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Abstract
Purpose Brain Magnetic Resonance Images (MRIs) are essential for the diagnosis of neurological diseases. Recently, deep
learning methods for unsupervised anomaly detection (UAD) have been proposed for the analysis of brain MRI. These
methods rely on healthy brain MRIs and eliminate the requirement of pixel-wise annotated data compared to supervised deep
learning. While a wide range of methods for UAD have been proposed, these methods are mostly 2D and only learn from
MRI slices, disregarding that brain lesions are inherently 3D and the spatial context of MRI volumes remains unexploited.
Methods We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads
to improved unsupervised anomaly segmentation performance compared to learning from slices. We evaluate and compare
2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of
the data set size on the performance.
Results Using two publicly available segmentation data sets for evaluation, 3D VAEs outperform their 2D counterpart,
highlighting the advantage of volumetric context. Also, our 3D erasing methods allow for further performance improvements.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D
VAE.
Conclusions We propose 3D deep learning methods for UAD in brain MRI combined with 3D erasing and demonstrate that
3D methods clearly outperform their 2D counterpart for anomaly segmentation. Also, our spatial erasing method allows for
further performance improvements and reduces the requirement for large data sets.
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Introduction

Brain Magnetic Resonance Images (MRIs) allow for three-
dimensional (3D) imaging of the brain and are widely
used in research and clinical practice for the diagnosis
and treatment of neurological diseases. While promising
technology advancements of the imaging quality enable an
ever-increasing amount of conditions that become detectable
[21], reading and interpreting MRI remains a challenging
task. First, brain lesion detection and delineation requires
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expert knowledge and is a tedious time-consuming process,
affected by human errors [6]. Second, MRI is increasingly
used and hence an ever-increasing amount of images need
to be studied, while only a limited number of experts are
available [7]. This leads to the urgent need for automatic
detection and segmentation of lesions to assist radiologists
during clinical practice.

Recently, supervised deep learning methods have shown
promising results for this task, while the success of these
methods depends heavily on large data sets with high-quality
annotations [14]. Note that supervised methods only gener-
alize well to cases that are sufficiently represented in the
training data. However, diverse and large annotated data sets
are costly to obtain, and often only a few limited cases are
available for rare diseases [4].

In contrast to that, human experts can be trained with
few healthy cases to generalize, and afterward they are able
to detect even arbitrary anomalies without being trained to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-021-02451-9&domain=pdf
http://orcid.org/0000-0002-2229-9547


1414 International Journal of Computer Assisted Radiology and Surgery (2021) 16:1413–1423

L(xs, x̂s)

L(xv , x̂v)

encoder

2D Network

3D Network decoder

decoder

encoder

xs

xv

x̂v

x̂s

x

x

Fig. 1 Our approach for unsupervised anomaly segmentation using 3D
deep learning combined with spatial input erasing. For the 2D network,
only a single 2D slice xs is used as input x and volumetric spatial con-
text remains unexploited. Instead, our novel 3D approach receives an
entire volume xv as input x and learns combined features from all spa-

tial dimensions. Also, we propose 3D spatial input erasing, where parts
of the input are missing and the network is trained to restore missing
image parts. Note, x̂s and x̂v refer to the network’s reconstruction in 2D
and 3D, respectively

an explicit appearance [7]. Deep learning for unsupervised
anomaly detection (UAD) follows this concept of identify-
ing unexpected, abnormal data. Thesemethods do not require
pixel-level annotations and are only trained with MRI-scans
of healthy brains. Here, the task is considered as an anomaly
detection problem, where the networks are trained to repre-
sent the distribution of healthy anatomy of the human brain
and anomalies can be detected as outliers from the learned
distribution. Typically, deep learning for UAD follows an
encoder–decoder structure trained only on healthy images.
Afterward, detection and delineation of pathologies of a test
image can be obtained, e.g., by pixel-wise discrepancies
between the model’s input and reconstruction.

