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Abstract
Purpose In Talbot–Lau X-ray phase contrast imaging, the measured phase value depends on the position of the object in
the measurement setup. When imaging large objects, this may lead to inhomogeneous phase contributions within the object.
These inhomogeneities introduce artifacts in tomographic reconstructions of the object.
Methods In this work, we compare recently proposed approaches to correct such reconstruction artifacts. We compare an
iterative reconstruction algorithm, a known operator network and a U-net. The methods are qualitatively and quantitatively
compared on the Shepp–Logan phantom and on the anatomy of a human abdomen. We also perform a dedicated experiment
on the noise behavior of the methods.
Results All methods were able to reduce the specific artifacts in the reconstructions for the simulated and virtual real anatomy
data. The results show method-specific residual errors that are indicative for the inherently different correction approaches.
While all methods were able to correct the artifacts, we report a different noise behavior.
Conclusion The iterative reconstruction performs very well, but at the cost of a high runtime. The known operator network
shows consistently a very competitive performance. The U-net performs slightly worse, but has the benefit that it is a general-
purpose network that does not require special application knowledge.

Keywords X-ray phase contrast imaging · Talbot–Lau interferometer · computed tomography · sensitivity correction · known
operator learning

Introduction

X-ray phase contrast imaging provides high soft tissue con-
trast [16]. Similar to the attenuation, the phase shift can be
modeled as a line integral along the X-ray beam. For thin
samples, the measured phase shift φ is given as [15]

φ = −k
∫ t

0
δ(l) dl , (1)

where k is the wave number and δ is the phase shift along
the line l. The Talbot–Lau interferometer (TLI) is a setup to
obtain phase contrast images. Compared to other phase con-
trast measurement setups, the TLI has relatively mild system
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requirements and high robustness,whichmakes it suitable for
several medical applications [8,16] The TLI setup consists of
three gratings placed between theX-ray source and the detec-
tor, as shown in Fig. 1. The source grating splits the beam
into multiple slit sources, which makes it possible to oper-
ate the TLI with clinical X-ray sources. The phase grating
imprints a phase modulation on to the incoming wave front.
The analyzer grating samples the resulting fringe pattern. The
phase signal is differential, obtained from a comparison of
the fringe patterns with and without an object in the beam.
The differential phase signal in a TLI is measured as

ϕ = λd

p2

∂φ

∂t
, (2)

where λ is the wave length, d the distance between gratings
G1 and G2, and p2 is the period of the analyzer grating. The
measurement direction t is orthogonal to the grating bars,
i.e., horizontally on the detector for vertical gratings.

Engelhard et al. [5] reported that the magnification of an
object influences the strength of the differential phase signal
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Fig. 1 Schematic setup of a Talbot–Lau interferometer. l the distance
between G0 and G1. d the distance between G1 and G2. r the distance
between G1 and a location in the object

in a TLI. They derived this effect theoretically and verified
it experimentally. Donath et al. [4] confirmed those findings.
They extended the theoretical formulation to an inverse setup
and also verified the results experimentally. Thus, the mea-
sured phase shift ϕ varies with the relative distance of the
object to the gratings. We denote this effect as a position-
dependent sensitivity function S(r)

S(r) = 2π
d

p2
·
{
1 + r/l, for objects between G0 and G1

1 − r/d, for objects between G1 and G2
,

(3)

where r is the distance between the object position and G1, l
is the distance betweenG0 andG1, and d is again the distance
betweenG1 andG2 [2]. These distances are also annotated in
Fig. 1. A special case occurs for imagingwith a parallel beam
and with the object between G0 and G1. Then, l converges
toward infinity and the sensitivity is constant.

Conversely, for a fan beam or an object between G1 and
G2, the position-dependent sensitivity must to be considered
to correctly determine the total phase shift. The phase shift
of thin objects can be corrected with a global scaling factor.
However, such a global correction is not applicable to thicker
objects. In this case, the signal strength varies within the
object. More specifically, the signal strength increases for
voxels that are closer to G1, even if the whole object consists
of only one single material.

In particular, the position-dependent sensitivity compli-
cates the tomographic reconstruction of the differential
phase: Standard X-ray tomography is built on the basic
assumption that the reconstructed quantity is constant under
all projections [14]. However, if a thick object is imaged in a
TLI tomography setup, one object location exhibits a stronger
signal under rotation angles where the location is closer to
G1, and a weaker signal under rotation angles where the
location is further away from G1.

