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Abstract 

Purpose: Timely, accurate and reliable assessment of fetal brain development is essential to reduce short and long-

term risks to fetus and mother. Fetal MRI is increasingly used for fetal brain assessment. Three key biometric linear 

measurements important for fetal brain evaluation are Cerebral Biparietal Diameter (CBD), Bone Biparietal 

Diameter (BBD), and Trans-Cerebellum Diameter (TCD), obtained manually by expert radiologists on reference 

slices, which is time consuming and prone to human error. The aim of this study was to develop a fully automatic 

method computing the CBD, BBD and TCD measurements from fetal brain MRI. 

Methods: The input is fetal brain MRI volumes which may include the fetal body and the mother's abdomen. The 

outputs are the measurement values and reference slices on which the measurements were computed. The method, 

which follows the manual measurements principle, consists of five stages: 1) computation of a Region Of Interest 

that includes the fetal brain with an anisotropic 3D U-Net classifier; 2) reference slice selection with a Convolutional 

Neural Network; 3) slice-wise fetal brain structures segmentation with a multiclass U-Net classifier; 4) computation 

of the fetal brain midsagittal line and fetal brain orientation, and; 5) computation of the measurements.  

Results: Experimental results on 214 volumes for CBD, BBD and TCD measurements yielded a mean 𝐿1 difference 

of 1.55mm, 1.45mm and 1.23mm respectively, and a Bland-Altman 95% confidence interval (𝐶𝐼95) of 3.92mm, 

3.98mm and 2.25mm respectively. These results are similar to the manual inter-observer variability, and are 

consistent across gestational ages and brain conditions. 

Conclusions: The proposed automatic method for computing biometric linear measurements of the fetal brain from 

MR imaging achieves human level performance. It has the potential of being a useful method for the assessment of 

fetal brain biometry in normal and pathological cases, and of improving routine clinical practice. 
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1. Introduction 

Human fetal brain development is a complex process that involves significant changes in volume, structure, and 

maturation in a unique spatio-temporal pattern. Abnormal fetal brain development can have significant short and 

long-term consequences on the newborn. Consequently, accurate quantitative assessment of fetal brain growth is 

essential for early diagnosis of developmental disorders.  

Ultrasound (US) is currently the primary imaging modality to monitor fetal development. Magnetic Resonance 

Imaging (MRI) is increasingly used for fetal brain assessment in cases of inconclusive US findings, to confirm or 

reject suspected abnormalities, and to detect other developmental abnormalities. MRI-based routine clinical 

assessment of fetal brain development is mainly subjective, with a few biometric linear measurements. Similar to 

US-based evaluation, these measurements are compared to MRI reference of growth centiles of normal developing 

fetuses [1,2].  

Three key biometric linear measurements used in routine clinical assessment on fetal brain MRI are Cerebral 

Biparietal Diameter (CBD), Bone Biparietal Diameter (BBD), and Trans Cerebellum Diameter (TCD). These 

measures are performed manually on individual MRI reference slices by clinicians following established guidelines 

[3,4], which differ from the guidelines for US-based measurements, specify how to establish the scanning imaging 

plane, how to select the reference slice in this volume for each measurement, and how to identify the two anatomical 

landmarks for the linear measurement. The CBD and BBD measurements are performed on the same slice, and are 

drawn perpendicular to the mid-sagittal line (MSL). The TCD is measured on a different reference slice by selecting 

the two antipodal landmark points on the fetal brain cerebellum contour, giving the diameter of the cerebellum.  

Manual measurements require clinician training, are time consuming, and suffer from intra- and inter observer 

variabilities [5]. Since fetal brain measurements are small, i.e., 30-100mm, especially at early gestational age, small 

measurement errors may cause a significant shift in the corresponding fetal growth centile, leading to misdiagnosis 

and misguided pregnancy management [6].  

Developing automatic methods for computing biometric fetal brain measurements presents numerous technical 

challenges. First, the method should follow the guidelines and steps explicitly and implicitly performed by the 

clinician, i.e., localization of the fetal brain in the MRI volume, selection of the reference slice, identification of the 

fetal brain, skull and cerebellum contours and mid-sagittal line, and selection of anatomical landmarks for each 

linear measurement. Each of these stages presents unique and significant computational challenges. Additional 

challenges include the variability of the MRI scanning planes, resolutions, contrasts and protocols, pathological fetal 

brain conditions, and fetal motion artifacts, all of which may affect image quality, and yield inaccurate 

measurements and significant observer variability.  

In this paper, we present the first fully automatic method for computing three key biometric linear fetal brain 

measurements in MRI, i.e., CBD, BBD, and TCD. 