So far, a wide range of deep learning methods have been
proposed for UAD in brain MRI, ranging from simple auto-
encoders [5] to generative adversarial networks (GANs) [18]
focusing on 2D spatial information. These 2D methods have
shown promising results; however, the global spatial context
provided byMRI volumes remains unused and the inherently
3Dstructure of brains cannot be learnedby the networks. This
brings up the question, whether increased spatial context by
using entire MRI volumes allows for improved performance,
leading to the problem of 3D deep learning for UAD in brain
MRI. So far, 3D deep learning for UAD has hardly been con-
sidered, only pioneeringwork in volumetric headCTdata has

been proposed recently without direct comparison with 2D
[17]. 3D deep learning is challenging in nature as it results in
an increased representational power that may come with an
increased risk of overfitting, leading to poor generalization.
For preventing the risk of overfitting, several different regu-
larization strategies have been proposed for deep learning in
the context of computer vision. These methods range from
simple image transformation such as rotation and flipping to
adding noise during the training process, e.g., by stochasti-
cally dropping out neuron activations [19] or dropping out
entire input regions [9] during training. Especially the latter
has been combined with 2D auto-encoder networks, called
context-encoders [16], where the networks are enforced to
generate the contents of an arbitrary image region condi-
tioned on its surroundings, leading to a better understanding
of the global content of the image. This idea has also shown
promising results in the context of UAD in brain MRI using
2D methods [22] and might be a promising approach for
enforcing the understanding of the global contextwhen entire
MRI volumes are used in combinationwith 3Ddeep learning.

In this paper, we propose to learn from entire 3D MRI
volumes instead of single 2D MRI slices using 3D instead
of 2D unsupervised deep learning, shown in Fig. 1. Also, we
extend the concept of spatial input erasing for regularization.
To this end, we provide an extensive comparison of varia-
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tional autoencoders (VAE) with 3D and 2D convolutions and
propose several different 3D spatial erasing strategies during
training. For our experiments, we use a training data set with
brain MRI scans of 2008 healthy patients and evaluate our
methods on two publicly available brain segmentation data
sets. We focus on T1-weighted MRI data, which are widely
used in clinics [1,10], providing a good starting point for
anomaly detection. Moreover, we provide an analysis of the
impact and the importance of the training data set size, espe-
cially in combination with our 3D approach.

Materials andmethods

Data set

For training, we consider a data set with anonymized T1-
weighted MRI volumes of 2008 healthy subjects from 22
scanners from different vendors. The resolutions in axial
direction vary from 0.39mm to 1.25mm with a majority of
1310 samples with 1mm. The slice thickness lies between
0.90mm to 2.40mm with a majority of 906 samples with
1mm. A total of 1506 samples are acquired with a field
strength of 1.5 T, 446 samples are acquired with 3 T and 56
with 1 T. Data on all scanners were acquired during clinical
routine with a standard 3D gradient echo sequence. All scans
were sent to jung diagnostics GmbH for image analysis.

For evaluation, we use two publicly available data sets.
First, we consider the publicly available Multimodal Brain
Tumor Segmentation Challenge 2019 (BraTS 2019) data set
[2,3,15] with T1-weighted image volumes of 335 subjects
with the corresponding ground truth segmentation of the
tumor. The slice thickness of the BraTS 2019 data set varies
from 1mm up to 5mm Second, we use the Anatomical Trac-
ings of Lesions After Stroke (ATLAS) data set [13], which
provides T1-weighted image volumes of 304 subjects with
corresponding ground truth segmentations of stroke regions.
The slice thickness of the ATLAS data set varies from 1mm
up to 3mm.

For all image volumes, we apply the following prepro-
cessing. First, we resample all scans to the same isotropic
resolution of 1mm × 1mm × 1mm using cubic interpola-
tion. Then, we follow the preprocessing of previous studies
with 2Ddeep learningmethods forUAD,which include skull
stripping, denoising, and standardization [4]. Next, we crop
excessive background by using brainmasks of theMRI scans
and zero-pad all MRI scans to the largest volume resolution
in our data set of 191× 158× 163. Last, we downsample all
volumes to a size of 64 × 64 × 64 for numerical efficiency,
as we encounter the computational complexity of 3D deep
learning. Regarding our data split for training, we consider
1807 healthy images for training and 201 images for vali-
dation of our reconstruction performance. We split our data

randomly and stratified by scanners. Considering the images
of the BraTS 2019 data set, we randomly sample 133 images
for validation and 202 for testing. Using the ATLAS data set,
we randomly sample 121 and 183 images for validation and
testing, respectively.

