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Abstract
Purpose  A magnetic resonance imaging (MRI) exam typically consists of several sequences that yield different image 
contrasts. Each sequence is parameterized through multiple acquisition parameters that influence image contrast, signal-to-
noise ratio, acquisition time, and/or resolution. Depending on the clinical indication, different contrasts are required by the 
radiologist to make a diagnosis. As MR sequence acquisition is time consuming and acquired images may be corrupted due 
to motion, a method to synthesize MR images with adjustable contrast properties is required.
Methods  Therefore, we trained an image-to-image generative adversarial network conditioned on the MR acquisition param-
eters repetition time and echo time. Our approach is motivated by style transfer networks, whereas the “style” for an image 
is explicitly given in our case, as it is determined by the MR acquisition parameters our network is conditioned on.
Results  This enables us to synthesize MR images with adjustable image contrast. We evaluated our approach on the fast-
MRI dataset, a large set of publicly available MR knee images, and show that our method outperforms a benchmark pix2pix 
approach in the translation of non-fat-saturated MR images to fat-saturated images. Our approach yields a peak signal-to-
noise ratio and structural similarity of 24.48 and 0.66, surpassing the pix2pix benchmark model significantly.
Conclusion  Our model is the first that enables fine-tuned contrast synthesis, which can be used to synthesize missing MR-
contrasts or as a data augmentation technique for AI training in MRI. It can also be used as basis for other image-to-image 
translation tasks within medical imaging, e.g., to enhance intermodality translation (MRI → CT) or 7 T image synthesis 
from 3 T MR images.

Keywords  Deep learning · Generative adversarial networks · Magnetic resonance imaging · Image synthesis

Introduction

A magnetic resonance imaging (MRI) exam typically con-
sists of multiple sequences that yield different image tis-
sue contrasts required for a complete and reliable diagnosis. 
However, the sets of sequences that are obtained vary consid-
erably across clinical protocols, scanners, and sites. Clinical 

guidelines, the MR system (vendor, model, software version, 
field strength), internal guidelines (e.g., slot time), and radi-
ologists’ preferences determine the set of selected sequences 
(i.e., the MRI protocol) for a specific clinical question at a 
particular site. Moreover, each sequence is parameterized 
through multiple acquisition parameters (pulse sequence 
parameters) that affect image contrast, image resolution, sig-
nal-to-noise ratio, and/or acquisition time. The acquisition 
parameters (and sequences) can be proprietary or generic 
across vendors. Consequently, sequence parameterization 
and selection vary significantly across different radiology 
sites and within exams and scanners of the same site [1].

As sequence acquisition is time consuming and acquisi-
tion time is expensive, current research strives to increase 
MRI value [2] by, e.g., the development of optimized scan 
protocols [3] or the reduction of scan time by leveraging 
artificial intelligence (AI) [4]. AI plays a vital role in reduc-
ing scan time by either accelerating image acquisition and 
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reconstruction [5] or synthesizing missing or corrupted 
image contrasts from existing ones [6–8]. The latter is 
typically done using (multi-)image-to-image neural net-
works, e.g., to synthesize T2-weighted brain images from 
T1-weighted images and vice versa [6, 9]. This can offer 
great clinical value as corrupted images due to motion or 
other artifacts can be replaced, or claustrophobic patients 
that prematurely had to end the MRI scan may avoid re-
scans. Current approaches synthesize a single MR-contrast 
with fixed or not further specified acquisition param-
eters from one or multiple existing MR-contrasts. These 
approaches have been trained and tested on different publicly 
available MR datasets. However, as sequence parameteri-
zations vary in the clinical practice, these approaches are 
only applicable to a small share of used sequences. To truly 
increase the clinical value, these approaches must synthesize 
MR-contrasts beyond fixed sequence parameterizations.

