel 

dilated convolution layers are introduced to determine the 
significant channels with a multiscale receptive field; as a 
result, the accuracy of small lesions and boundaries is fur-
ther improved. The experimental results indicate that the 
DCA mechanism can improve the DSC by approximately 
14.33%. (3) DUDA-Net can achieve state-of-the-art perfor-
mance, which indicates that the proposed method is of great 
clinical significance.

Although the proposed method can achieve precise seg-
mentation, there are still some weaknesses, as follows. (1) 
The complex structure of DUDA-Net results in high compu-
tational complexity and low efficiency. (2) Accurate quanti-
fication of lung infection results requires further segmenta-
tion, such as ground glass shadows and pleural effusions. 
Therefore, our future work will reduce the computational 
complexity of DUDA-Net and collect more data to realize 
multicategory segmentation for COVID-19 lesions. For fur-
ther research, we made the source code available at https://​
github.​com/​Aaron​XieSY/​DUDAN​et-​for-​COVID-​19-​lesio​
ns-​Segme​ntati​on.​git.
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Table 3   Comparison of DUDA-
Net and several existing works

The bold figures in Table are the optimal performance

References Years Method DSC IoU SEN SPE

Zhou et al. [23] 2020 U-Net using an attention mechanism 83.1% – 86.7% 99.3%
Omar et al. [24] 2020 Region of interest extraction segmen-

tation network
78.6% – 71.1% 99.3%

Qiu et al. [9] 2020 MiniSeg segmentation network 77.28% 82.12% 83.62% 97.42%
Ours 2021 DUDA-Net 87.06% 77.09% 90.84% 99.58%

https://github.com/AaronXieSY/DUDANet-for-COVID-19-lesions-Segmentation.git
https://github.com/AaronXieSY/DUDANet-for-COVID-19-lesions-Segmentation.git
https://github.com/AaronXieSY/DUDANet-for-COVID-19-lesions-Segmentation.git
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