Deep learningmethods

We address the problem of anomaly segmentation with 2D
and 3D unsupervised deep learning methods using 2D MRI
slices or 3DMRIvolumes, respectively.Given a set of healthy
MRI scans, we utilize an encoder–decoder architecture and
train our methods to encode to and reconstruct from a lower-
dimensional latent space z ∈ R

n . After the methods are
trained, anomalies in a test image can be detected by large
reconstruction errors between the input and output image,
as the networks are trained to reconstruct only images of
healthy brain anatomies, e.g., fail to reconstruct abnormal
image areas.

Recently, a comparative study on UAD using 2D deep
learning methods [4] has demonstrated that VAE [5,12]
allows for promising results, while also being easy to opti-
mize and involving fewer hyperparameters compared to other
UAD methods such as GANs. Comparing the VAE with the
standard AE, the VAE enforces a structure on the mani-
fold. It has been demonstrated that this leads to performance
improvements compared to the standard AE [4]. Hence, we
consider the concept of VAEs for our study.

Our general backbone network is shown in Fig. 2 and
for the adaption to 2D MRI slices or 3D MRI volumes, we
employ 2D or 3D operations for the network, e.g., we use
2D or 3D convolutions. In this way, the architecture details
remain the same for 2D and 3D, e.g., the number of layers
and feature maps remain same, and only the dimension of
the networks operation are changed. Based on our validation
set performance, we choose a latent space size of z ∈ R

128

and z ∈ R
512 for our 2D and 3D VAE, respectively.

We study and extend the concept of cutout [9] and context-
autoencoders [16], which were proposed for 2D images. The
main motivation behind our approach is to further enhance
the usage of global image context, especially in combination
with 3D methods. Therefore, we propose and evaluate the
following different erasing methods for 2D and 3D, which
are shown in Fig. 3. Note, we only erase the regions in the
input image and not in the ground-truth image that is used
for optimization; hence, our networks are enforced to solve
an in-painting task for abnormal regions.

First, we simply mask-out a single patch in the input, sim-
ilar to previous concepts for 2D problems [9,16,22]. Also,
we extend this approach to 3D and mask-out a single 3D
cube. For the patch and cube erasing method, we randomly
select a pixel coordinate within the image as a center point
and randomly erase regions with a size from 1% up to 25%
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Fig. 2 Our backbone 3D VAD architecture receives input volume
x ∈ R

64×64×64 and encodes it to the lower-dimensional latent variable
z ∈ R

nz , afterward the decoder reconstructs the output x̂ ∈ R
64×64×64.

The number over the boxes refers to the spatial size; the number below

the boxes refers to the number of feature maps. We use convolutions
and transposed convolutions in the encoder and decoder, respectively.
Note, the first convolution in the encoder downsamples the input from
64 × 64 × 64 to 32 × 32 × 32

of the input size. Note, we refer to this method as patch for
2D and cube for 3D.

Second, we extend this approach and split a single patch
or cube into multiple ones. To this end, we mask-out up to
ten randomly located and sized patches or cubes within an
input image, while the overall erasing size remains in the
limit of 1% up to 25% of the input size. We call this method
multiple-patch or multiple-cube for 2D and 3D, respectively.

Third, we erase entire brain sides based on the idea of
stimulating the networks to exploit the symmetry of a brain.
Hence, we randomly erase the right or left side of the brain
in the input slice. Similar for 3D, here we randomly erase the
right or left side of the brain in 1 up to 32 multiple sequential
input slices. We refer to this method as half-slice for 2D and
half-volume for 3D.

We systematically evaluate all erasing methods with dif-
ferent strategies formasking-out the regions. First, we simply
erase regions in the input, e.g., all intensity values of a region
are set to zero similar to previous works [9,16,22]. Second,
to further increase the variance of our erasingmethods we fill
the erased region with noise sampled from the image pixel
distribution.

For all our methods, we set the probability of the spa-
tial erasing to p = 0.5, such that the network still receives
unmodified images.

Training and evaluation

Wefollow the idea ofVAEs; hence,weoptimize our networks
with respect to the reconstruction loss between the original
input image and the network output reconstruction combined
with the constraint that the latent variables follow a multi-
variate normal distribution. Hence, our loss function is based
on the l1-distance between our input and output combined
with the distribution-matching Kullback–Leibler divergence
for regularization. We train our networks with a batch size

of 32 using Adam for optimization with a learning rate of
0.001. We individually tune the number of training epochs
of the networks using the reconstruction performance on our
validation set with images of healthy subjects.