Therefore, we have developed and trained an image-
to-image generative adversarial network (GAN) that syn-
thesizes MR images with adjustable image contrast. The 
acquisition parameters echo time (TE) and repetition time 
(TR) that influence image contrast are incorporated into 
the network’s training. Moreover, we can translate non-fat-
saturated MR images into fat-saturated MR images with 
the acquisition parameters TE and TR as additional inputs, 
which increases the overall reconstruction performance. We 
provide a thorough visual and quantitative evaluation of our 
approach and benchmark it with the commonly used pix2pix 
framework.

Material and methods

Generative adversarial network

In this section, we want to give a short overview of genera-
tive adversarial networks and important adaptions for medi-
cal image-to-image synthesis.

GANs are a special type of artificial neural network where 
two networks (generator and discriminator) are trained 
adversarially. For an image generation task, the generator is 
focused on image generation, and the discriminator learns 
to discriminate between real and generated (fake) images.

An important extension of GAN capabilities is pix2pix, 
which serves as a general-purpose solution to image-to-
image translation problems. The pix2pix approach is used 
to learn the mapping from an input image to a paired output 
image under an L1 reconstruction and an adversarial loss 
[10].

Since paired training data are not available for many 
image-to-image translation tasks, cycle consistency loss was 
proposed (CycleGAN) [11] that allows the translation of an 
image from a source domain to a target domain without any 

paired training examples. The original formulation includes 
two generative models, G and F, where G translates an 
image from domain A into domain B. F translates an image 
from domain B into domain A. The discriminators DA and 
DB learn to distinguish between real and fake images from 
their domains. The cycle consistency loss using the L1 dis-
tance for image g and t from domain A and B, respectively, 
is then defined as:

Both pix2pix and CycleGAN are the basis for many 
image-to-image translation tasks in the medical imaging 
domain [7–9].

Image‑to‑image generative adversarial network

Image-to-image GANs, e.g., pix2pix, have been success-
fully applied to learn image-to-image translations in vari-
ous domains given paired data [10]. We adopt this approach 
and use the non-saturating adversarial loss with R1 regu-
larization using γ = 1 in order to produce sharp and realistic 
images [12].

Additionally, an L1 reconstruction loss enforces pixel-
wise similarity between target ground truth and recon-
structed image. However, an important characteristic for 
MRI is that MR images present significant intensity varia-
tion across patients and scanners, and MR image intensity 
standardization is an ongoing research topic [13]. Hence, a 
reconstruction loss that is not fully focused on pixel inten-
sity similarities, but in addition perceptually motivated, 
is anticipated to improve the performance of the image-
to-image GAN. Therefore, we also experimented with a 
weighted reconstruction loss of L1 and multi-scale struc-
tural similarity (MS-SSIM) index [14, 15]. MS-SSIM has 
demonstrated to better preserve image contrast at higher 
frequencies compared to SSIM. However, it is not sensitive 
to uniform biases, i.e., can produce brightness shifts, while 
L1 preserves pixel intensities [14]. Given two images x and 
x′, the MS-SSIM loss is defined as:

where MS-SSIM is the multi-scale version of SSIM (7) that 
is defined in “Evaluation metrics” section. The MS-SSIM is 
a measure of structural similarity over several scales allow-
ing to incorporate image details at different resolutions [15]. 
The weighted reconstruction loss is then given as:

with � = 0.84 . The value for � is set to balance the contribu-
tion of the two loss terms and proposed by [14].

(1)L
Cycle = E

�
‖G(F(g)) − g‖1

�
+ E

�
‖F(G(t)) − t‖1

�
.

(2)L
MS-SSIM

(
x, x�

)
= 1 −MS-SSIM(x, x�)

(3)
L
Recon

(
x, x�

)
= � ⋅ L

MS-SSIM
(
x, x�

)
+ (1 − �) ⋅ L

L1(x, x�)



2071International Journal of Computer Assisted Radiology and Surgery (2021) 16:2069–2078	

1 3

Adaptive instance normalization

While conditional image-to-image GANs, e.g., pix2pix, 
are able to learn the mapping for categorical image-to-
image translations, it cannot create MR images with fine-
tuned image contrast. Therefore, we inject input and out-
put labels (TE, TR, fat saturation) into the generator using 
adaptive instance normalization layers [16]. The AdaIN 
operation is defined as:

Each feature map x is normalized separately with its 
mean �(x) and standard deviation �(x) , then scaled and 
biased through learned transformations �, � , given the 
label set y.