2. Related work 

To the best of our knowledge, there are no published reports of automatic biometric linear measurement methods 

of the fetal brain MRI. However, a variety of methods have been reported that are relevant to the five stages of our 

method. We review them next.  

Fetal brain ROI detection and segmentation: Torrents-Barrena et al. [7] presented a comprehensive review of 

methods for segmentation and classification of fetal structures on US and MRI. Dudovitch et al. [8] presented a 

method for fetal brain ROI detection and segmentation based on two 3D U-Nets: one for ROI localization and one 

for ROI voxel classification. We used the fetal brain ROI localization 3D U-Net as the first stage of our method. 

Reference slice selection: Baumgartner et al. [9] described a real-time CNN-based fetal US slice selection method, 

focusing on the temporal aspect of the reference slice selection, which differ from our problem as there is more than 

one reference slice solution. Pallenberg et al. [10] described a template-based spatial slice selection for CT. 
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However, this method cannot handle the significant variability in fetal brain morphology with gestational age. 

Various methods have been described for the selection of planes and computation of fetal linear measurements in 3D 

US scans. Li et al. [11] describe a method to compute the trans ventricular (TV) and the trans cerebellum (TC) 

planes, which are similar to the CBD/BBD and the TCD slice planes in MRI, respectively. Ryou et al [12] describe a 

method for selecting planes and computing the crown-rump-length (CRL), head circumference (HC) and abdomen 

circumference (AC). However, these problems differ from ours in that 3D US provides dense, isotropic spatial 

information while the fetal MRI is sparser and has different noise and sampling characteristics. In addition, the fetal 

MRI scan may have spatial motion artifacts that hamper the reconstruction of a spatial volume from planes.  

Fetal brain component segmentation: Despotović et al. [13] presented a survey of model-based methods for 

segmentation of adult brain components in MRI. Most methods, e.g. FreeSurfer [14], use a brain atlas and require 

registration. They are not directly applicable to fetal brain scans since the fetal brain size, shape, and structure 

changes rapidly during gestation. Others have developed atlases for the various gestational ages for segmenting 

brain structures [15]. These methods require accurate 3D non-rigid registration, which is time-consuming and may 

be inaccurate [16]. More recently, deep learning methods have been developed for the segmentation of fetal brain 

structures [17] in fetal MRI scans. However, this method is not applicable to the problem at hand since it does not 

differentiate between the left and right hemispheres.  

Mid-sagittal line (MSL) computation: to the best of our knowledge, there are no papers in the literature that 

describe methods for fetal brain mid-sagittal line computation. However, two types of methods for the computation 

of the adult brain MSL in MRI scans have been developed [18]: shape-based methods [19] and content-based 

methods in which the MSL is computed from the line that maximizes the brain’s bilateral symmetry [20]. These 

methods are designed for T1-weighted adult brain MRI scans and rely on skull stripping prior to segmentation. This 

task is more challenging on T2-weighted fetal brain scans, as the fetal skull contrast is different and its boundaries 

are fuzzy. 

To summarize, while biometric linear measurements of the fetal brain are an essential part of fetal development 

assessment, they are currently performed manually. While automatic methods for the computation of US-based 

biometric linear measurements are available, e.g., biparietal diameter [21,22], fetal head circumference [23] and 

femur length [21], no such methods are available for fetal MRI.  

3. Method 

We present a fully automatic method to compute three key fetal biometric measurements, CBD, BBD and TCD, 

from fetal brain MRI. The input is a fetal MRI volume. The outputs are the measurements and reference slices in 

which the measurements were computed. The method follows the clinical guidelines for manual fetal MRI 

measurements [4]. The pipeline consists of five stages (Fig. 1): 1) computation of a Region of Interest (ROI) of the 

fetal brain with an anisotropic 3D U-Net classifier; 2) reference slice selection with a convolutional neural network 

(CNN); 3) slice-wise fetal brain structure segmentation with a multiclass U-Net classifier; 4) computation of the 

fetal brain MSL and fetal brain orientation, and; 5) computation of CBD, BBD and TCD measurements. The method 

performs self-assessment of reliability and alerts clinicians when the measurements may be unreliable. 

Our method relies on supervised deep learning techniques for the first three stages, which requires offline training 

and online inference (Fig. 2). In the offline training phase, the networks of the first three stages are trained 

individually on annotated training and validation datasets. In the online inference phase, these networks are used for 

inference. For the reference slice selection (stage 2), the CNN is trained twice, one to select the reference slice for 

CBD/BBD measurements and one for TCD measurement.  
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Fig. 1: Fetal MRI biometric measurements method: 1) fetal brain ROI detection (blue box); 2) reference slice selection (coronal 

slices, selected slice in yellow); 3) fetal brain structures segmentation: cerebellum (green), left (blue) and right (red) hemispheres; 

4) MSL (yellow line) and brain orientation (separated by light blue line) computation; 5) CBD, BBD, and TCD measurements. 

