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Abstract
Purpose The initial registration of a 3D pre-operative CT model to a 2D laparoscopic video image in augmented reality
systems for liver surgery needs to be fast, intuitive to perform and with minimal interruptions to the surgical intervention.
Several recent methods have focussed on using easily recognisable landmarks across modalities. However, these methods still
need manual annotation or manual alignment. We propose a novel, fully automatic pipeline for 3D–2D global registration in
laparoscopic liver interventions.
Methods Firstly, we train a fully convolutional network for the semantic detection of liver contours in laparoscopic images.
Secondly, we propose a novel contour-based global registration algorithm to estimate the camera pose without any manual
input during surgery. The contours used are the anterior ridge and the silhouette of the liver.
Results We show excellent generalisation of the semantic contour detection on test data from 8 clinical cases. In quantitative
experiments, the proposed contour-based registration can successfully estimate a global alignment with as little as 30% of the
liver surface, a visibility ratio which is characteristic of laparoscopic interventions. Moreover, the proposed pipeline showed
very promising results in clinical data from 5 laparoscopic interventions.
Conclusions Our proposed automatic global registration could make augmented reality systems more intuitive and usable
for surgeons and easier to translate to operating rooms. Yet, as the liver is deformed significantly during surgery, it will be
very beneficial to incorporate deformation into our method for more accurate registration.

Keywords Deep learning · Semantic contour detection · Image guidance · Augmented reality · Laparoscopy · Automatic
registration

Introduction

Augmented reality (AR) systems in laparoscopic liver surgery
could help surgeons identify internal anatomical structures
more clearly, especially in complex interventions. Such guid-
ance can potentially reduce the risk of complications for the
patients through safer decisions, reduced surgery time and
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less blood loss. An essential component in an AR system is
the registration of the pre-operative 3D liver model and the
intra-operative scene in the initial stage of the intervention.

Such registration presents several challenges since the
liver undergoes significant deformation due to pneumoperi-
toneum, it is only partially visible and it lacks reliable features
[8]. Most registration algorithms can be split into two stages.
Firstly, a rough global rigid transform is estimated w.r.t.
the laparoscopic scene. Secondly, local alignment methods
improve the results further.Multiple automatic solutions have
been proposed for local alignment, assuming a good initiali-
sation [2,18,20]. For liver surgery, global alignment is usually
achieved manually [21,27,29] or in a semi-automatic way
requiring annotations from the clinician during the interven-
tion [16,26].

An automatic registration pipeline would remove any user
induced variability. It could also be repeatedly employed in
order to re-initialise the registration in case of occlusion (i.e.
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due to instruments, blood) without any additional load on the
clinician. Global alignment is currently the main bottleneck
in automatic long-term AR systems since subsequent local
registration or tracking relies on this initial stage.

While stereo laparoscopes are used mostly in robotic sys-
tems, monocular scopes aremuchmore commonly available.
As such, the rest of the paper focusses on formulating a gen-
erally applicable approach, using a single 2D laparoscopic
image.

Related works

3D–2D liver registration methods require correspon-
dences to be found between a 3D model and a 2D image
of the patient’s anatomy. The main sources of failure in the
alignment estimation stem from the deformation and the par-
tial visibility of the liver in the laparoscopic image. To tackle
these challenges, prior information can be used to constrain
the optimisation. The liver boundary [2], the anterior ridge
and falciform ligament [15,16,20,26] have been proposed
as landmarks for constraints. Currently, these techniques
need manual annotation during surgery in order to obtain
the liver contours [2,15,20], matching endpoints [15,20] or
manual global alignment [2]. While the annotation of the
liver boundary could be automated using deep learning [13],
a rigid initialisation of the camera pose is still needed, which
is currently achieved manually [2]. Separating the organ
boundary into the anterior ridge and silhouette can lead to
automating the registration since they can be matched to the
corresponding contours on the 3D model [15], if a large part
of both contours is visible in the image. Several approaches
have been validated in synthetic experiments for partial data
assuming 70–100% of the liver boundary is visible [2,20].
While such visibility ratios are achievable in open surgery
[1], having an unobstructed large view of both liver lobes
in laparoscopic intervention requires the cutting of the falci-
form ligament [15,20]. However, laparoscopic images from
interventions where the falciform ligament is present show
only approximately 30–50% of the liver boundary. For such
cases, manual alignment is currently the only reliable option.