AdaIN has been successfully applied for style transfer 
applications by injecting style encodings into the genera-
tor [16]. The style encoding is typically unknown for style 
transfer and is learned implicitly from an image [17]. In 
our case, the “style” can be understood as image tissue 
contrast, which is known as it is defined through the 
acquisition parameters. Thus, in MR imaging, the “style” 
is given explicitly, and it is injected via α, β, which are 
single layer networks with the output channels matching 
the channels of the network layer the acquisition param-
eters are injected into.

(4)AdaIN(x, y) = �(y) ⋅

(
x − �(x)

�(x)

)
+ �(y).

Auxiliary classifier

We also experimented with incorporating a loss term that 
penalizes contrast differences through the conditioning loss 
of an auxiliary classifier. We deviated from the conventional 
auxiliary classifier GAN (ACGAN) network architecture 
[18], which uses a classification layer in the discriminator 
to learn the conditions by employing a separate auxiliary 
classifier (AC) that is only trained on the conditions. This 
allowed us to pretrain the AC and break down the training 
complexity as the AC performance can be tuned separately 
from the GAN. Only a well-trained auxiliary classifier can 
provide useful guidance for the generative model’s training, 
crucial for a good image reconstruction accuracy.

Network and training details

The training procedure and network architecture are depicted 
in Fig. 1. The generator consists of a U-Net structure with 
residual blocks (with filter sizes 64–128–256–512 in the 
encoder and vice versa in the decoder residual blocks). It 
injects the source image acquisition parameters into the net-
work’s encoder and the target image’s acquisition parameters 
(i.e., target contrast) into the network’s decoder via adaptive 
instance normalization. Through the “style” injection in the 
encoder, the generator is anticipated to learn an image rep-
resentation independent of the acquisition parameters, thus 
image contrast. The target acquisition parameters are then 

Fig. 1   Our network architecture. The generator is based on a U-Net 
architecture consisting of residual blocks with adaptive instance nor-
malization. The input labels ( yi ) are injected into the encoder part of 

the generator, and the target labels ( yt ) are injected into the decoder 
part of the generator. The generator is trained on the reconstruction, 
adversarial, and conditioning loss
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injected into the decoder to reconstruct the target contrast 
properly.

The discriminator consists of six residual blocks and a 
single output to discriminate between real and synthetic 
images (with filter sizes 64–128–256–512–512–512).

We use the recently published EfficientNet-B3 [19] archi-
tecture for the AC and train the network on the determination 
of TE and TR value and whether fat saturation was used. 
EfficientNet uses compound scaling and achieves higher 
accuracy and better efficiency over existing CNNs on the 
ImageNet and other benchmark datasets [19]. The mean 
squared error loss is used for TE and TR, whose values are 
both scaled linearly to values between 0 and 1, and binary 
cross-entropy for determining the use of fat saturation.

The AC is pretrained for 200 K iterations with a batch 
size of 64, using Adam optimizer with a learning rate of 
10–4, �1 = 0 , and �2 = 0.99.

We use a batch size of eight for training the GAN and 
train the model for 200 K iterations. We also use the Adam 
optimizer with �1 = 0 and �2 = 0.99 . The learning rates for 
the generator and discriminator are set to 10–4. For the gen-
erator, exponential moving averages over its network param-
eters are employed [17, 20].

The images are scaled to intensities of [− 1, 1] and resized 
to a resolution of 256 × 256 pixels using bilinear interpola-
tion to obtain an identical image resolution within the data-
set. Random image shifting and zooming are applied as data 
augmentation during the training of the AC and GAN.

