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Abstract 
Purpose Surgical skill assessment using computerized methods is considered to be a 
promising direction in objective performance evaluation and expert training. In a typical 
architecture for computerized skill assessment, a classification system is asked to assign 
a query action to a predefined category that determines the surgical skill level. Since such 
systems are still trained by manual, potentially inconsistent annotations, an attempt to 
categorize the skill level can be biased by potentially scarce or skew training data.  
Methods We approach the skill assessment problem as a pairwise ranking task where 
we compare two input actions to identify better surgical performance. We propose a 
model that takes two kinematic motion data acquired from robot-assisted surgery sensors 
and report the probability of a query sample having a better skill than a reference one. 
The model is an attention-enhanced Siamese Long Short-Term Memory Network fed by 
piecewise aggregate approximation of kinematic data. 
Results The proposed model can achieve higher accuracy than existing models for pair-
wise ranking in a common dataset. It can also outperform existing regression models 
when applied in their experimental setup. The model is further shown to be accurate in 
individual progress monitoring with a new dataset, which will serve as a strong baseline. 
Conclusion This relative assessment approach may overcome the limitations of having 
consistent annotations to define skill levels and provide a more interpretable means for 
objective skill assessment. Moreover, the model allows monitoring the skill development 
of individuals by comparing two activities at different time points. 

 

1 Introduction 

Assessment of surgical skills may have three main objectives: (1) choosing appropriate 
surgeons for a specific operation, (2) examining current performance of candidate sur-
geons before credentialing, and (3) monitoring the progress of surgeon’s skills during 
training activities. These assessment activities are usually performed manually in an 
operation room under supervision and feedback of expert surgeons. Manual assessment 
of surgical skills by individuals may lead to misinterpretations of the skill performance 
and hence lead to suboptimal training and organization of the surgical activities. Some 
structured methods such as Objective Structured Assessment of Technical Skills 
(OSATS [1]) have been employed to minimize the effect of the subjective nature of 
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expert intervention. However, the process needs improvements to increase its efficiency 
since the application of these techniques still require significant effort of multiple ex-
perts over a long time period [2]. Considering the fact that evaluation of the candidates 
by senior surgeons has certain cost, there is an increasing need for alternative or com-
plementary computerized assessment systems. 

We have recently witnessed a significant attempt to computerize surgical skill as-
sessment using machine learning algorithms [3]. Robot-assisted surgery helps this ef-
fort by providing data in different forms, such as kinematic sensor measurements de-
rived from robot arms and video recording of a surgical action performed by an opera-
tor. An overview of recent methods for computerized skill assessment using machine 
learning is given in Table 1. 

In one of the earliest studies, kinematic data collected during robot-assisted surgery 
were used to predict the expertise level of the surgeon [4]. A set of hand-crafted features 
were extracted from surgery action and fed into three different supervised classifiers 
(k-Nearest Neighbour, Support Vector Machine (SVM) and Linear Regression) for 
classification of surgeons into either “expert”, “intermediate” or “novice” levels. The 
authors employed several kinematic features including task completion time, path 
length, depth perception, speed, motion smoothness, curvature, turning angle and tor-
tuosity to build the model. In a similar work [5], the authors used different time and 
frequency domain features of kinematic data, which were obtained through sequential 
motion texture, discrete Fourier transform, discrete cosine transform and approximate 
entropy analysis to train a linear SVM model. In addition to classification, i.e. assigning 
objects into predefined skill labels, they also considered to predict the level of skills by 
running the SVM in a regression setup.  Wang and Fey [6] proposed a deep learning 
architecture based on Convolutional Neural Networks (CNN) that can automatically 
extract relevant features and classify the expertise level using a fully-connected layer 
at the end. Similar architectures were used by Fawas et al. [7] and Zhang et al. [8] with 
slight modifications in layer organizations. Funke et al. [9] used video recordings of 
surgery actions instead of motion kinematics to feed a 3D CNN with the same objective 
(ternary classification). CNN was combined with Long Short-Term Memory (LSTM) 
model to analyze kinetic data for classification [10]. These studies reported very high 
classification accuracy, up to 100% for some surgery actions, in a public benchmark 
dataset for human gesture and skill assessment from surgical activity, called JIGSAWS 
[11]. The performance of conventional machine learning methods with hand-crafted 
features was recently re-evaluated in a larger in-house dataset [14], where they deter-
mined that an average accuracy of 91.5% can be achieved in binary classification of 
skill. The LSTM model was shown to be accurate in binary skill classification (“expert” 
or “novice”) from kinematic signals in a private dataset [12]. The ability of CNN ap-
plied on video recordings was further assessed in another study with an in-house dataset 
[13]. However, they reported that the accuracy diminished from 86% to 70% when they 
increased the number of skill categories from two to five.  