An alternative with promising results in the computer
vision research consists of using deep learning techniques to
deal with the complexity of 3D–2D registration. Such tech-
niques have been proposed in the medical field for clinical
applications where standardised datasets can be collected
easily, i.e. MRI, CT, OCT scans [3]. In image guidance,
such 3D–2D registration datasets are not currently available
and they are extremely difficult to build. As each surgery
is slightly different in pathology, organ appearance, organ
geometry, patient age, type of intervention, a large dataset
with multiple examples for each task is needed. Since liver
surgeries are especially challenging in terms of inter-subject

variability, small datasets will result in the trained network
being incapable of generalising well to new examples. For
instance, a liver segmentation network trained on approxi-
mately 2000 images across 13 interventions reported poor
generalisation with cases that vary too much from the train-
ing data [13].

While collecting more data requires extensive manual
work and data collection from multiple surgeries, a solu-
tion could be provided by training networks with synthetic
data. Several approaches propose to use synthetic data for
CNN-based deformation estimation from partial surfaces in
3D–3D registration [5,23]. However, building a completely
simulated dataset for 3D–2D registration is extremely chal-
lenging, due to the domain gap between synthetic and real
clinical data.

Recent studies propose style transfer to enhance the real-
ism of surgical simulations [17,22]. Specifically, a synthetic
dataset of photorealistic simulations of laparoscopic liver
surgery is publicly available1 [22]. Such large synthetic
datasets are essential for advancing the current state of the
art, but the issue of automatic 3D–2D registration is still not
solved.

Alternatively, deep learning techniques can be used for
solving well-defined tasks as part of a pipeline, such as con-
tour detection. In the computer vision community, a real-time
3D eyelid tracking from semantic edges approach is most
similar to ourwork [30]. They use a CNN to detect four edges
of the eyelid, namely the double-fold, upper eyelid, lower
eyelid and lower boundary of the bulge. These detected con-
tours are then used to reconstruct the 3D shape and motion
of the eyelids with increased realistic detail. While some
similarities do exist, their method assumes the whole eye is
visible at all times and explicitly uses the intersection points
at the endpoints of the eyelid in the registration formulation.
In laparoscopic liver surgery, such an approach would not
be possible due to the partial visibility of the organ. More-
over, the variety of liver appearance and illumination fall-off
due to the light source being close to the surface make the
laparoscopic environment more complex. François et al. [11]
propose a CNN-based framework to detect occluding con-
tour of uterus. Occluding contours refer to boundary regions
where the uterus occludes other structures and they are thus
a subset of the uterus’s silhouette. This is in contrast to our
method which detects the ridge as well as silhouette. This
difference arises from the anatomical difference between the
liver and uterus where the liver has a distinctive ridge region,
but the uterus has a general spherical shape without outstand-
ing features.

1 http://opencas.dkfz.de/image2image/.
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Fig. 1 An overview of the
proposed pre-operative and
intra-operative stages for a
global 3D–2D registration.
Colour coding:
silhouette—yellow, anterior
ridge—blue

Contributions

We propose an automatic global 3D–2D registration solu-
tion for general laparoscopic liver interventions. This work
follows from a body of work utilising contours for 3D–2D
liver registration [15,16,20,26], to specifically address full
automation.We have developed an automated contour detec-
tion algorithm that requires no manual annotations, followed
by registration. This enables fully automatic 3D–2D regis-
tration. A concurrent work [11] attempts the same goal for
the surgery on the uterus.