One possibility to address this issue is to use the position-
dependent sensitivity from Eqn. 3 in a position- and angle-
dependent function for tomography [2,7]. Chabior were first
to investigate this task [2]. They formulated the 2-D projec-

tion at a tomographic angle θ and the detector position t as

ϕ(θ, t) = ∂

∂t

∫ ∞

−∞
S(r) δ(t, r) dr , (4)

where δ(t, r) encodes the object phase. The integration is
performed along the ray direction r, which depends on the
tomographic angle θ . They found a special scanning pro-
tocol, in which filtered back-projection (FBP) provides an
artifact-free reconstruction: If the object is imaged over 2π
with a parallel geometry, the linearity of the sensitivity func-
tion and symmetry of the imaging geometry average out the
variations. The reconstruction shows in this case a homo-
geneous mean sensitivity, such that the sensitivity factor at
the rotation center can be used to correct the reconstruction.
However, when using a rotation angle other than 2π or a
fan-beam geometry, the sensitivity function leads to severe
reconstruction artifacts when using FBP. This is illustrated
in Fig. 2. It shows a phantom on the left and a standard FBP
reconstruction after projection with the sensitivity function
from Eqn. 3 scaled between 0.1 and 0.9. The line plot on the
right shows the reconstruction error, which results from the
angle- and position-dependent sensitivity function.

Felsner et al. theoretically investigated a tomographic
weighting function that depends on the voxel position
and tomographic angle [7]. They described the recon-
struction problem by integrating a weighting matrix that
encodes the position- and angle-dependent function within
the filtered back-projection. They show that the solution
is ill-conditioned, such that there exists no exact solu-
tion. However, they derived an iterative reconstruction that
approximates the ground truth very well.

Recently, Roser et al. have investigated a data-driven
approach to the reconstruction task [19]. They propose a deep
neural network that optimizes the reconstruction parame-
ters for an included filtered back-projection (FBP) algorithm.
They show on simulated data that this approach can greatly
improve the reconstruction. Additionally, the results are
interpretable, since the filtered back-projection is imple-
mented as a known, fixed operator in the network.

While the approaches by Felsner et al. and Roser et al. are
of very different nature, they are both specially designed to
correct the position- and angle-dependent sensitivity function
[7,19]. Both approaches achieve high-quality reconstructions
with few artifacts. However, the corrections are only evalu-
ated on simple phantoms and do not compare the results to
general-purpose state-of-the-art methods like U-net. In this
work, we aim to close this gap. We compare the specialized
methods by Felsner et al. [7], Roser et al. [19], and a general-
purpose U-net [18] on a challenging set of test data.
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Fig. 2 Ground-truth (GT)
reconstruction of the
Shepp–Logan phantom and
filtered back-projection (FBP)
reconstruction after a sensitivity
weighted forward projection.
Both images are windowed from
0 to 1 [a.u.]. The line plot
follows the yellow dashed line

(a) (b) (c)

Methods

We first provide an overview over the methods and then
describe the experimental data and protocol.

Correctionmethods

Iterative ReconstructionModel-based iterative reconstruc-
tion is widely used to maintain image quality in cases of
incomplete data. Felsner et al. used an algebraic least-squares
reconstruction formulation [7], i.e.,

min
1

2
||BWx − p||22 , (5)

where B is a block matrix containing the system matrices for
each angle, W is a weighting matrix encoding the position-
and angle-dependent factors, x is the vector representation
of the object and p is the vector containing the projections.
The optimization is done via gradient descent with the update
rule

x′ = x + pi − biWx

biWW�b�
i

W�b�
i . (6)

Here, pi is one projection, biWx is the weighted forward
projection, pi − biWx is the gradient, and biWW�b�

i is a
normalization factor that contains the sumof squaredweights
along the ray. The optimization is regularized with Total
Variation (TV) [22] to enable correct reconstructions for non-
complete or distorteddata onpiecewise constant objects. This
regularizer selects the image with sparsest gradient magni-
tude for the given data fidelity, which usually leads to very
smooth images.

Known Operator Network The known operator the-
ory learns efficient solutions for mathematical models with
operands that are inefficient or unknown [13]. This allows
interpretability of the learned quantity and possible insights
into analytic solutions. Roser et al. model with known oper-
ators the sensitivity ramp in phase contrast imaging, by
learning the inverse weighted Radon transform [19]. In the
resulting neural network is each step of the pipeline modeled

as a layer. This network optimizes the filters and the weight-
ing layers. The input of the method are projections in form
of a sinogram that contains line integrals of weighted phase
values. The output is a corrected reconstruction. The pipeline
is shown in Fig. 3.