 The major problem with these performance assessment systems is their limited abil-
ity to predict a fixed number of predefined, possibly inconsistent, categories for skill 
levels. As reported by Lavanchy et al. [13], they are unable to model skill levels be-
tween these pre-defined categories. Recalling the three main objectives for surgical skill 
assessment, discussed at the beginning of the text, i.e. (1) choosing appropriate surgeon, 
(2) examining current performance of surgeons, and (3) monitoring the progress of a 
surgeon, the classification approach may support partially the second objective. How-
ever, it fails to provide an accurate solution for first and third tasks since the number of 



categories representing skill levels is not sufficient to model precise comparison of ac-
tions. Regression can be considered as a possible solution in general. However, in small 
dataset scenarios, where continuous labels representing skill levels are too sparse, it is 
not easy to provide generalizable models for exact value predictions. Two previous ap-
proaches for this [5, 7] indeed reported very low correlations between predicted and 
actual skill levels.  

The skill assessment problem was recently considered as a task of learning to rank 
video recordings [15, 16] instead of assigning them into predefined labels. These stud-
ies aimed to build generic models with wide applicability of skill determination in any 
domain, but algorithms were also tested for surgical skill assessment with the JIGSAW 
dataset. First, the study introduced a two-stream Temporal Segment Network to capture 
both the type and quality of actions [16]. Second, the study integrated an attention pool-
ing and temporal aggregation mechanism to a two-stream CNN model [16]. Skill as-
sessments through video recordings have two main limitations. First, video data pro-
cessing is time and resource inefficient, which makes it difficult to run the algorithms 
in conventional personal computers. Second, video can record the actions in two di-
mensions, if only one camera is used. This is unfortunate since tracking of trajectories 
and velocities can only be measured in two dimensions and important information of 
surgical skills is lost, if the third dimension is lacking.  

 It has been shown in many studies that the use of motion characteristics obtained 
from kinematic sensors is promising to be used in medical practice. In the earlier study 
of Lin et al., [21], it was shown that the tool motion of an experienced surgeon has more 
clearly defined features than that of less experienced surgeon while performing the 
same task using da Vinci Surgical System. Fard et al. [4] showed that the kinematic 
data from the same system is able to provide direct measures of motions, such as path 
length, depth perception, speed, motion smoothness, curvature, turning angle and tor-
tuosity, which are highly representative for modeling surgeon's ability. According to a 
recent systematic literature review by Castillo-Sagura et al., [22], tool motion data has 
been used in 59 of 101 papers identified for objective assessment of surgical skills. 
Common indicators used in these studies are organized into five types; position, veloc-
ity, acceleration, orientation and force. Experimental findings by many studies have 
shown that all these indicators can be captured by kinematic sensors [23], Table 1. It is 
even possible to evaluate the smooth motion that is normally violated by jerky motion, 
tremor, and hesitant motion by incorporating the effect of motion in both time and fre-
quency domains [24]. 

In our earlier study, we offered to use three-dimensional kinematic data instead of 
two dimensional motion data from one camera video recording setup to develop a 
model for rank-based assessment of skills for robot-assisted surgery to overcome cur-
rent limitations [17]. The preliminary version of the model was based on a Siamese 
LSTM network fed by two multivariate time-series kinematic datasets to be compared. 
The model does not use any direct features, but instead, it uses raw motion signals to 
extract deep features to represent pairwise ranks. 