  

Fig. 2: Offline training (left) and online inference (right) phases. The offline training phase consists of the first three stages 

(rectangles). It inputs labeled data for each of the stages (ovals) and outputs four trained networks (parallelograms). The online 

inference phase uses these networks for classification followed by the last two stages. 

3.1 Fetal brain ROI detection 

The first stage computes the fetal brain ROI in the fetal MRI volume. The ROI is a 3D axis-aligned bounding box 

that contains the fetal brain. It is computed using a custom anisotropic 3D U-Net with a Dice loss function described 

in [8]. Briefly, the network inputs a ×4 downscaled version of the fetal MRI volume and outputs a coarse fetal brain 

voxel classification from which a tight bounding box is computed. This network achieves 100% ROI detection rate 

on a network trained with very few (~10) manually labeled volumes. 

3.2 Reference slice selection 

The next stage is the selection of the two reference slices on which the measurements are performed: one for the 

CBD/BBD, and another one for the TCD. The slices were selected with a CNN classifier trained for each type of 

reference slice using transfer learning in three steps: 1) fetal brain ROI pre-processing; 2) slice probability prediction 

of each slice in the fetal brain ROI, and; 3) reference slice selection based on the computed probabilities. 
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First, the fetal brain ROI, which is a grey-value matrix of size ℎ × 𝑤 × 𝑛 where ℎ and 𝑤 are the fetal brain 

bounding box height and width and 𝑛 is the number of slices, is resized to 𝑠 × 𝑠 × 𝑛 where 𝑠 =  1.5 × max(ℎ, 𝑤) 

so that the slices are square. The volume is cropped by the resized ROI and resized to the size required by the 

ResNet50 network (224 × 224). Note that only the ROI was changed, and not the volume itself, thus preserving its 

original aspect ratio and scale. The grey values are computed with bilinear interpolation and normalized to the [0,1] 

range. Next the probability of a slice to be the reference slice is computed with a modified version of the ResNet50 

[24] CNN pre-trained on the ImageNet dataset. The two modifications are: 1) the last multi-class classification layer 

is replaced with a two-class softmax classification layer, and; 2) the same grey voxel values are input to each of the 

three RGB channels. Finally, the reference slice 𝑘 is selected as the slice with the highest probability.  

The two networks are used for reference slice selection are trained and used for the inference in the same way. In 

the offline training phase, slice-wise image augmentations, e.g., random cropping, rotations, horizontal and vertical 

flip are applied on-the-fly to the fetal brain ROI slices in each epoch. To compensate for class imbalance, i.e. only 

one slice out of ~25 in each volume is a reference slice, a small subset 𝑙 < 𝑛 − 1 of non-reference slices are 

randomly selected as negative examples (in practice 𝑙 = 2 yielded the best results). The network is trained with the 

Binary Cross Entropy loss function for 30 epochs. In the first 10 epochs, all layers are trained; in the next 20 epochs, 

only the last classification layer is trained. 

3.3 Fetal brain structure segmentation 

This stage performs multiclass semantic segmentation on all fetal brain MRI slices computed in the previous stage 

into four fetal brain components: cerebellum, left and right cerebrum hemispheres, and background. The 

segmentation is performed with 2D U-Net consisting of a Resnet34 encoder pre-trained on the ImageNet dataset. 

In the offline training phase, slice-wise image augmentations, e.g., random horizontal and vertical flip, and 

brightness and contrast adjustment are applied on-the-fly to the fetal brain slices within ROI in each epoch. 

Brightness and contrast adjustments have been shown to improve unseen domain generalization in both MRI and in 

Ultrasound [25]. The brightness of pixel p is adjusted by an amount c with 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠(𝑝 , 𝑐) =

 1 (1 + 𝑒−(log( 𝑝 1−𝑝⁄ ) +log( 𝑐 1−𝑐)⁄  ))⁄  in the range [0.4 , 0.8]. The contrast of pixel p is adjusted by an amount c with 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑝, 𝑐) = 1 1 + 𝑒−(log( 𝑝 1−𝑝⁄ )×𝑐)⁄  in the range [0.4 , 1.6]. The network is trained with the Lovasz loss 

function [26] for 24 epochs. In the first 12 epochs, only the decoder layers are trained; in the next 12 epochs, both 

the encoder and decoder layers are trained. In the online inference phase, post-processing is applied to each slice 

output segmentation by nearest-neighbor interpolation followed by zero-padding (background class) to obtain the 

original slice size (ℎ × 𝑤). 