U-Net Network Many ill-posed inverse problems highly
benefit from general-purpose neural networks. The U-net is
arguably the most popular multi-resolution neural network
in medical image processing [18]. Previously, it was shown
that theU-net is able to reduce reconstruction artifacts [9,11].
In this work, we train and use a standard U-net to correct
the artifacts in the reconstruction domain. We use the non-
corrected reconstruction as an input and train the network to
correct the artifacts.

Experiments

We use a parallel beam geometry and define the sensitivity
function as a linear ramp between 0.1 and 0.9 over a distance
of 400 voxels. The trajectory uses 400 projections over an
angular range of π . The data have a size of 400×400 voxels
with a spacing of 1 mm. The detector consists of 400 pixels
with a spacing of 1 mm. To directly use the iterative recon-
struction and known operator network, we use direct (line
integral) data instead of differential data.

As baseline method, we only scale the reconstruction by
the sensitivity value at the iso-center, which does not remove
inhomogeneous artifacts. The iterative reconstruction uses
500 iterations with an adaptive step size that starts at 0.75.
The Lagrangian multiplier to control the amount of regular-
ization started at 0.5 and could be adapted in the optimization
process. The volume is initialized with the uncorrected FBP
reconstruction. For the training of both neural networks, 1000
synthetic phantoms were used. Each phantom consists of a
superposition of up to six randomly sized binary blobs with
a gray value between zero and one. Figure 4 shows example
inputs. For training and validation we use a 800/200 split.
For the known operator network, we used the pipeline as
described above. The filter in the known operator approach
is initialized with the Ram–Lak filter [17]. The normaliz-
ing weights are initialized with ones, and the voxel weights
are initialized with the mean sensitivity value. We use 100
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Fig. 3 Known operator network by Roser et al. [19]. The network takes weighted projections as input. The output is a corrected reconstruction.
The layers marked with a box are trainable

Fig. 4 Example ground-truth data for training the neural network

epochs and optimize the parameters with respect to the mean
absolute error (MAE) using stochastic gradient descent with
adaptive moments [12] with a learning rate of 10−4. For the
U-net architecture, we use a depth of 4 and 16 initial feature
channels. Each block consist of two convolutional layerswith
a kernel size of 3×3 and padding to preserve the dimensions
of the featuremap. Themean absolute error (MAE) is used as
loss. The network is trained for 100 epochs with the Adam
optimizer [12] using a learning rate of 10−4. We stopped
the training when the validation loss did not improve for 20
epochs.

The methods are compared with three experiments. First,
we perform a general comparison and in-depth evaluation
on a simple phantom. Second, we evaluate the influence of
different noise levels. Third, we evaluate the methods on a
real human abdomen CT scan. These data originate from
attenuation rather that a phase shift, but the real anatomical
structures provide a much more realistic phantom for com-
paring the correction methods.

General comparison We evaluate all three methods on
the Shepp–Logan phantom [21]. We show the reconstruc-
tions, the difference images to the ground truth and line plots.
We also quantitatively evaluate the reconstructions quantita-
tively with the mean absolute error (MAE) and structural
similarity (SSIM). The metrics are evaluated on the region
of interest shown in Fig. 5a.

Noise analysis To evaluate the methods on noisy data, we
simulate Poisson noise corresponding to photon counts rang-
ing from 10000 to 100000 on the sensitivity-weighted line
integral data. We show the reconstructions for the lowest
and highest photon counts, and evaluate the reconstructions
quantitatively with the peak signal-to-noise ratio (PSNR)
and mean average percentage error (MAPE) compared to
the noise-free ground truth.

Real Data To evaluate the behavior of the algorithms on
real data, we used an human abdomen CT scan from the
Cancer Imaging Archive [3,20]. The data are normalized and
resampled, and the sensitivity function is applied as described
above. We show the reconstructed images and the difference
image to the ground truth.

Results

General comparison Figure 5 shows the reconstructions and
difference images for all methods. All reconstructions are
close to the ground truth. However, the difference images in
the second row exhibit method-specific artifacts. The differ-
ence image for themean correction shows a gradient from left
to right. The difference image for the iterative reconstruction
shows constant deviations per material. The reconstruction
with the known operator network mainly shows streaking
artifacts outside the object. The corrected reconstructionwith
a U-net clearly shows patch-wise artifacts.