In this study, we extend our previous work [17] in three ways. First, the model is 
significantly enhanced by adapting an attention mechanism to the LSTM; and a pro-
cessing step, which calculates the Piecewise Aggregate Approximation (PAA) of input 
kinematic data to ease parameter optimization of the whole Siamese network. We show 
that these enhancements significantly improve the prediction accuracy. Second, we of-
fer an approach that uses pairwise ranks of a query action against a set of reference 
actions as features to train a regression model. This allows the pairwise ranking model 
to be turned into an exact skill prediction model when needed. Third, we demonstrate 



that our model can serve as solution for the third objective of skill assessment, i.e. mon-
itoring of surgeon’s own progress. To the best of our knowledge, this is the first study 
that reports an empirical result in that respect. 

The new model was first tested on the JIGSAWS dataset to compare it with previous 
methods. According to the results, our model can significantly improve the state-of-
the-art in both ranking and regression tasks for computerized surgical skill assessments. 
Further, the model was evaluated for monitoring tasks in a larger and more recent da-
taset, called ROSMA [18]. The results show that our model can achieve reasonably 
good accuracy. 

2 Methods 

2.1 Pairwise ranking model 

The surgical skill assessment problem is considered as a pairwise comparison task. 
We compare a query surgical action (m) with a reference action (n) in order to infer if 
the query is performed better than the reference. Semantically, the reference may refer 
to a previous action of the same surgeon to monitor the skill improvement, or to an 
action performed by another surgeon to make a skill comparison for better assignment 
to a surgery. While the model is formally the same, it can be used in any semantic model 
based on how the model parameters are trained from available data.  

The kinematic data of two actions with length K and L are denoted by xm = 
𝑥𝑥1𝑚𝑚𝑥𝑥2𝑚𝑚 … 𝑥𝑥𝐾𝐾𝑚𝑚 and xn=𝑥𝑥1𝑛𝑛𝑥𝑥2𝑛𝑛 … 𝑥𝑥𝐿𝐿𝑛𝑛 respectively, 𝑥𝑥𝑖𝑖𝑚𝑚 refers to a set of kinematics measure-
ments at time i. A kinematic measurement can be position, angular velocity, gripper 
angle or any other motion-specific identifier of a particular hand at a given time point.  

Rank-based assessment can be defined as determining which surgical action is per-
formed with better skill. The output of the model is referred by pmn, which is interpreted 
as the probability of the query surgical action being performed better than the reference;  
 

𝑝𝑝𝑚𝑚𝑚𝑚 = �
1          𝑚𝑚 performs better than 𝑛𝑛                
0.5       𝑚𝑚 and 𝑛𝑛 show equal performance
0           𝑛𝑛 performs better than 𝑚𝑚               

                                 (1) 

  
Next, the goal is to train a model that minimizes the probabilistic loss in a set of 

samples annotated by experts. The model assumes that the annotations of the exact skill 
levels are not provided but all pairs are labelled by their pairwise rank for their surgical 
skills by experts. 

The general framework that we introduce is based on a Siamese network of attention-
enhanced LSTM integrated with a probabilistic ranking layer. The framework involves 
an essential pre-processing step for kinematic input based on PAA. (Fig.1).  
 

2.2 Piecewise aggregation of kinematic data 

The action model based on attention-enhanced LSTM has an excessive number of pa-
rameters to be optimized in training phase (See 2.3). On the other hand, the kinematic 
data in our problem has a high dimensionality as opposed to the small number of sam-
ples in available datasets. This will lead to slow and insufficient learning of the model 
parameters in the proposed framework. To overcome this issue, we offer a pre-pro-



cessing step based on PAA to reduce the dimensionality of the input signal while pre-
serving the content that is representative for the skill level. PAA approximates a one-
dimensional time-series kinematic signal x of length p into 𝑎𝑎 of arbitrary length q<p, 
where each ai is calculated by; 
 

𝒂𝒂𝒊𝒊 =
𝒒𝒒
𝒑𝒑
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𝒋𝒋=𝒑𝒑𝒒𝒒(𝒊𝒊−𝟏𝟏)+𝟏𝟏
 

 

 
 

  (2) 

This approximation results with the reduction of the dimensionality of the kinematic 
signal by splitting it into equal-sized segments which are calculated by taking the aver-
age values in each segment. We apply PAA for each motion variable independently to 
get a smoother multi-variate signal at the input of the Siamese network. 