3.4 Mid-sagittal line and brain orientation computation 

The MSL and the brain orientation are computed from the ROI and the fetal brain structure segmentation.  

The MSL is computed as the minimal margin line that separates the left and right fetal cerebral hemispheres with a 

Support Vector Machine (SVM) classifier with a linear kernel:  

[
1

𝑛
∑ max (0,1 − 𝑦𝑖 ∙ (𝒘. 𝑥𝑖 − 𝑏))

𝑛

𝑖=1

] +  𝜆‖𝒘‖2 

where 𝒙𝒊 is the pixel coordinates vector, 𝒘 = (𝑤0, 𝑤1) is the linear kernel weights vector, 𝑦𝑖  is the cerebral 

hemisphere index (–1 left, +1 right), 𝜆 is a predefined regularization parameter, and 𝑏 is the bias. The SVM solution 

yields the values of 𝑤 and 𝑏 from which the MSL equation is computed: 𝑦 = − 
𝑤0

𝑤1
𝑥 −  

𝑏

𝑤1
. The SVM is executed 

for up to 108 iterations with 𝜆 = 10. When the SVM does not converge, the MSL cannot be computed and a 

warning is issued.  
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                                     (a)                                                                                            (b) 

Fig. 3: Illustration of the mid-sagittal line (MSL) and brain orientation computation from the fetal brain structures: fetal 

cerebellum (green), left (blue) and right (red) fetal brain hemispheres: (a) the MSL (yellow) and its normal line (blue) passing 

through its middle point 𝐶 computed from points 𝐵0 and 𝐵1, the two intersection points of the MSL and the fetal brain ROI; 𝑄 is 

the intersection between the MSL normal and the ROI boundary, 𝑃 is an arbitrary point inside the cerebellum; (b) two fetal MRI 

slices with and without the cerebellum; 𝐵0 and 𝐵1 are the closest inferior (I) and superior (S) points in the slice without the 

cerebellum. 

The brain orientation, i.e. inferior/superior, is directly computed from the anatomical location of the cerebellum, 

which is inferior to the cerebral hemispheres (Fig. 3a). The MSL intersects the fetal brain ROI at points 𝐵0 and 𝐵1, 

from which the midpoint 𝐶 is computed. The line 𝑄𝐶 is normal to the MSL that passes through C and intersects the 

fetal brain ROI at point 𝑄. Next, an arbitrary point 𝑃 inside the cerebellum is sampled and classified with respect to 

the sign of the cross-product 𝑄𝐶 × 𝑃. Since the cerebellum is inferior to the brain hemispheres, all points whose 

cross product sign are positive/negative are in the inferior/superior part of the brain. This computation is performed 

on all the slices that contain the cerebellum and then applied to the slices without the cerebellum by computing the 

Euclidean nearest neighbor distance in the slice plane (Fig. 3b). This yields a mid-sagittal line for each slice in the 

fetal MRI volume. 

3.5 Linear CBD, BBD and TCD measurements computation 

The final stage computes the CBD, BBD, and TCD measurements with a geometric method akin to that used by 

expert radiologists.  

The CBD measurement is computed in the reference slice from the MSL, the brain orientation and brain structures 

segmentation (Fig. 4a,b,c). First, the cerebrum width profile perpendicular to the MSL is computed from the cerebral 

brain segmentation boundary. Next, the Sylvian Fissure location is computed by finding the local minima of width 

profile that is the closest and superior to the brain mass center in the MSL. The CBD is the maximal width of the 

cerebral hemispheres superior to the Sylvian Fissure and perpendicular to the MSL. 

The BBD measurement is computed by extending the CBD line to the skull contour on the same reference slice 

(Fig. 4c,d). First, the intensity derivative along the extended line is computed. Second, the local maxima of the 

derivatives is detected. Next, the inner skull contour pixels are identified by selecting the point with the maximum 

value from the two local extrema closest to the segmented cerebral brain boundary above a predefined threshold. 

The threshold value is used to filter out MR scanning imaging artifacts on the CSF, which appear as dark lines or 

spots, and therefore may cause noise when analyzing the intensity extrema. 

The TCD measurement is defined as the maximal diameter of cerebellum contour convex hull of the fetal brain 

segmentation on the reference slice (Fig. 5).  
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                    (a)                                              (b)                                            (c)                                         (d) 

Fig. 4: Illustration of the CBD and BBD measurements computation: (a) fetal brain segmentation with the mid-sagittal line 

(yellow) superimposed; the orange arrows show the Sylvian Fissure; (b) the fetal brain width (vertical axis) as a function of the 

mid-sagittal line (horizontal axis); the blue arrow shows the local maxima, identifying the CBD; (c) the CBD (blue line) and its 

extension towards the fetal skull (green box) superimposed on the reference slice. The intensity profile along the CBD line (green 

box); red boundary pixels mark the locations of the inner fetal skull boundary; (d) BBD measurement (red line). 