Concretely, our contributions are as follows: Firstly, a
semantic edge detection network is adapted to distinguish
between different types of liver contours. Secondly, a tra-
ditional pose estimation technique is extended to match
corresponding contours, which are only partially visible. We
perform quantitative and qualitative experiments to assess
the feasibility of the proposed method, which show promis-
ing results.

Methods

Anoverviewof the proposedworkflow is shown inFig. 1. The
3D surface and internal anatomical structures are segmented
via a commercial service.2 We also take advantage of no time
limit in the pre-operative stage to pre-compute the anterior
ridge and the top surface of the liver from the segmented liver
mesh. These steps could be easily automated as well [24], but
we chose to do it manually due to the variety in liver surface
geometry when there are abnormalities present. Moreover,

2 www.visiblepatient.com.

the intrinsic parameters of the laparoscopic camera can also
be estimated pre-operatively [32].

During surgery, there are two main components after the
laparoscopic image to be registered is selected: (i) seman-
tic liver contour detection; (ii) global 3D–2D contour-based
registration. We propose to use two types of liver contours:
the anterior ridge and silhouette (Fig. 1). The former is an
anatomical landmark which remains fixed on the organ but
can become occluded due to blood, fat or overlapping organs
such as the bowel. Note that it is easy to move the liver to
reveal the ridge when the bowel overlaps. The latter changes
depending on the camera position and organ deformation.
When used together, these contours can provide complemen-
tary constraints to the pose optimisation [15], which becomes
essential under partial visibility.

Semantic contour detection network

In the computer vision research community, the most recent
approaches proposed for semantic edge detection use CNNs
to achieve state-of-the-art results. We adapt CASENet [31]
to predict silhouette and ridge contours of the liver, as well as
background (i.e. non-liver pixels), from laparoscopic images.
In addition, we pre-train the network on around 100,000 syn-
thetic laparoscopic images because the size of our clinical
dataset is very small, i.e. 133 images. This greatly helps
address the overfitting on a small dataset as well as improve
the generalisation capability of the network.

Once the anterior ridge and silhouette are predicted on
the input laparoscopic image, they need to be matched to the
corresponding contours on the pre-operative 3D liver model.
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3D–2D contour-based registration

Solutions for camera pose estimation from known 3D–
2D correspondences can be obtained using well-established
computer vision techniques such as Perspective-n-Point
(PnP) [19]. RandomSampleConsensus (RANSAC) has been
proposed to deal with outliers in the correspondence set [10].
A combined PnP-RANSAC approach has been used success-
fully in multiple AR applications due to its computational
efficiency and robustness [19].

Algorithm 1:Global contour-based 3D–2D registration
Input: Pre-op 3D liver model M ,

canonical liver transform TC ,

2D predicted contours p2Dlabel ,

intrinsic matrix K

Parameters: number of initial perturbations m,

maximum iterations for refinement imax ,

maximum iterations for RANSAC jmax ,

minimum contours distance dmin ,

decay rate for refinement decayrate
Result: Global rigid transformation Tglobal

1 i = 0;

2 decay = 1.0;

3 Tnext = TC ;

4 for i < imax do

5 {Toptim} = {};
6 {TC

init }m= GenerateInitalGuesses(M, Tnext ,m, decay);

7 {Tinit }m = CanonicalToOrig({TC
init }m , T−1

C );

8 for each Tinit ∈ {Tinit }m do

9 p3Dlabel = Estimate3DVisibleContours(M, Tinit );

10 p̃2Dlabel = ProjectContours2Image(p3Dlabel , Tinit , K );

11 { p̃2Dlabel , p2Dlabel } = EstimCorresp( p̃2Dlabel , p
2D
label );

12 Toptim = EstimPose(M, { p̃2Dlabel , p2Dlabel }, K , jmax , dmin);

13 {Toptim} ← add Toptim ;