2.3 Modeling action: attention-enhanced LSTM 

Both query and reference actions are pre-processed using PAA and given into different 
inputs of Siamese network. The pre-processed kinematic data, given in the form of 
multi-variate time-series, is used to feed an LSTM network at each stream: 

 
ℎ𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (ℎ𝑡𝑡 − 1,𝑎𝑎𝑡𝑡)                                              (3) 

 
where at and ht are the input vectors at time t, where the superscript defining the stream 
is ignored. The LSTM model is parameterized by output, input and forget gates, con-
trolling the information flow within the recursive operation. Given 𝑖𝑖𝑡𝑡 represents input 
gate, 𝑓𝑓𝑡𝑡 represents forget gate and 𝑜𝑜𝑡𝑡 represents the output gate at time point t, the fol-
lowing equations formally describe the LSTM function: 
 

𝑖𝑖𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑖𝑖 𝑎𝑎𝑡𝑡 +  𝑈𝑈𝑖𝑖 ℎ𝑡𝑡−1 +  𝑏𝑏𝑖𝑖 ) (4) 
 𝑓𝑓𝑡𝑡 =  𝜎𝜎�𝑊𝑊𝑓𝑓 𝑎𝑎𝑡𝑡 +  𝑈𝑈𝑓𝑓 ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓 � (5) 
𝑜𝑜𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑜𝑜 𝑎𝑎𝑡𝑡 +  𝑈𝑈𝑜𝑜 ℎ𝑡𝑡−1 +  𝑏𝑏𝑜𝑜 ) (6) 
𝑐̃𝑐𝑡𝑡 =  tanh(𝑊𝑊𝑐𝑐 𝑎𝑎𝑡𝑡 +  𝑈𝑈𝑐𝑐 ℎ𝑡𝑡−1 +  𝑏𝑏𝑐𝑐 ) (7) 

𝑐𝑐𝑡𝑡 =   𝜎𝜎 (𝑖𝑖𝑡𝑡 ° 𝑐̃𝑐𝑡𝑡 +  𝑓𝑓𝑡𝑡 ° 𝑐𝑐𝑡𝑡−1 ) (8) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ° tanh(𝑐𝑐𝑡𝑡) (9) 

 
Here, 𝑐𝑐𝑡𝑡 is cell state and 𝑐̃𝑐𝑡𝑡 represents a candidate for cell state at t. 𝑊𝑊𝑥𝑥 ,𝑈𝑈𝑥𝑥 and 𝑏𝑏𝑥𝑥 are 

weights and biases for gate x respectively. Finally, 𝜎𝜎 refers to sigmoid function. At 
every time step t, LSTM outputs a hidden vector ht that reflects the skill representation 
of the kinematic motion at time point t. In our application, we used a bidirectional ver-
sion of LSTM [20] to allow the modelling of two-way temporal dependencies in ac-
tions. 

The LSTM layer is enhanced by an attention mechanism, which helps maximizing 
the contribution of the relevant encoding context vectors and minimize those of irrele-
vant vectors while building the decoding context [25]. The attention layer that we im-
plement uses an attention function to assign weight to each hidden state produced by 
the LSTM layer. The weighted distribution of hidden states is used as a new represen-
tation of input signals. We calculate an attention function for each hidden state ht, 
t=1,…,T, as follows; 

 



         𝑢𝑢𝑡𝑡 = tanh (𝑊𝑊𝑠𝑠ℎ𝑖𝑖 + 𝑏𝑏)           (10) 
 

where Ws is an attention hidden weight matrix and b is a bias parameter. From this 
function, softmax weights are calculated by; 
 

𝛼𝛼𝑡𝑡 =
exp(𝑢𝑢𝑡𝑡)