Data

We used the fastMRI dataset [4] for our training and evalu-
ation. It contains DICOM data from 10,000 clinical knee 
MRI studies, each comprising a set of multiple sequence 
parameterizations. We applied several data filters based on 
the DICOM header information to get a dataset with a com-
parable image impression, a dense and homogenous acqui-
sition parameter distribution (TE, TR), and high variance 
in anatomy. We wanted the image impression and contrast 
within our training set to depend on the acquisition param-
eters TE and TR.

Therefore, other parameters affecting the image impres-
sion were removed, such as field strength and manufacturer, 
by selecting the most common parameter value within the 
fastMRI dataset (1.5 T field strength and scanners from 
Siemens Healthcare, Erlangen, Germany). The MR images 
(fast-spin-echo sequences) from our filtered dataset were 
acquired on five different Siemens Healthcare scanners 
(MAGNETOM Aera, MAGNETOM Avanto, MAGNETOM 
Espree, MAGNETOM Sonata, MAGNETOM Symphony). 
We excluded MR images with a TR over 5000 ms and set 
the upper limit of TE to 50 ms to create a dataset with a 
dense representation of the conditions. Figure 2 shows the 

distribution of TE and TR values in the training dataset. 
Moreover, we discarded peripheral slices to limit the amount 
of training data, by selecting the central 14 slices for each 
volume.

Image pairs were then defined as images with identical 
DICOM attributes patient ID (0010,0020), study instance 
UID (0020,000D), image orientation (0020,0037), slice 
location (0020,1041), and slice thickness (0018,0050).

Results

Data

The training dataset consists of 237,883 MR images, with 
101,328 paired images and 136,555 unpaired images, from 
4815 different studies and 16,731 image series. The dataset 
contains 123,833 fat-saturated MR images, and the remain-
ing images were acquired without fat saturation.

The validation and the test dataset consist of paired 
images from 100 disjunct, randomly selected patient IDs 
(3242 and 3438 images in total, respectively).

Evaluation metrics

For the evaluation of our experiments, which are described 
in the following, we used the normalized mean squared error 
(NMSE), peak signal-to-noise ratio (PSNR), and structural 
similarity index (SSIM). Given two images � and �′ , they 
are defined as:

Fig. 2   Distribution of the acquisition parameters TE and TR in the 
training dataset, color coded by fat saturation (FS)
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where n is the number of pixels in one image, MAX is the 
maximum pixel value range of two images, �

x
 and �

x
′ denote 

the mean values of original and translated images. �
x
 and 

�
x
′ denote the standard deviation of original and translated 

images, and �
xx

′ is the covariance of both images. The vari-
ables c1 and c2 are added to stabilize the division with a weak 
denominator.

Lower values for NMSE and higher values for PSNR and 
SSIM demonstrate better image synthesis.

Experiments

We have conducted multiple experiments to evaluate our 
approach thoroughly. First, we assess the AC’s performance 
to determine the acquisition parameters TE and TR from the 
MR image, as its performance is crucial for the performance 
evaluation and the guidance for the generator to synthesize 
MR images. Then, we evaluate our GAN on the task of syn-
thesizing fat-saturated (FS) images from non-fat-saturated 
images and benchmark it with the pix2pix approach. Moreo-
ver, we demonstrate the capability of our approach to syn-
thesize MR images with adaptable image contrast.

We evaluated several image-to-image GANs. Each model 
is based on the prior model with the additional changes as 
described in the following:

•	 Model 1: pix2pix—the training data consist of one-
directional image pairs, i.e., non-FS (non-fat-saturated) 
to FS image pairs, under an L1-reconstruction and non-
saturating adversarial loss with R1 regularization.

•	 Model 2: target labels are injected into the decoder with 
AdaIN layers.

•	 Model 3: source labels are additionally injected into the 
encoder with AdaIN layers.

•	 Model 4: the L1 reconstruction loss is adapted based on 
Formula 3.

•	 Model 5: image pairs with non-fat-saturated target 
images are added to the training target data, enabling 
non-FS to FS and non-FS translations.