 

 
 (a)                                                   (b) 

Fig. 5: Two examples of TCD measurements: reference slice, cerebellum convex hull (black contour), convex hull diameter (blue 

line), long axis bounding box (peach box) and its diameter (red line); (a) line angles agreement; (b) line angles disagreement. 

3.6 Computation reliability estimation 

Each step in the pipeline includes an automatic evaluation of its reliability. When no warnings are issued, the 

CBD, BBD and TCD measurement values are deemed accurate and trustworthy. When a warning is issued in one or 

more stages, the radiologist can inspect the result, make manual corrections as appropriate, or disregard the results. 

This reliability estimation may facilitate the use of the proposed method in a clinical environment.  

Computation reliability warnings are issued for: 1) unreliable reference slice selection (stage 2), when the 

probability of the selected slice is below a predefined threshold (the preset value is 0.5, determined empirically). 

This heuristic is based on the observation that the slice selection network tends to be underconfident; 2) unreliable 

fetal brain structure segmentation (stage 3) and/or fetal brain orientation (stage 4), when brain orientations for five 

random points sampled on the cerebellum differ (our experimental results shows that five points are sufficient). This 

heuristic is based on the assumption that the cerebellum is inferior to the brain hemispheres, therefore an 

inconsistency in brain orientation may suggest that cerebellum segmentation is incorrect. Note that this heuristic is 

targeted to identify the cases when the fetal brain segmentation causes the failure the mid-sagittal line or fetal brain 

orientation, and is not designed to detect all possible segmentation errors; 3) unreliable mid-sagittal line (stage 4), 

when the mid-sagittal line angles of adjacent slices differ; 4) unreliable BBD measurement (stage 5) when the 

measurements on the original and CLAHE-enhanced [27] reference slices differ. The latter is determined by 
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computing the measurement values on the reference slice with contrast limited adaptive histogram equalization 

(CLAHE) with tile size of 20×20 and clipping limit of 0.01. The rationale for this approach is that the fetal 

cerebrospinal fluid (CSF) might yield intensity inhomogeneity and imaging artifacts, so enhancing and equalizing 

the contrast may enhance the borders between CSF and brain parenchyma; 5) unreliable TCD measurement (stage 

5), when the line angles between two methods of measurement differ more than 10o (pre-set value determined 

empirically): (a) the cerebellum convex hull diameter; and (b) the cerebellum bounding box long axis. Fig. 5b shows 

an example of unreliable TCD measurement detection. This heuristic is based on the characteristic butterfly-like 

shape of the fetal cerebellum in the coronal slice. When the cerebellum segmentation is incorrect, the symmetry may 

be affected, causing the line misalignment. 

Note that the reliability of the computation of the fetal brain ROI (stage 1) is described in our previous paper [8] 

and has already been validated there. The fetal brain ROI computation produced correct results on all the datasets of 

our study. 

4. Experimental results 

To evaluate our method, we collected fetal brain MRI volumes, annotated them, and conducted six experimental 

studies.  

4.1 Data 

Anonymized fetal MRI studies were retrospectively obtained from the Tel Aviv Sourasky Medical Center, Tel 

Aviv, Israel, from a database of pregnant women referred for fetal MRI as part of routine clinical fetal assessment 

during 2012-2016. The full dataset consisted of 214 fetal brain MRI volumes (5,347 slices) of 154 singleton 

pregnancies (cases). Of these, 113 volumes (87 cases) were diagnosed as normal, and 101 volumes (67 cases) as 

abnormal with minor/moderate brain pathologies. Mean gestational age was 32 weeks (std=2.8, range 22-38, all 

weeks represented except 25). The MRI volumes of T2-weighted FRFSE sequence were acquired on a 1.5T General 

Electric Discovery MR450 scanner. Each volume consists of a mean 24 coronal slices (range 14-36) with mean in-

plane resolution of 0.75×0.75 mm2 (range 0.60–0.87×0.60–0.87 mm2) and mean slice thickness of 4 mm (range 3–

8). The full dataset was partitioned into the training dataset (164 volumes, 121 cases) with mean gestational age of 

32 weeks (std=2.8, range 22-38). Of those, 68 cases were diagnosed as normal and 53 cases were diagnosed as 

abnormal. The mean gestational age of the test dataset (50 volumes, 33 cases) was 32 weeks (std=2.9, range 23-38). 