∑ exp (𝑢𝑢𝑡𝑡′)𝑇𝑇
𝑡𝑡′=1

 
(11) 

 
 
These are used to produce a context vector c, which will be forwarded to the next layer: 
 

𝑐𝑐 = � ℎ𝑡𝑡𝛼𝛼𝑡𝑡
𝑇𝑇

𝑡𝑡=1
 

(12) 

 
The attention-enhanced LSTM layer is followed by a fully-connected layer fed by the 
vector of skill representation, cm for any of the input m. This layer transforms skill rep-
resentations of query and reference actions into scalars, sm and sn, to make them explic-
itly comparable. 

2.4 Ranking loss 

We adapt a probabilistic loss function for model learning, which was originally intro-
duced to learn how to rank text objects using a gradient descent approach [19]. A prob-
abilistic rank layer is built such that skill equivalence is taken into account. We denote 
the posterior probability distribution Pij=P(i›j), where › refers to the skill superiority of 
i to j and let 𝑃𝑃�𝑖𝑖𝑖𝑖 be the desired target values for those posteriors, such that  𝑃𝑃�𝑖𝑖𝑖𝑖  ∊ 
{1,0.5,0}. The goal is then to minimize the distance between these two entities. We use 
a cross entropy cost function, Cij to measure the closeness between two probability dis-
tributions, given by; 

 
𝐶𝐶𝑖𝑖𝑖𝑖  =  − 𝑃𝑃�𝑖𝑖𝑖𝑖 𝑜𝑜𝑖𝑖𝑖𝑖 +  log(1 + 𝑒𝑒𝑜𝑜𝑖𝑖𝑖𝑖)  (13) 

 
where oij=(si – sj), i.e. is the difference between rank orders of i and j, Then, the Siamese 
network parameters are inferred by minimizing this loss for all (i, j) trial pairs in the 
training data.  

3 Results and Discussion 

3.1 Data  

The performance of the entire model was evaluated in two different publicly available 
surgery data sets obtained from the da Vinci robot systems. They can provide both 
three-dimensional kinematic data and stereo video of surgery tasks. The kinematic data 
contain variables of both master and slave's left and right manipulators. The kinematic 
data for each sample is considered as a multi-variate time series, in which each variable 
corresponds to a different motion-specific parameter. 

JIGSAW [11], is a common benchmark dataset in the field. It has surgical data col-
lected from eight subjects with different skill levels performing three different surgical 
tasks. The tasks are ‘throw suturing’, ‘needle passing’, and ‘knot tying’ performed on 



benchtop training phantoms. The data consist of 76 motion variables collected at 30 Hz, 
including tooltip positions and orientation, linear and rotational velocities, and gripper 
angle. A trial is a part of the data set that corresponds to one subject performing one 
instance of a specific task. Each subject is categorized by a fixed expertise level but 
each trial may have a different skill score. This score is annotated using the global rating 
score.  

ROSMA [18] was recently released to facilitate the research in the field. It contains 
more samples and longer actions compared with JIGSAWS. Twelve subjects operated 
the da Vinci Research Kit to perform three different surgery tasks: post and sleeve, pea 
on a peg and wire chaser. The twelve subjects attempted each of the surgical task 4-6 
different times to a total of 207 trials. The obtained dataset includes all the kinematic 
and dynamic information provided by the da Vinci robot (both master and slave side). 
A board of human experts defined an objective performance scale by introducing pen-
alty points for each surgery task. Then, each trial (subject + task) was given a score 
based on penalty points and completion time in seconds. 

Using JIGSAW and ROSMA data, we performed experiments in three different eval-
uation setups for (1) pairwise ranking of different surgeons, (2) regression to predict 
the exact skill level, and (3) monitoring of individual skill. For setups 1 and 3, we iden-
tified pairwise ranking labels from the exact scores, which were not used in any stage 
of the proposed system later. Therefore, the model mimics the approach where all as-
sessments were performed in a pairwise manner. 