•	 Model 6: unpaired non-FS image data are added to the 
training dataset and trained under the cycle consistency 
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and conditioning loss (with weight �c = 10). The network 
is trained on unpaired data according to its share in the 
dataset. �c is a hyperparameter and is set heuristically 
such that the conditioning validation error is similar to 
the error of the auxiliary classifier (i.e., is not over- or 
underfitting w.r.t. the conditioning). This is the only 
model that uses the auxiliary classifier during training, 
which enables the generator to be trained on random 
acquisition parameter combinations.

The performance results on the test set are reported 
in Tables 1 and 2. A good performance of the auxiliary 
classifier is crucial for proper guidance for the generator 
(model 6) during training and the evaluation of all GAN 
models. Although the AC is trained under the MSE loss, 
we report the mean absolute error as it is more meaningful 
for the performance evaluation (Table 1). The auxiliary 
classifier predicts the acquisition parameters correctly with 
a low overall error. TE has a stronger impact on image 
contrast than TR (compare Fig. 4), which might indicate 

Table 1   Evaluation of the auxiliary classifier. The reported values 
denote the mean and its standard deviation on the test set

The MAE is reported for TE and TR and accuracy for FS
Statistically significant (p ≤ 0.05) best values for each acquisition 
parameter are underlined.
Since for model 1–4 only FS images can be synthesized, the condi-
tioning evaluation for all models reported in this table is based on FS 
images only.

Model TE (ms) TR (ms) FS (%)

AC (non-FS) 1.8 ± 2.1 247 ± 262 100
AC (FS) 1.8 ± 2.2 290 ± 341 100
1 3.0 ± 3.4 447 ± 419 100
2 1.4 ± 1.7 354 ± 357 100
3 1.3 ± 1.7 298 ± 288 100
4 1.1 ± 1.5 261 ± 277 100
5 1.3 ± 2.5 260 ± 270 100
6 2.2 ± 2.0 313 ± 293 100

Table 2   Quantitative evaluation results of the image synthesis experi-
ments

Statistically significant (p ≤ 0.05, two-sample t test) best values are 
underlined.

Model NMSE PSNR SSIM

1 0.13 ± 0.13 22.91 ± 2.61 0.62 ± 0.12
2 0.12 ± 0.14 23.45 ± 2.7 0.63 ± 0.11
3 0.10 ± 0.11 24.15 ± 2.58 0.64 ± 0.12
4 0.10 ± 0.11 24.29 ± 2.59 0.66 ± 0.11
5 0.09 ± 0.10 24.48 ± 2.81 0.66 ± 0.11
6 0.16 ± 0.21 22.14 ± 2.57 0.58 ± 0.12
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why the MAE of the AC for TE is (proportionally) lower 
than for TR. Moreover, the fat saturation distinction works 
perfectly (accuracy: 100%).

We also evaluated the models’ conditioning error on the 
test set (Table 1) to assess how well the target contrasts 
are synthesized. Therefore, we translated the input test 
images to the contrast settings of the paired target image, 
determined the acquisition parameters with the AC, and 
computed the error.

The benchmark pix2pix model (model 1) shows a high 
conditioning error. It is not guided by the input or target 
acquisition parameters and can only translate an image to 
the expected contrast. Incorporating the target acquisition 
parameters (model 2) and the input acquisition param-
eters (model 3) reduces the MAE on TE and TR deter-
mination, demonstrating a better generation of the target 
MR image contrast. Incorporating the reconstruction loss 
from Formula (3) and using more training data (models 
4 and 5) further enhances the contrast synthesis. Adding 
unpaired training data (model 6) does not further improve 
the conditioning.