Of those, 17 cases were diagnosed as normal and 16 cases were diagnosed as abnormal. The training and test 

datasets are disjoint in terms of volumes and cases. 

4.2 Dataset annotation 

Manual reference slice selections and CBD, BBD and TCD measurements were obtained for all volumes in the 

full dataset volumes with ITK-SNAP [28] by the senior pediatric neuro-radiologist co-author (LBS). The mean time 

required for reference slice selection and manual measurement for all three measurements per volume was 110 secs 

(range 60-150 secs). Validated slice-based fetal brain structure segmentations were obtained on a subset of slices 

from the full dataset. The initial fetal brain segmentation was obtained with the method in [8] for 63 volumes (1,389 

slices) from the training dataset. The resulting segmentations were post-processed by removing small connected 

components, selecting the 2-3 largest connected components (left and right fetal brain hemispheres and the 

cerebellum when present in the slice) and performing spectral clustering with discretization [29]. Of the resulting 

segmentations, 1,108 slices were reviewed and approved by a knowledgeable co-author (OBZ, a graduate student 

who has learned from the expert radiologist how to perform this task).  

4.3 Evaluation metrics 

We used the following metrics to quantify and compare the accuracy and variability of the annotations. Linear 

measurement differences were defined as 𝑑𝑖𝑓𝑓(𝑙1, 𝑙2) =|𝑙1 − 𝑙2| where 𝑙1, 𝑙2 are two linear measurement values. 

Slice selection differences were defined as 𝑠𝑙𝑖𝑐𝑒_𝑑𝑖𝑓𝑓(𝑠1, 𝑠2) =|𝑠1 − 𝑠2| where 𝑠1, 𝑠2 are two selected slice indices. 

The slice selection accuracy was defined as 𝑠𝑙𝑖𝑐𝑒_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑠1, 𝑠2) = 1 − |𝑠1 − 𝑠2| 𝑁⁄  where N is the 
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number of volume slices. The MSL angle difference was defined as 𝑀𝑆𝐿_𝑑𝑖𝑓𝑓_𝐴𝑛𝑔𝑙𝑒(𝑙1, 𝑙2) =|𝑎𝑛𝑔𝑙𝑒(𝑚𝑠𝑙1) −

𝑎𝑛𝑔𝑙𝑒(𝑚𝑠𝑙2)| where 𝑚𝑠𝑙1, 𝑚𝑠𝑙2 are two MSLs measured on the same volume. We used the Bland Altman method 

[30] to estimate the agreement between two sets of measurements. Agreement was defined by the 95% confidence 

interval, 𝐶𝐼95. For two sets, 𝐶𝐼95 = 1.96 ∗ 𝑠𝑡𝑑𝑗(𝑀𝑗
1 −  𝑀𝑗

2) where 𝑀𝑗
1 , 𝑀𝑗

2, are the measurement of sets 1 and 2, 

each with 𝑛 measurements. The bias is 𝐵𝑖𝑎𝑠 =
1

𝑛
∑ (𝑀𝑗

1 − 𝑀𝑗
2)𝑛

𝑗=1 .  

4.4 Interobserver variability 

The interobserver variability for the three manual linear measurements was established for subset from the training 

set (n=45) by computing the bias, difference and agreement metrics of the CBD, BBD and TCD measurements 

between two expert radiologists (co-authors EM and LBS). Table 1 shows the results. 

Measurements 

(in mm) 

CBD BBD TCD 

Bias 𝑪𝑰𝟗𝟓 Diff Bias 𝑪𝑰𝟗𝟓 Diff Bias 𝑪𝑰𝟗𝟓 Diff 

Interobserver 

variability 
0.03 4.12 1.60 -0.09 3.18 1.27 0.26 2.39 0.97 

Table 1: Observer variability for the CBD, BBD and TCD measurements between two expert radiologists: Bias, 95% confidence 

interval, and difference. 

4.5 Studies and results 

The first study evaluated the overall performance of the method and of the self-assessment of reliability. The next 

four studies evaluated the performance of the various steps of the method and justified the algorithmic choices. The 

last study evaluated the performance of the method with gestational age and fetal brain abnormalities. The entire 

pipeline was tested on the test dataset, which is disjoint from the training set. The results for the entire pipeline for 

the full dataset are provided because our method includes both model-based and machine-learning methods. 

The training dataset was divided into various subsets that were used for both training and validation of the five 

stages of the fetal biometric measurements pipeline. The size of the training and validation datasets for each stage 

was determined according to the specific characteristics of the step. For the fetal brain ROI detection, the pretrained 

network in [8] was trained with 6 volumes and validated with 29 volumes. For the reference slice selection, 49 

volumes were used for training and 43 for validation for both the CBD/BBD and the TCD slice selection networks. 