For all evaluations, we employ the following post-
processing steps. First, we multiply each residual image by
a slightly eroded brain mask to account for errors occurring
at sharp brain-mask boundaries. Next, we remove small out-
liers with a median filter. For anomaly segmentation of a test
image, we consider the voxel-wise residuals obtained from
the l1-distance between the original input image and the net-
work’s reconstruction.

For comparison of our methods, we consider voxel-wise
anomaly segmentation performance. To this end,we consider
the Dice coefficient (DICE) which is defined by

DICE = 2 |X ∩ Y |
|X | + |Y |

with two sets X and Y . Noteworthy, evaluating the DICE
requires binarization of the difference image between the
original input image and the network’s reconstruction. For
this purpose, we utilize our validation set and perform a
greedy search to determine the binarization threshold for the
segmentation, similar to [4]. Since the scans are normalized,
intensity intervals range from 0 to 1. Using the ground truth
segmentation, we compute the DICE on the validation set for
thresholds at the upper and lower quartile of the center of the
intensity interval. Based on the DICE, we cut the interval to
either the lower or upper half and continue the searchwith the
updated interval. The procedure is repeated for 10 iterations,
and we use the binarization threshold that leads to the best
DICE score. Afterward, we use the determined binarization
threshold for the test sets. We report the DICE on an entire
data set (DICED) and also reportmean and standard deviation
for the subject-wise values (DICES). Moreover, to evaluate
the models performance for different operating points, e.g.,
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Fig. 3 Our 3D spatial input erasing methods. In each row, sectional
planes of a volume with erasing are shown. Top row: We erase a single
3D cube with random location and size (Cube). Middle row: We erase

multiple 3D cubes with random location and size (Multi-Cube). Bottom
row: We erase an entire brain side in a subvolume (Half-Volume)

binarization threshold for segmentation, we also consider the
area under the Precision-Recall-Curve (AUPRC). Here, for
eachdata set,wegenerate Precision-Recall-Curves (PRC) for
each model and then we compute the area under it (AUPRC).

Moreover, we consider our best performing methods and
our baseline methods with respect to slice-wise anomaly
detection.This allows for localization of anomalies on a slice-
level in a volume, i.e., which slice contains a lesion. For this
purpose, we divided each volume in our test set into normal
and abnormal slices. Considering the lesion annotations, we
strictly consider all slices with annotations as abnormal and
normal otherwise. For discrimination between normal and

abnormal slices, we use the l1-distance between the original
input and the network’s reconstruction calculated for each
slice. For evaluation of our slice-wise anomaly detection per-
formance independent of the operating point, we report the
AUPRC.

Results

First, we compare 2D and 3D UAD deep learning methods
combinedwith our erasing regularizationmethods in Table 1.
For both VAEs, our different erasing methods lead to perfor-
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Table 1 Results for our 2D and 3D VAE combined with our spatial
erasing methods evaluated on the BraTS 2019 and ATLAS (Stroke)
data set

Input and erasing DICED DICES (μ ± σ ) AUPRC

BraTS 2019

2D-None 26.80 25.30 ± 12.37 21.19

3D-None 28.14 26.93 ± 12.40 24.69

2D-Patch-0 27.96 26.52 ± 13.42 22.53

2D-Patch-n 27.99 26.58 ± 13.27 22.54

3D-Cube-0 29.24 27.90 ± 13.57 26.18

3D-Cube-n 30.10 28.80 ± 13.74 27.85

2D-Multi-Patch-0 28.10 26.44 ± 12.89 22.54

2D-Multi-Patch-n 28.51 27.24 ± 13.14 22.81

3D-Multi-Cube-0 28.88 27.67 ± 13.22 25.82

3D-Multi-Cube-n 29.52 28.33 ± 13.42 26.18

2D-Half-Slice-0 26.86 25.44 ± 12.42 21.77

2D-Half-Slice-n 27.97 26.45 ± 13.22 22.84

3D-Half-Volume-0 28.49 27.51 ± 13.17 25.47

3D-Half-Volume-n 28.99 27.92 ± 13.24 26.07

ATLAS (Stroke)