The reconstruction performance is reported in Table 2. 
Incorporating input and target acquisition parameters sig-
nificantly increases the reconstruction performance (model 2 
and 3) w.r.t. the benchmark model. Adapting the reconstruc-
tion loss and including more training data (model 4 and 5) 
further enhances the performance. Model 5 also extends the 
network’s capabilities: It enables the model to interpolate 
the MR-contrast within non-fat-saturated images (Fig. 4) 
while also allowing translation of non-fat-saturated into fat-
saturated images. Introducing unpaired training data and 
cyclic reconstruction (model 5 and 6) allows the training on 
a larger set of input-target acquisition parameter sets (with 

randomly selected target acquisition parameters) but does 
not improve the reconstruction performance.

The reconstructed images in Figs. 3, 4, and 5 were gen-
erated using model 5. The reconstruction of a fat-saturated 
image from its non-fat-saturated image pair is presented in 
Fig. 3. A novel functionality of our approach is the contrast 
interpolation capabilities shown in Fig. 4. This capability 
allows image synthesis with a fine-tuned image contrast, 
adapted to a use case and contrast requirements. Varying TE 
significantly influences the muscle tissue’s signal intensity, 
while varying TR mainly causes signal intensity differences 
within the joint [21].

Moreover, our approach correctly reconstructs different 
anatomies and acquisition parameter values, as demonstrated 
in Fig. 5.

Discussion

Sequence parameterizations vary considerably across differ-
ent sites, scanners, and scans in clinical practice (compare 
Fig. 2 and [1, 22, 23]). Consequently, MR image synthesis 
approaches must be able to cope with this variability to be 
widely applicable. Therefore, we have adapted our model 
architecture and training process to fit these needs by inject-
ing the acquisition parameters into the model. Acquisition 
parameter injection improves the reconstruction results, and 
our method outperforms a benchmark pix2pix approach on 
fat-saturated image synthesis from non-fat-saturated MR 
images. Additionally, we can adapt MR image contrast 
retrospectively and continuously using acquisition param-
eter injection using adaptive instance normalization. While 
a physics-aware U-Net was trained in [24] to increase the 

Fig. 3   Image-to-image translation example with our proposed 
approach. The figure shows a paired example of a real non-fat-satu-
rated and fat-saturated MR knee image with the reconstructed MR 
image (prediction). The images are annotated with the true acquisi-
tion parameters (TE, TR) for the input and target, and with the acqui-

sition parameters determined by the AC for the predicted image. Both 
models generate sharp MR images with the correct contrast (see TR/
TE values). However, model 6 produces inaccurate results and con-
trast, e.g., in the bone structures
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robustness of segmentation results across acquisitions, our 
approach is the first to provide retrospective contrast adjust-
ments using GANs.

To the best of our knowledge, our work is the second to 
apply an image-to-image translation network to knee MR 
images for contrast synthesis [8]. Comparison to published 
approaches is not meaningful due to the different datasets 
used and the training on different body regions. Training our 
work on other benchmark datasets, e.g., the BRATS dataset 
[25], was not possible as acquisition parameters are not pro-
vided in the dataset.

Model 6 receives feedback from the auxiliary classi-
fier, a trained neural network, on how well the MR-contrast 
was synthesized. Incorporating the AC allows us to train 
the GAN under a cycle consistency loss with random target 
labels on unpaired data. However, a limitation of the cycle 
consistency loss is that it may hallucinate features in the 
generated images [26]. It also decreases the overall recon-
struction performance, likely due to the imperfection of the 

auxiliary classifier. On the other hands, it also increases the 
generalization ability of the network. It enables the network 
to learn a broader range of contrast settings as a larger set 
of input-target label combinations can be used for training. 
The use of unpaired data will likely be obsolete given a more 
diverse dataset.

The dataset contains only PD-weighted non-fat-saturated 
and PD- and T2-weighted fat-saturated MR images based on 
the DICOM series description. Consequently, T1-weighted 
and T2-weighted MR images cannot be synthesized due to 
the lack of training data. Nonetheless, it is anticipated that 
our approach’s capabilities can be easily extended given a 
more diverse (in terms of acquisition parameter value dis-
tribution) training dataset. Another important acquisition 
parameter influencing the MR image contrast is the flip 
angle. Unfortunately, the dataset does not offer the required 
variation in the flip angle to condition the model on different 
flip angles. Therefore, the incorporation of the flip angle is 
omitted in this approach.