For the fetal brain structure segmentation, 53 volumes were used for training and 10 for validation. For the linear 

measurements computation, which includes the fetal brain orientation computation, and the computation reliability 

estimation, 45 volumes were used for the parameters value selection. The training, validation, and test datasets are 

disjoint for all experiments. 
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1. Biometric measurement evaluation. This study evaluated the accuracy of the computed CBD, BBD and TCD 

measurements and of the self-assessment of reliability. Table 2 summarizes study results. 

Measurements 

(in mm) 

CBD BBD TCD 

Bias 𝑪𝑰𝟗𝟓 Diff Bias 𝑪𝑰𝟗𝟓 Diff Bias 𝑪𝑰𝟗𝟓 Diff 

Test dataset (N=50) -0.08 3.94 1.48 -0.43 3.26 1.21 -0.82 3.27 1.26 

Test dataset, reliable cases 

CBD (N=47), BBD (N=46), TCD (N=40) 
0.70 3.09 1.44 -0.03 2.84 1.10 -0.26 2.17 0.83 

Full dataset (N=214) -0.32 4.32 1.55 -0.47 3.97 1.47 -1.14 3.00 1.40 

Full dataset, reliable cases 

CBD (N=206), BBD (N=203), TCD 

(N=183) 

0.69 3.92 1.52 0.19 3.98 1.47 -0.63 2.25 1.06 

Table 2: Accuracy of computed CBD, BBD and TCD measurements with and without excluding the volumes identified as 

unreliable by the reliability self-assessment (reliable cases) on the test and full datasets. N indicates the number of volumes for 

each measurement. 

All results are below the inter-observer variability range. The reliability self-assessment on the full dataset identified 

uncertainty in 28 volumes out of 214 (13%) for the TCD measurement, 8 volumes out of 214 (3%) for BBD/CBD 

slice selection, 3 volumes out of 214 (1.5%) for TCD slice selection, 3 volumes out of 214 (1.5%) for the BBD 

measurement, and no unreliable volumes for the brain orientation and the mid-sagittal line angle computation. The 

reliability self-assessment method also improved the variability measures on all datasets. For the test dataset, the 

CI95 decreased from 3.94mm to 3.09mm (27%), from 3.26mm to 2.84mm (15%) and from 3.27mm to 2.17mm 

(50%) for the CBD, BBD and the TCD measurements respectively.  

2. Reference slice selection: network selection. This study compared the accuracy of five different networks that 

were used for reference slice selection: ResNet18, ResNet34, ResNet50, DenseNet121[31] and VGG16 [32] pre-

trained on ImageNet. For each, we trained the network with its recommended hyperparameters on 1,130 slices from 

49 volumes and validated them with different training and validation subsets of the training dataset on the TCD 

reference slice selection (Table 3). ResNet50 has the highest accuracy on the validation split with no significant 

difference in accuracy between all ResNets and DenseNet.  

TCD reference slice selection 

accuracy  

Network 

ResNet18 ResNet34 ResNet50 DenseNet121 VGG16 

Training (N=49) 0.961 0.965 0.968 0.969 0.960 

Validation (N=17) 0.978 0.977 0.978 0.977 0.963 

Table 3: Accuracy of five reference slice selection networks for TCD reference slice selection task for the training and validation 

splits. The selected network results are shown in bold. 

We then trained the ResNet50 network for CBD/BBD and TCD reference slice selection on different training 

and validation subsets of the training dataset. We evaluated the reference slice selection accuracy with respect to the 

manual reference slices selected on the test dataset (Table 4). All networks achieved a mean difference of < 1 slice.  
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Reference slice selection  Split 

Reference slice difference # Reference slice selection 

accuracy  

Mean Mean Maximum 

BBD/CBD 

Training (N=49) 0.454 2 0.979 

Validation (N=43) 0.411 3 0.981 

Test (N=50) 0.795 3 0.968 

TCD 

Training (N=49) 0.477 3 0.981 

Validation (N=43) 0.457 1 0.977 

Test (N=50) 0.604 2 0.975 

Table 4: Reference slice selection mean and maximum # of slices and mean accuracy on the BBD/CBD and TCD reference slice 

for ResNet50 for the training, validation, and test datasets.  

3. Fetal brain structure segmentation accuracy. This study evaluated the accuracy of the fetal brain structure 

segmentation on the full dataset. We used splits on the validated dataset of 1,008 (train) and 100 (test) slices each. 

The mean Dice coefficient on the training and test splits was 0.942 and 0.944 respectively. The Dice coefficient on 

these splits was 0.942 and 0.945 for the right hemisphere, 0.940 and 0.946 for the left hemisphere, and 0.849 and 

0.851 for the cerebellum. This indicates that the segmentations are accurate and reliable. 