14 Tnext ← save Toptim ∈ {Toptim} with minimum distance error;

15 decay = decay ∗ decayrate;

16 i = i + 1;

17 Tglobal = Tnext ;

Algorithm 1 describes our proposed contour-based PnP-
RANSAC extension. A transformation of the liver to a
canonical space can be pre-computed (TC ), employing the
common assumption that the laparoscopic camera will be
inserted through a trocar placed approximately around the
belly button of the patient [15]. Let the camera follow the
right-handed coordinate system with the positive x- and y-
axes pointing right and down, while the positive z-axis is

pointing forwards.A range ofm initial camera poses is gener-
ated in the canonical space {TC

init }m by random perturbations
of rotation around the x-, y- and z-axes (∈ N (0, 20◦)) of
the camera (line 6), which makes the registration robust to
smaller areas of the liver being visible. These initial trans-
formation guesses {TC

init }m are brought back to the original
space of the 3D liver model (line 7). For each initial trans-
formation guess (line 8), the visible contours are estimated
on the 3D model (line 9) for each label, i.e. anterior ridge
and silhouette. Firstly, the visible surface Mvis is estimated
from a given camera position (similar to [2]) by selecting
the 3D liver model faces whose normal vector’s direction is
within ± 90◦ of the vector from the centre of the face to the
camera position. Secondly, the visible surface Mvis is inter-
sected with the top liver surface Mtop. This step ensures all
the points on the posterior side of the liver are excluded, since
they are generally not visible in the initial stages of a laparo-
scopic intervention. Thirdly, the final 3D ridge points are
obtained from the visible surface by p3Dridge = Mvis ∩ Mridge

where Mridge is the pre-computed ridge surface. The rea-
son why we separate the ridge points from Mvis is that in
some cases the top liver surface Mtop does not fully contain
Mridge, i.e. the ridge line sticks out ofMtop, depending on the
annotation. Therefore, we perform p3Dridge = Mvis ∩Mridge to
remove the unwanted portion of the ridge line for consistency.
Lastly, the silhouette p3Dsilhouette is estimated as all the bound-
ary points of the visible surfaceMvis that do not belong to the
ridge.Once the visible 3D ridge and silhouette points are esti-
mated, they can be projected on top of the 2D image, using
the known intrinsic parameters (line 10). Correspondences
between the projected and predicted contours are computed
in the image space by searching for the closest neighbour and
similar normals (less than 30◦ difference). The threshold used
for normal similarity is to filter out correspondences where
the projected and predicted contour shapes look different,
even if the corresponding points are close in position, due
to the deformation existing on the liver in the laparoscopic
image [2]. As such, the function EstimCorresp on line 11
outputs a set of corresponding points { p̃2Dlabel , p2Dlabel} where
the points p̃2Dlabel belong to the projected 3D contours and the
points p2Dlabel to the predicted contours on the laparoscopic
image.

The PnP-RANSAC algorithm is then employed to find the
optimal camera pose Toptim for the current iteration (line 12).
The PnP-RANSAC workflow consists of randomly select-
ing a minimal sample of 4 pairs from the correspondence
set { p̃2Dlabel , p2Dlabel} at each iteration j . PnP is then employed
to estimate the camera pose Tk for the current minimal set
of point pairs. We use the P3P technique proposed in [12].
In order to measure the agreement of the whole set of cor-
respondences with the current estimate, a distance error is
computed between the projected 3D contours (transformed
using Tk) and the 2D contours. The chosen error is the modi-
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fiedHausdorff distance [9]which enforces the corresponding
contours to be similar. Concretely, the modified Hausdorff
distance between sets X ,Y ⊂ R

n×2 is computed as

hd(X ,Y)

= max{mean{d(x,Y)|x ∈ X },mean{d(y,X )|y ∈ Y}}
(1)

where d(a,B) is the minimum Euclidean distance between
an element a ∈ R

n×2 and a set B ⊂ R
n×2. We compute the

modified Hausdorff distance separately for the ridges and
the silhouettes as we empirically found that computing the
distances separately yields better registration than computing
the distance together, i.e. the ridge and silhouette contours
are regarded as one contour. The final distance is the sum of
distances of ridge and silhouette contours. Then, the optimal
camera pose is the one with the minimum distance.