Figure 6 shows the line plots for the reconstructions of all
methods along the yellow dashed line in Fig. 5a. The mean
corrected version (red, leftmost) shows corrupted gray val-
ues. The signal is too low on the first half and too high on
the second half. In particular, the ramp artifact in the object
center is prominent. The line plot through the iterative recon-
struction (blue, left) shows a good reconstruction. Although
the main peaks are slightly too low, the result is smoother
than the ground truth but very close to it. The reconstruction
with the known operator network (green, right) is also close
to the ground truth, including the heights of the peaks. How-
ever, some artifacts are visible inside the object and the ramp
artifact in the center is not fully corrected. The reconstruction
with the U-net (yellow, rightmost) is generally good, but the
left peak is slightly underestimated, the object structure in
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Fig. 5 Reconstruction and
difference images for all
methods. The reconstructions
are windowed from 0 to 1.2
[a.u]. The difference images are
windowed from −0.25 to 0.25
[a.u.] R
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Fig. 6 Line plots along the
yellow dashed line in 5a. The
ground truth is shown in black
for each subplot
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Table 1 Mean absolute error (MAE) and structural similarity (SSIM)
for all methods. We evaluated the reconstruction in the circular region
of interest marked in red in Fig. 5a

Error FBP mean Iterative known op u-net

MAE 0.0748 0.0213 0.0080 0.0109 0.0171

SSIM 0.6438 0.9781 0.9953 0.9934 0.9837

the center shows a ramp artifact toward higher gray values,
and the values on the right part of the object are slightly too
high.

The mean absolute error (MAE) and structural similar-
ity (SSIM) index are reported in Table 1. Both metrics are
considerably improved by all correction methods. The iter-
ative reconstruction exhibits the lowest MAE, followed by
the known operator network and U-net. The structural sim-
ilarity (SSIM) for all three methods is in a similar order of
magnitude: The SSIM for the iterative and known operator
reconstruction differs only in the third digit after the decimal
point, U-net performs is slightly worse.

Noise analysis Figure 7 shows the reconstructions for the
lowest and highest noise level in the test set. All methods
are able to reconstruct the object at all noise levels. How-
ever, the details in the magnified area show slightly different
noise characteristics. The iterative reconstruction results in
a smooth object, which is expected and mainly due to the
TV regularization. The known operator and U-net exhibit
similarly strong noise as the ground-truth reconstruction.
Interestingly, the noise with the U-net correction is finer
compared to the reconstruction with the known operator net-

work, while the noise in the known operator reconstructions
is closer to the noisy ground truth.

Figure 8 shows the quantitative evaluation of the noise
levels for PSNR (left) and MAPE (right). The PSNR of the
ground truth (black) increaseswith the number of photons.At
a photon count of 10000, The PSNRofmean corrected recon-
struction equals the ground truth at 10000 photons, but the
curve flattens with increasing photon counts. The PSNR of
the iterative reconstruction is almost constant and higher than
the ground-truth value for all noise levels, since the smooth-
ing TV regularization fits very well to the smooth phantom.
The PSNR for the reconstructions with the known operator
network and the U-net are very similar. The U-net achieves
a slightly higher PSNR for high noise, the known opera-
tor reconstruction performs slightly better for low noise. The
MAPE of the ground truth decreases with an increasing num-
ber of photons. The mean corrected reconstruction follows
the ground truth, but with consistently higher MAPE. The
MAPE of the iterative reconstruction achieves the lowest
error for all noise levels. Theknownoperator network slightly
outperforms the ground truth, the mean correction and U-net
for high noise at 10000 photons. For higher photon counts,
it is slightly worse than the ground truth. The U-net recon-
struction is close to the ground truth for high noise at 10000
photons. Interestingly, for low noise (e.g., at 100000 pho-
tons), U-net performs worst with the highest MAPE.

Real Anatomy Data The real abdomen CT scan features
farmore complex structures than the Shepp–Logan phantom.
The reconstructions for all methods and respective differ-
ence images are shown in Fig. 9. The ground truth is shown
in Fig. 9a. The mean correction shows the same gradient
artifacts as for the simulated data. The iterative reconstruc-
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(a) GT (b) Mean (c) Iterative (d) Known op (e) U-net

Fig. 7 Reconstructions of all methods with noise. Top row: photon count of 1,00,000. Bottom row: photon count of 10,000. All reconstructions are
windowed between 0 and 1 [a.u.]