3.2 Evaluation 1: Ranking 

 
We aim first to evaluate our framework in a common setup to justify our own model 
parameters and to benchmark against current state-of-the-art for pairwise ranking. To 
this end, we built an experimental setup that performed a four-fold cross validation to 
evaluate the prediction performance. In this setup, the pairs between ¾ of the surgery 
actions were used for training and the remaining pairs were used for testing. As sug-
gested by [15], the folds were organized such that the test samples included both the 
pairs where neither action has been used in a pair for training and the pairs where the 
other action was used for training in a different pairing. This guarantees that all possible 
pairs were tested after four folds of an experiment. The model performance is discerned 
using pairwise ranking accuracy, which is the percentage of correctly ordered pairs, 
produced by each testing fold. This scheme reports two different accuracy results for 
the cases where the skill equivalence is considered and where it is not. When skill 
equivalence is considered, the accuracy gives the evaluation of ternary ranking perfor-
mance. Otherwise, it evaluates the binary ranking. Table 2 lists the conditions of correct 
ordering of a pair (m,n) in binary and ternary cases. We used Ԑ=0.01 in our evaluations. 
 
We applied our model for each surgery task separately to rank surgery actions by their 
skills. We used the following hyper-parameters for the learning step by a stochastic 
gradient descent algorithm: a learning rate of 0.001, a batch size of 2 and a unit size of 
64 with single hidden layer. Table 3 discerns the accuracy for each task for ternary and 
binary ranking. 
 
Fig. 2 shows Receiver Operating Characteristic (ROC) curve for the proposed model 
when applied for binary pairwise ranking. The ROC curve depicts the performance of 
the model is also discerned when the attention layer is removed. The figure shows that 



the attention enhancement has a significant contribution for the prediction performance. 
Reported ranking accuracy decreased to 74.64% when attention mechanism is elimi-
nated. The contribution PAA step is also shown in the figure. The PAA can boost the 
prediction accuracy around 74%. 
 
Although kinematic data is a multivariate signal with so many sensory measurements, 
it involves two main characteristic channels. One represents the changes in the position 
of the arms and the other refers to varying velocity over time. To understand the con-
tribution of these two characteristics, we run binary ranking experiments with positional 
features and velocity features separately. The experiments revealed that the binary rank-
ing accuracies with positional characteristics are 77.33%, 74.99% and 71.55% for knot 
tying, needle passing and suturing respectively. With velocity characteristics only, the 
model can achieve the accuracies of 71.95%, 67.88% and 66.84% for the same tasks. 
According to the results, positional features contribute more on ranking performance 
for all tasks, however, the integration of velocity features improves the final accuracy.  

The present model was compared with three most relevant studies in the literature. 
Two of them used video data for skill ranking and tested their methods in the same 
dataset. The third study is our own preliminary model on kinematic data presented in 
[17]. Video-based methods work for only binary ranking cases since their loss function 
didn’t support the evaluation of equivalence in skills. They did not give accuracies sep-
arately for each task, but rather reported overall performance in surgery dataset. To 
make a comparison with these methods we ran our model with a subset of the original 
data in which the equally-rated pairs were removed. We calculated the average of ac-
curacies achieved with three surgery types.  

The results are shown in Table 4. Our model can significantly outperform both video-
based methods and the kinematic-based method in terms of pairwise ranking accuracy. 
Moreover, the present model built upon kinematic data reduces the computational re-
source requirements compared to approaches which use video recordings. Doughty et 
al. [15] reported that average running time to train a single fold is 18 hours with 
NVIDIA TITANX GPU, whereas learning a fold in our model is conducted in less than 
an hour with a conventional CPU.  

Table 5 shows the results of the same architecture on ROSMA dataset. This perfor-
mance is also consistent with the results of pairwise rankings that we obtained in first 
dataset, which therefore constitutes a validation of our model in an independent dataset. 