On top of this PnP-RANSAC loop (lines 8–13), we intro-
duce another loop for refinement lasting imax iterations
(line 4). This is to refine the estimated transformation further
by starting a PnP-RANSAC loop with the optimal trans-
formation from the previous iteration. After finishing the
refinement loop, the global 3D–2D transformation Tglobal
is obtained.

The U-Net-based contour extraction and PnP-RANSAC-
based registration are implemented within SmartLiver [27,
29], a closed source application for image guided liver
surgery built on top of the open-source SciKit-Surgery
libraries [28].

Experiments

Semantic contour detection

The training clinical dataset (C) consists of 133 images
extracted from two laparoscopic interventions. The source
videos were recorded using NifTK’s [6] IGIDataSources
plugin. The data were annotated by a clinical fellow where
polygonal lines were drawn on top of each contour type. The
pre-training dataset (S) consists of approximately 100,000
synthetic laparoscopic images generated using [22].

Two training scenarios are considered, where the weights
for the CASENet model are first initialised from ResNet50
pre-trained on the ImageNet dataset (I) [7]: (i) I + C:
CASENet is trained on the clinical dataset (C); (ii) I + S
+ C: CASENet is pre-trained on the synthetic dataset (S),
then fine-tuned on the clinical dataset (C). Data augmen-
tation is used to make the network invariant to brightness
changes, contrast, rotations, translations, scale changes and
shear. When pre-training CASENet on the synthetic dataset,
we use as data augmentation only brightness changes and

contrast in order to make the predictions more insensitive to
different liver appearances. The Adam optimiser [14] was
used for training the network with learning rate 1 · e−4, and
the training lasts for 300 epochs. A checkpoint is saved at the
lowest validation loss, which is used to generate the results
presented here. Train/validation set split is 80%/20%, respec-
tively. The computation time for prediction on an image
(using an NVIDIA GeForce GTX 1060 card) is around
140 milliseconds which is acceptable for use during surgery.
We evaluate the performance of the proposed model on 3
test datasets: daVinci—9 images from a da Vinci interven-
tion; lap1—9 images from 6 clinical cases; lap2—12 images
from 1 clinical case. Figure 2 shows a selection of images
from each dataset with the ground truth annotations and the
predictions obtained using the two training scenarios.

Three accuracy measures are used for evaluating the net-
work performance: precision P (out of all the predicted
contour pixels, how many are correctly labelled?), recall R
(how many of the ground truth contour pixels are predicted
as correct?) and F1 score [4] which is defined as

F1 = 2 · P · R
P + R + ε

(2)

where ε is a small number to avoid the denominator being
zero. Table 1 summarises the results for each dataset in the
two training scenarios using modified CASENet (ours) and
a baseline method, U-Net. Figure 3 shows quantitative maps
with true positives (green), false positives (blue) and false
negatives (red) for some of the predictions in the test datasets,
along with their associated F1 scores.

Quantitative experiments

The registration performance depends on the uniqueness of
the constraints imposed by the contours. Since the charac-
teristics of the contours (such as the curvature) vary greatly
depending on the viewing angle, both partial visibility and
the liver region need to be taken into consideration.

We adapt the pre-operative simulation framework pro-
posed in [25] for quantitatively analysing the performance of
the proposed 3D–2D contour-based registration. Originally,
the method in [25] was used for pre-operatively computing a
data acquisition protocol in which the surgeon would acquire
specific liver surface patches which would ultimately lead to
an efficient 3D–3D registration. Their approach is appealing
because it provides a way to analyse which specific camera
views would result in a good registration.