4. Mid-sagittal line angle accuracy. The MSL angle accuracy of the computed and the manual measurement on the 

full dataset, 𝐶𝐼95 is 4.86°; the mean difference is 1.93°. 

5. Computation reliability estimation validation. This study evaluated the reliability estimation mechanism on the 

test dataset. An experienced radiologist visually inspected all the 50 volumes of the test dataset and graded each of 

the three measurements, CBD, BBD and TCD, as valid or unacceptable. The selection results were then compared to 

the computation reliability warnings that were automatically issued by the method. 

 
                                 (a)                                                                (b)                                                                 (c)                           

 Fig. 6: Confusion matrices of the reliability estimation computation: manual expert radiologist evaluation (vertical axis) vs. 

automatic reliability estimation: (a) CBD; (b) BBD; (c) TCD measurement.  

Fig. 6 shows the confusion matrices for each measurement. The accuracy of the reliability estimation computation 

is 80%, 78% and 82% for CBD, BBD, and TCD measurements, respectively. Note that the expert accepted 78%, 

82% and 74% of the CBD, BBD and TCD measurements, respectively. For the cases where the expert did not accept 
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and the method did accept, the three measurement variability was 2.95mm, 1.65mm and 1.92mm, respectively, 

which is lower than the inter-observer variability. This means that the computed measurement is clinically 

acceptable. Upon inspection, the main reason for which the method did not rule out these cases is the measurement 

angle, which was not covered by our heuristics. 

6. Performance with gestational age and abnormalities. This study examines the impact of the fetus gestational 

age (GA) and fetal brain abnormalities on the entire pipeline on the full dataset, after elimination by the reliability 

estimation.  

First, we compute the mean deviation ratio from the absolute value and its standard deviation for each measure for 

each GA. Fig. 7 shows the results. The mean error as a function of GA is consistently the same across all measures, 

except for the lower GA in the BBD measurements -- week 24, with a 4% deviation vs. 2% for all other GAs -- and 

TCD measurements -- week 22, with a 6% deviation vs. 3% for all other GAs. However, this discrepancy may be 

caused by the fact that we have a single sample for this GA (week 22).  

                

 

Fig. 7: Three graphs showing the CBD, BBD, TCD measurements mean deviation (%, vertical axis) as a function of 

the Gestational Age (weeks, horizontal axis) for the test dataset.  

Second, we analyze the impact of fetal abnormalities by computing the joint distribution of the error and fetal GA 

vs. case diagnosis (normal vs. abnormal). Fig. 8 shows the results. Note that the marginal distributions of errors for 

normal and abnormal cases over all measurements are similar. This means that the subject condition does not affect 

the system performance. Further investigation shows that the specific anomalous cases that have large deviation in 

CBD/BBD measurements are from the Malformation of Cortical Development (MCD) diagnosis. The MCD group 

shows high variability of brain disorders which can affect the measurements. However, cases with Dolicocephaly 

and extra axial fluid diagnoses, which are the ones that should be detected with CBD/BBD measurements, 

performed well with a measurement deviation of < 2mm even though there is no representation for these groups in 

the training dataset. 

         
Fig. 8: Three scatter plots showing the normal (blue dot) and abnormal (orange dot) cases of the CBD, BBD, TCD measurements 

mean deviation (%, vertical axis) as a function of Gestational Age (weeks, horizontal axis) for the full dataset. The two graphs on 
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top and on the right shows the Gestational Age and measurements mean deviation distribution of the normal (blue) and abnormal 

(orange), respectively.  

 

 

5. Conclusions 

To the best of our knowledge, this is the first fully automatic method that measures biometric linear measurements 

of the fetal brain from MRI according to accepted clinical guidelines. It is based on a hybrid approach combining 

deep learning methods and geometrical algorithms for fetal brain ROI detection, fetal brain component 

segmentation, MSL and brain orientation estimation and three main biometric linear measurements. Two unique 

features of our algorithm are a new reference slice selection method using CNNs, and a new method for self-

assessment of reliability to alert clinicians when the computed measurements may be unreliable.  

We believe that the methodology and experimental results presented here can be useful for developing methods for 

automatically computing biometric linear measurements in volumetric scans. The pipeline is generic in its first three 

stages and in its approach to reliability self-evaluation. The deep learning methods used rely on a few dozen 

annotated datasets, which makes it practical.  

The proposed method achieves human-level performance, while handling high input variability represented in 

clinical use: a variety of gestational ages, pathological fetal brain conditions, and diverse MRI scanning parameters. 

It therefore may be useful in the assessment of fetal brain biometry, and improving routine clinical practice. 
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