2D-None 24.72 11.23 ± 13.66 16.86

3D-None 30.68 14.42 ± 16.06 23.74

2D-Patch-0 27.68 12.23 ± 13.67 18.65

2D-Patch-n 27.42 12.36 ± 14.61 18.20

3D-Cube-0 31.50 15.59 ± 17.02 23.47

3D-Cube-n 32.68 15.53 ± 17.30 25.11

2D-Multi-Patch-0 26.99 11.82 ± 14.29 18.72

2D-Multi-Patch-n 28.06 12.88 ± 15.21 19.49

3D-Multi-Cube-0 31.83 15.23 ± 16.64 24.51

3D-Multi-Cube-n 32.37 14.99 ± 17.31 25.13

2D-Half-Slice-0 27.54 11.05 ± 13.70 18.60

2D-Half-Slice-n 28.99 12.13 ± 14.79 20.37

3D-Half-Volume-0 31.00 15.21 ± 17.00 23.14

3D-Half-Volume-n 33.05 15.27 ± 17.21 25.58

The abbreviations for input and erasing refer to the input/VAE dimen-
sion, erasing strategy and value used for masking-out a region, e.g.,
2D-Patch-0 and 2D-Patch-n stand for a 2D VAE with patch erasing,
while the first refers to masking-out a region with zeros and the second
refers to masking-out a region with noise
DICED represents the metric based on the voxel calculation of an entire
data set
DICES (μ±σ ) refers to the mean and standard deviation of the subject-
wise score
All metrics are in percent

mance improvements. Overall, our 3D VAE outperforms the
2DVAE for all our experiments. Using noise formasking-out
the regionsworks slightly better thanmasking-outwith zeros.
For our 3D VAE using a single cube for erasing, followed by
masking-out an entire brain side in a subvolume works best.
Considering our 2D-VAE, masking-out an entire brain side
shows the best results, closely followed bymasking-out mul-

tiple patches. Comparing the DICED of our best performing
3D approach (3D-Cube-n) with the 2D baseline approach
(2D-None) demonstrates a relative performance improve-
ment of 12.31% and 32.20% on the BraTS 2019 and ATLAS
data set, respectively.

Second, we evaluate the performance of our baselines and
best performing methods with respect to lesion size in Fig.
4. Here, our results demonstrate that the smallest and largest
lesions are challenging. Consistently, using erasing improves
the DICES over all lesion sizes, while being particularly
effective for large lesions. Also, comparing 2D and 3Dmeth-
ods shows that 3D consistently outperforms 2D, especially
for small lesions.

Third, we evaluate the effect of the data set size in Fig.
5. Reducing the data set has a pronounced impact on the
performance for 3D as well as 2D, especially when less than
60% of the training data is used. Also, the spatial erasing
works better when the network is trained with more data.
While reducing the data set size has a larger impact on 3D,
even with only 20% of the training data the 3D VAE works
better than the 2DVAEwith erasing and 100% of the training
data. Moreover, our erasing turns out to be effective for the
2D VAE, considering that a 2D VAE without erasing trained
with 100% of data is outperformed by a 2DVAEwith erasing
trained with only 20% of the data.

Fourth, Fig. 7 demonstrates example images for our best
performing method 3D-Cube-n. Notably, the ground truth
segmentation is highlighted in all difference images, while
also showing errors at further regions.

Moreover, we use our best performing 2D and 3Dmethods
trained on T1-weighted MRI data and evaluate on T1ce-
weighed MRI data from the BraTS 2019 data set to study
the effect of using additional image information, see Table
2. Here, we observe immediate performance improvements
compared to T1-weighting for both 2D and 3D with a rel-
ative improvement of 13.61% and 21.82% for 2D and 3D
considering the DICED .

Last, we evaluate our baseline and best performing meth-
ods with respect to slice-wise anomaly detection, see Fig. 6.
Here, our best performing method achieves an AUPRC of
71.2%. Also for this task using 3D information and erasing
turns out to be beneficial, improving the AUPRC by approx-
imately 4% compared to the 2D VAE.