The simulation framework loads a 3D liver model from a
clinical case. In our synthetic experiments, 25 random cam-
era positions are simulated on a sphere around the liver. The
camera orientation is perturbed further in order for the liver
not to be always at the centre of the image. For each camera, a
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Fig. 2 Qualitative results of ridge (blue) and silhouette (yellow) prediction. a Original images from the specified test dataset; b ground truth
annotations; c predictions when CASENet was trained only on a clinical dataset (I+C); d predictions when CASENet was trained on synthetic and
clinical dataset (I+S+C)

Table 1 Performance of
CASENet compared against a
baseline, U-Net, on the test
datasets measured by F1 score
(F1), recall (R) and precision (P)

Dataset daVinci lap1 lap2
Training I+C I+S+C I+C I+S+C I+C I+S+C

U-Net F1 Ridge 0.37 0.43 0.37 0.41 0.24 0.54

Silhouette 0.62 0.73 0.74 0.75 0.75 0.74

R Ridge 0.38 0.54 0.35 0.48 0.15 0.44

Silhouette 0.74 0.84 0.73 0.82 0.71 0.83

P Ridge 0.39 0.38 0.43 0.37 0.72 0.70

Silhouette 0.55 0.64 0.77 0.70 0.81 0.69

CASENet (ours) F1 Ridge 0.39 0.46 0.41 0.45 0.29 0.42

Silhouette 0.61 0.75 0.74 0.76 0.73 0.77

R Ridge 0.39 0.46 0.42 0.51 0.20 0.32

Silhouette 0.57 0.79 0.74 0.82 0.68 0.77

P Ridge 0.43 0.48 0.44 0.45 0.63 0.66

Silhouette 0.70 0.71 0.75 0.72 0.82 0.79

The numbers represent the average over all the images in each dataset. Higher numbers are better. (Bold
numbers are when our method performs better than the baseline.) Notice that using the synthetic dataset
(I+S+C) boosts the performance

synthetic image is obtained by estimating the visible contours
and projecting them to 2D. For each camera position, the pro-
posed contour-based registration is run 10 times between the
synthetic image and the 3D liver surface, in order to account
for the sources of randomness (lines 6 and 12 in Algorithm
1). Figure 4 shows the results. The liver visibility was com-
puted as a ratio between the visible front liver vertices over
the total vertices of the front liver surface. The root-mean-
square error (RMSE) is measured between the ground truth

vertex positions of the 3D liver surface and the estimated
vertices obtained after the registration process.

On top of analysing the robustness to partial visibility,
such a pre-operative planning simulation can provide a clear
protocol to clinicians with regard to which portions of the
liver provide sufficient constraints for the registration.

The registration takes less than 1 min which makes our
method suitable for intra-operative use.
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Fig. 3 Example of F1 score maps for the ridge (F1_r) and silhouette
(F1_s) where green = true positives, blue = false positives and red =
false negatives. a PredictionswhenCASENetwas trained on the clinical
dataset (I + C); b predictions when CASENet was pre-trained on the
synthetic dataset and fine-tuned on the clinical one (I+S+C)

Qualitative experiments

We perform experiments on real clinical data to assess the
feasibility of our method in a laparoscopic liver intervention.
Thedataset used to validate the proposed registration pipeline
is composed of 14 images from 5 retrospective clinical cases.
Figure 5 illustrates the registration results where the 3D liver
surface is overlaid on the input image. Without ground truth
datasets for registration, we provide errors computed on the
contours as well as on the vertices of the liver model against
manually registered liver model. For the contours, the mod-
ified Hausdorff distance between the ground truth contours
and the projected contours of the 3D liver model is com-
puted. For RMSE, we manually register the liver model on
each image and compute RMSE between all the vertices of
the manually registered liver and those of the liver regis-
tered by our method. These results show the potential of our
proposed registration pipeline on challenging laparoscopic
images.