Fig. 8 Peak signal-to-noise
ratio (PSNR) and mean absolute
percentage error (MAPE) for all
methods over different noise
levels
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Fig. 9 Reconstruction and
difference images for all
methods on a real human scan.
The reconstructions are
windowed from 0 to 1 [a.u.]. The
difference images are windowed
from −0.1 to 0.1 [a.u.] R
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tion somewhat oversmooths due to the influence of the TV
regularizer. All coarse objects structures are visible, the fine
structures are smoothed out. This is also visible in the dif-
ference image. The reconstruction with the known operator
network is very close to the ground truth, and the main arti-
facts are only outside the object. The reconstruction with the
U-net introduces again patch artifacts, and it removes some
fine structures.Differences are visible, especially in the struc-
tures on the top left.

Discussion

The experiments showed that the corrected reconstructions of
all threemethods are superior to the baselinemean correction.
Interestingly, we found that the residual errors are specific
for each of the methods. In the mean corrected reconstruc-
tion, the values are systematically underestimated on one side
and overestimated on the other side. This leads to the typ-
ical ramp artifact in the object center that can be observed
in reconstruction with weighted projections. The direction
of the ramp depends on the chosen trajectory. The iterative
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reconstruction clearly benefits from the TV regularization.
The line plot shows an even smoother result than the ground
truth, and the difference images confirm that the smooth-
ing operator has significant impact. However, the iterative
reconstruction has slight difficulties to correct high phase
values at the object boundary. The difference image for the
reconstruction with the known operator network shows only
small deviations within the object and major artifacts out-
side the object. The line plot shows that the reconstruction
has a similar noise level as the ground truth. In the object
center, the ramp artifact is reduced but visible. The artifact
correctionwith the general-purposeU-net architectureworks
overall quite well. The difference image and the line plot
show uneven patch-wise artifacts. While the high intensity
values on the left side of the object are underestimated, the
right side of the object is largely overestimated. Interestingly,
the deviation from the ground truth is even larger than with
the mean correction. However, overall the correction with a
U-net is overall preferable to the mean weight correction.

Furthermore,wequalitatively andquantitatively evaluated
the impact of noise on the reconstructions. The reconstruction
with the iterative method is very smooth. Reconstructions
with the known operator network on noisy data are slightly
worse than the ground truth, but consistently better than the
mean corrected reconstruction. Only the U-net exhibits at
low noise levels a slightly worse MAPE than the baseline.

The experiments on real data show that the methods also
operate well on complex anatomic structures. We are sur-
prised that all methods worked so well without changing any
experimental parameters or training data. The artifacts agree
with the artifacts on the Shepp–Logan phantom for all meth-
ods.

Overall, all three methods have specific advantages and
disadvantages. U-net achieved a somewhat lower perfor-
mance, but since it is a standard neural network architecture,
it is the easiest to setup and run on this task. Also, additional
skip connections for residual learning [11] or augmenta-
tion on noisy projections [9] can potentially improve the
performance. Hence, the U-net is a good first choice with-
out specialized tools. The known operator network provides
an interpretable learning method with overall strong results.
Integrating additional prior knowledge as in [1] could poten-
tially further improve the reconstruction quality. The iterative
reconstruction provides overall smooth, visually appeal-
ing reconstructions. The amount of regularization can be
adjusted with the Lagrangian multiplier λ. However, besides
the danger of oversmoothing, it must optimize the objec-
tive function for each new data, leading to run times that are
orders of magnitude higher than for the neural networks.

Future work needs to investigate the adaption of the
reconstruction algorithms to work on differential data. Alter-
natively, the differential TLI measurements could first be
integrated to obtain projection images [8]. However, sharp

edges that result in an infinite differential phase signal affect
the quantitativeness of the differential phase signal and the
integration [10,23]. Also, noise in the differential data might
influence the integration. Furthermore, the observed noise
in the integrated images will depend on the used algorithm
for the integration. Additionally, the currently limited grating
size in a TLI might lead to truncation for large objects [6].
Future work should address a joint correction of the weight-
ing function and truncation.

Conclusion

We studied the reconstructions of three inherently different
correction methods for the problem of a weighted projec-
tor. The results showed slight differences in the residual
error in all experiments. The iterative reconstruction has the
advantage of a smoothing TV regularization, but it has the
highest runtime of all methods. The known operator network
achieved very good reconstructions, but slightly amplified
the noise in presence of low noise. The off-the-shelf U-net
architecture worked surprisingly well. It is arguably the sim-
plest to set up, at the expense of a slightly worse overall
performance.
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