Discussion

Weconsider the problemof unsupervised anomaly segmenta-
tion andpropose to learn fromentire 3DMRIvolumes instead
of single 2D MRI. For this purpose, we extend 2D VAEs to
3D and also propose several different input erasing methods
for regularization. Comparing our 2D VAE (2D-None) with
the corresponding 3D version (3D-None) without any input
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Fig. 4 Subject-wise DICES
over lesion size. Lesion size
refers to the number of
annotated pixels for the lesion.
Results for the BraTS 2019 data
set and ATLAS data set are
shown left and right,
respectively. (Top) Comparing
2D VAE with and without
erasing; (Middle) Comparing
3D VAE with and without
erasing; (Bottom) Comparing
2D and 3D VAE with erasing.
Transparent dots refer to the
subject-wise DICES scores.
Solid lines are derived by a
polynomial regression of order
three
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Fig. 5 Impact of data set size on
the UAD performance. We train
our methods with 10%, 20%,
60%, and 100% of the training
data, shown is the average
AUPRC using our two test data
sets (BraTS 2019, ATLAS)
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Table 2 Results for additional
image information considering
the BraTS 2019 data set

Input and erasing Sequence DICED DICES (μ ± σ ) AUPRC

2D-Patch-n T1 27.99 26.58 ± 13.27 22.54

2D-Patch-n T1ce 31.80 29.08 ± 12.77 24.28

3D-Cube-n T1 30.10 28.80 ± 13.74 27.85

3D-Cube-n T1ce 36.67 33.40 ± 14.55 31.12

DICED represents the metric based on the voxel calculation of an entire data set
DICES (μ ± σ ) refers to the mean and standard deviation of the subject-wise score
All metrics are in percent
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60
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Fig. 6 Slice-wise anomaly detection for our baseline and best perform-
ing methods. Shown is the AUPRC on the combination of our test sets
(BraTS 2019, ATLAS). 2D VAE with and without erasing refers to 2D-
None and 2D-Patch-n, respectively. 3D VAE and without erasing refers
to 3D-None and 3D-Cube-n, respectively

erasing demonstrates that 3D outperforms the 2D version on
two public data sets, especially for the stroke data set with a
DICED of 30.68% for 3D compared to a DICED of 24.72%
for 2D, see Table 1. This highlights that 3D information can
be effectively leveraged by a 3D VAE and agrees with our
expectation that increased spatial context byusing entireMRI
volumes allows for improved anomaly segmentation perfor-
mance.

We also evaluate 2D and 3D input erasing for regular-
ization and train the networks to restore missing image
parts conditioned on its surroundings. Our results in Table
1 demonstrate that input erasing allows for further per-
formance improvements both for our 2D and 3D VAE.
Regarding the method for masking-out a region, previous
works in 2D mostly simply mask our input regions with
zeros [9,16,22]. However, our results demonstrate that using
noise for masking-out a region in the input works slightly
better, indicating that the increased variance during training
is advantageous for regularization.

We also consider different strategies such as erasingmulti-
ple patches or an entire brain side.While all erasing strategies
are beneficial, there is no clear winner between the different
strategies considering our results on both data sets. Further-
more, one could argue that our input erasing leads to brain
anatomy that deviates fromnormal,which is in slight contrast
to the idea of only providing healthy brain anatomy as input.
However, our ground-truth image that is used for optimiza-
tion remains unmodified; hence, our networks are enforced

to solve an in-painting task for abnormal regions. Our results
demonstrate that this leads to an improved segmentation per-
formance.

To gain further insights, we study the performance with
respect to the lesion size in Fig. 4.While providing consistent
performance improvements, erasing turns out be especially
valuable for larger lesions. Thismight be attributed to the fact
thatwith erasing, networks are enforced to solve an additional
in-painting task, making them suited to handle inputs with
large anomalies. Also, our results in Fig. 4 further emphasize
the value of 3D information, especially for smaller lesions
considering the ATLAS data set.

Next, we study the effect of the training data set size.
As expected, the data set size has a notable impact on the
performance, see Fig. 5. It stands out that our 3D methods
trained with only 20% of the training data even outperform
the 2D methods trained with 100% of the data. This indi-
cates that increasing the spatial context during training is
even more important than increasing the data set size. This
is an interesting observation, as one could assume that due
to the increased number of parameters, 3D-Models require
more data compared to their 2D-counterparts. We believe
that this counter-intuitive behavior could explained by the
increased complexity of the task and the bigger input image
for the 3D approach. The learning task of the 3D model can
be considered more complex since an entire volume must be
processed and reconstructed at once, while 2D is only trained
to process a single slice. Also, for 3D the input image is big-
ger (volume) compared to 2D (single slice). Note, if the input
image is bigger, then a network might need more expressive
power to capture the patterns in the input image, as shown in
[20].