Fig. 4 The registration errors (RMSEs) on the synthetic dataset along
with the modified Hausdorff distances against visibility of the liver. The
modifiedHausdorff distance iswhat ourmethodminimises for. For each
trial, a synthetic image is generated from a random camera pose. Then,
a 3D liver surface is registered to the image 10 times to compute the
median and standard deviation (std) of the modified Hausdorff distance
and RMSE. The area of each circle/diamond is proportional to the std.

(Largest area corresponds to std of 151.30 for RMSEand 51.81 formod-
ifiedHausdorff distance.) The initialRMSEs, computed at the beginning
of each registration, throughout the experiments are around 250 mm.
Note that the failed registrations with high RMSEs (> 45) have less
than 30% (0.30 in the figure) liver, ridge or silhouette visibility (ridge
and silhouette visibilities not shown in the figure)
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Fig. 5 Results of the proposed
global registration pipeline on
5 retrospective clinical cases.
The first row for each case
shows the input laparoscopic
image and second row the
registered 3D liver model
overlaid on the image. The
numbers on the bottom row are
the reprojection error in pixels
(on the left) and RMSE in
millimetre (on the right). The
reprojection error is computed
by the modified Hausdorff
distance between the ground
truth contours and the projected
contours of the 3D liver model.
RMSE is computed against the
manually registered liver
model’s vertices

Discussion

Semantic contour detection

Table 1 shows how the use of synthetic dataset improves
contour prediction (I+S+C). Compared to U-Net (baseline),
CASENet (ours) performs better on our task and datasets.
However, it is worth noting that the choice of the network
architecturemight not be themost critical factor for the better
performance and other networks such as U-Net may suffice.

Figure 2 shows an excellent generalisation across livers
with significant changes in appearance (i.e. columns 4, 6,
7) and across different image acquisition methods. Notice
how pre-training improves how much of the contour gets
detected, especially on the last column which presents a case
never encountered in the training set C.

Quantitative experiments

Figure 4 shows that the proposed registration method can
cope with severe occlusion of the liver surface, thus occlu-
sion of ridge and silhouette. It manages to estimate a good
initial alignment (within several cm [18])with as little as 30%
visible front liver surface. Since laparoscopic images gener-
ally capture approximately 30–50% of the front liver surface,
these results are highly encouraging. Notice that the failed
registrations with high RMSEs (> 45) have less than 30%
(0.3 in the figure) visibility in either liver, ridge or silhouette.
(Ridge and silhouette visibilities are not shown.)

Qualitative experiments

The proposed pipeline was successful in estimating a global
alignment on all 5 clinical cases in the registration dataset.
Figure 5 shows the registration results where the 3D liver
surface is overlaid on each input image. As observed in the
figure, the proposed pipeline achieves acceptable registration
for the initial registration purpose on challenging laparo-
scopic imageswith various liver geometries, appearances and
viewpoints. Still, it can be observed that the deformable reg-
istration will be highly beneficial to achieve more accurate
registration as the intra-operative liver shape is significantly
deformed from the pre-operative one.

Conclusion

We propose a novel fully automatic pipeline to globally reg-
ister a pre-operative 3Dmodel to a single laparoscopic image
during liver interventions. The first stage involves a semantic
liver contour detection network which estimates the location
of the anterior ridge and the silhouette. These contours are
then matched with the ones on the pre-operative 3D model
in order to estimate a global rigid registration.

Validations of the proposed pipeline were conducted on
synthetic and clinical data. With the synthetic data, we show
that the proposed registration can estimate a global alignment
with as little as 30% of the liver surface visible by extending
a patient-specific pre-operative analysis. Also, the proposed
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registration pipeline was successfully applied in 5 retrospec-
tive clinical cases and it was robust to the occasional errors
in the contour prediction stage.

We hope the proposed automatic global registration
pipeline can improve augmented reality systems in laparo-
scopic interventions to be more efficient and intuitive for
surgeons.
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