Fig. 4   Example of contrast interpolation given a real non-fat-sat-
urated MR image (top left). The input image is annotated with the 
true acquisition parameters (TE, TR) for the input image. Contrast 

changes through signal intensity changes in the muscle tissue are 
visible in the synthetic images for varying TE values, and contrast 
changes for varying TR values are less distinct in this parameter range
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Furthermore, image pairs within the dataset are often not 
appropriately registered, and through-plane motion can be 
observed between paired image series. 2D rigid registration 
methods did not improve the training performance. However, 
efforts to incorporate 3D non-rigid image registration may 
increase data quality and thus model performance.

Different MR-contrasts are typically required for a single 
exam as they enable the proper visualization and differen-
tiation of the tissue characteristics. Additionally, different 
MR-contrasts typically provide both redundant and unique 
information. A general limitation of MR image-to-image 
contrast translation networks is that they do not reconstruct 
additional acquisitions but only learn to translate existing 
MR images into new image contrasts. Therefore, these deep 
learning approaches are not anticipated to be able to learn 
subtle changes that are visible in the target contrast but not in 
the source contrast. While extending the proposed approach 
to a multi-image-to-image translation setting is anticipated to 
significantly enhance the performance, the diagnostic quality 
of the synthesized MR images must be assessed carefully.

Our work is anticipated to be used as a method to replace 
missing or corrupted contrasts. This may shorten overall scan 
time and reduce the number of re-scans. Furthermore, it can be 
used as an advanced data augmentation tool to render different 
contrasts and increase the robustness of a trained AI applica-
tion for contrast changes. It may also support the radiologists 
during protocoling by providing a preview of the contrast of a 
parameterized sequence. Additionally, this approach can also 

be useful for other image-to-image translation tasks within 
medical imaging, e.g., to enhance intermodality translation 
(MRI → CT) or 7 T image synthesis from 3 T MR images 
[27].

Moreover, our approach can be the basis for image-to-image 
tasks in MRI as it is anticipated to be adaptable to any set of 
parameterized sequences. It is easily adaptable to additional 
inputs, different acquisition parameters, and applications.

In future work, we aim to improve the determination of 
the acquisition parameters, which will enhance contrast syn-
thesis and enable us to evaluate our model more accurately. 
Moreover, the extension to additional data (e.g., the osteo-
arthritis initiative (OAI) dataset [28]), and multi-image-to-
image contrast synthesis is anticipated to improve the per-
formance as more data and information generally lead to an 
improved model. Additionally, the extension to 3D image 
data is anticipated to reduce prediction inconsistencies in 
subsequent 2D slices. Furthermore, a reader study must be 
conducted to quantify the diagnostic value of the synthesized 
images and assess our approach’s clinical significance for 
applications such as the synthesis of additional contrasts.

Conclusion

In this paper, we proposed a novel approach to tackle MR 
image-to-image synthesis by guiding the learning process 
with the MR acquisition parameters that define the image 

Fig. 5   Multiple examples of image pairs and the reconstructed 
images using our proposed approach. All images belong to a single, 
reference test patient, and for each image pair, an adjacent image pair 
is also shown. The first two columns show adjacent images of periph-
eral slices, while the remaining columns show central slices of sagit-

tal and coronal image series. The images are annotated as described 
for the previous figures. The model properly reconstructs a wide 
range of anatomical structures and views, with different sets of acqui-
sition parameters
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tissue contrast. Our approach was evaluated on the task of 
synthesizing fat-saturated MR images from non-fat-satu-
rated images, outperforming a pix2pix benchmark method 
and demonstrated its capabilities for continuous contrast 
synthesis.

Our approach is easily extendible to incorporate more 
acquisition parameters, 3D image data, and multi-image-to-
image translations that can further increase the reconstruc-
tion accuracy.
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