Considering our erasing approach and the data set size
suggests that solving the additional in-painting task needs
sufficient training data to provide effective regularization.
However, with only 60% of the training data our models with
our regularization approach lead to higher performance than
a model without regularization trained with the full dataset.
We argue this demonstrates the effectiveness of our regular-
ization approach, as less data are required to achieve similar
or better performance compared to a model without regular-
ization. Still, increasing the data set size is valuable as the
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Fig. 7 Four example test cases using our best performing method 3D-
Cube-n. From left to right: Input image, output image, difference image,
heat-mapdifference image, and ground truth segmentation. Thefirst two

lines contain examples from theBraTS 2019 data set and the two bottom
lines contain examples from the ATLAS data set

performance for ourmodelwith erasing continues to improve
with a larger training data set.

Comparing our novel 3Dmethods with input erasing with
the previous 2D approach demonstrates a relative perfor-
mance improvement of 12.31% and 32.20% on the BraTS
2019 and ATLAS data set, respectively. A comparable work
evaluating UAD performance on the same ATLAS data set
achieves a mean subject-wise DICE score of 12± 12% with
their best performing method [8]. Notably, this 2Dmethod is
restoration-based and involves significantly increased com-
putational complexity. Our 3D approach with input erasing

leads to a mean subject-wise DICE score of 15.53±17.30%,
improving the UAD state-of-the-art on this data set. This
demonstrates the effectiveness of our approach. Comparing
our results on the BraTS 2019 data set with other works
that utilize additional image information, e.g., T2-weighted
data [8,22], highlights the advantage of additional image
information. Similar, we observe immediate performance
improvement for our methods when evaluated on T1ce-
weighted data, despite the domain adaption from T1, see
Table 2. Also, other studies that use multiple MRI sequences
[4,5] achieve higher performance metrics; however, a direct
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comparison is difficult due to different data sets and set-
tings. Notably, multipleMRI sequences are beneficial but not
always available [1,10], imposing an additional challenge on
UAD.

Putting UAD into perspective with supervised methods
demonstrates that segmentation performance is in a moder-
ate range. Considering the BRATS 2019 data set, supervised
methods achieve a mean subject-wise DICE score of around
90% [11] utilizing all available MRI sequences (T1, T1ce,
T2, FLAIR). Considering the ATLAS data set, supervised
methods achievemean subject-wiseDICE scores in the range
of 32.92% up to 53.49% [10]. While UAD is notably more
challenging than supervised segmentation, the overall UAD
performance on these supervised data sets might also be lim-
ited, as the annotation focuses on pre-specified lesions and
not all anomalies in the images might be labeled. This is also
demonstrated in Fig. 7, where, e.g., the segmentation focuses
only on the tumor and not on all brain regions that deviate
from normal. Also, the domain shifts between different data
sets might be challenging, which is also pointed out in pre-
vious works [4,22].

Considering these challenges, we also evaluate our meth-
ods with respect to slice-wise anomaly detection, see Fig. 6.
Here, we observe significantly increased performance com-
pared to segmentation with an AUPRC of 71.2% for our best
performing method. The slice-wise detection performance
motivates that UAD can be helpful in red-flagging suspicious
MRI data in clinical routine, especially with T1-weighted
MRI data. Also, we believe that unsupervised segmentation
gives additional cues to the reader as to where an anomaly
may be located and thus, it is helpful to quickly localize
a potential anomaly or lesion. For this, our work consists
a valuable contribution by demonstrating the benefits and
emphasizing the use of 3D-models with spatial erasing for
voxel-wise and slice-wise UAD.

For future work, our findings could be extended to
more complex deep learning methods for UAD, such as
GANs [18]. In particular, combining our 3D approach with
restoration-basedmethods [8] might improve the overall per-
formance. However, this approach also leads to significantly
increased runtime and computational efforts, e.g., a restora-
tion accumulates quickly to multiple minutes for a single
MRI [4], which is particularly challenging for clinical rou-
tine.

Conclusion

We study the task of unsupervised anomaly segmentation in
brainMRI and propose to use entire 3DMRI volumes instead
of single 2D MRI slices by extending 2D VAEs to 3D. Also,
we study and extend the concept of input erasing and propose
several different 3D input erasing strategies for regulariza-

tion. Overall, our results demonstrate that using increased
spatial context by using entire MRI volumes combined with
3D deep learning clearly outperforms 2D methods. Also,
we observe that combining deep learning with spatial input
erasing allows for further performance improvements and
reduces the requirement for large training data sets.
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