3.3 Evaluation 2: Regression 

 
We argue that the results of pairwise rankings can be used for prediction of the exact 

score of surgical skill. To do this, we offer a method which could translate a list of 
pairwise ranks into an exact score of skill level. The conventional way of regression 
involves extracting a number of features from input signals to represent the sample in 
a machine learning model. Instead, we use an empirical representation where each fea-
ture refers to the pairwise rank between the query sample and another sample from a 
reference list. A pairwise rank here refers to the probability of the query action being 
performed better than the corresponding sample in a reference list. Figure 3 shows the 
results of exact value predictions as the comparison of predicted scores against actual 
scores for each task.  

 
 



In the regression setup, the performance of predictions was evaluated using Spear-
man’s Correlation Coefficient (SCC) between actual and predicted values of skill lev-
els, as suggested by [5, 7], two previous studies that adopted the idea of using regression 
for surgical skill assessment. We followed the same procedure to benchmark our 
method against these methods in the same dataset. SCC is a nonparametric metric that 
evaluates how well the relationship between two distributions can be described by a 
monotonic function. It is calculated by 1 − 6∑𝑑𝑑𝑖𝑖

𝑛𝑛(𝑛𝑛2−1)
 , where di is the difference between 

the ranks of actual and predicted scores and n is the number of samples. Ten-fold cross-
validation was performed to measure the performance. The results are given in Table 
6. This experiment validates that the pairwise ranking model could be turned into a 
regression model with increased performance. Pearson Correlation Coefficient were 
calculated as 0.74, 0.65 and 0.53 for knot tying, needle passing and suturing tasks re-
spectively.  

 
The same framework was run with known pairwise ranks, instead of predicted ranks, 

to justify the idea that the ranks are appropriate features. As titled by “Present method 
(with actual ranks)” in the table, a regression performance can be achieved up to 0.99 
in SCC with our model when we know the actual pairwise ranks. 

 

3.4 Evaluation 3: Monitoring 

Our last objective is to demonstrate that the pairwise ranking model can be used for 
measuring the progress of a candidate surgeon during training activities. This demon-
stration is done using the ROSMA dataset, in which different trials are available from 
the same surgeon on the same surgery task. Instead of a typical k-fold cross-validation, 
we performed a leave-user-out (LUO) procedure for testing. In this procedure, the trials 
of one user (surgeon) are left out for prediction, while all other pairs of the remaining 
trials on the same surgery task are used for training. This was repeated 12 times for 
each surgeon independently. Final, accuracy was determined by averaging the pairwise 
ranking accuracy of these folds. We used the following hyper-parameters for the learn-
ing step by a stochastic gradient descent algorithm: a learning rate of 0.001, a batch size 
of 2 and a unit size of 64 with single hidden layer. According to Table 7, our model 
achieved 70% pairwise ranking accuracy.  

4 Conclusion 

A novel framework for objective skill assessment for robot-assisted surgery using kin-
ematic data was introduced, that shall be used for choosing, credentialing and monitor-
ing of surgeons. The framework including an attention-enhanced Siamese network with 
PAA, and was based on pairwise ranking, instead of classification or regression. The 
model provides a more interpretable and reliable view of skill assessment. The experi-
mental results justify that this model can achieve better accuracy than the state-of-the-
art methods in both ranking and regression setups for surgical skill assessment. Relative 
assessment approach offered in this study may help to overcome the limitations caused 
by inconsistencies in subjective skill grading scales, that are used to train such machine-
learning-based systems. Compared to video-based solutions, the use of kinematic data 
reduces the demands on computational power and is therefore a more applicable alter-
native for the practical implementation in a hospital setting.  



To our knowledge, this is the first study that has considered and experimented the 
task of individual progress monitoring for surgical skills from a computational perspec-
tive. We describe how our model can be used in this context and validate it empirically 
in a recent dataset. The empirical results are promising; these results will serve as a 
strong baseline for future studies in monitoring task. 

One of the limitations of the current study is the fact that reported pairwise rankings 
may violate triangular consistency, which will result in an unidentifiable full ranking 
of all actions. Although this information is not always requested in real - life surgeon 
trainings, considering the consistency in full ranking in the loss function may improve 
the prediction accuracy of the model. This is left for future work. The need for further 
validation of the ROSMA dataset with deeper statistical analysis challenges another 
future study. Another limitation is related to the kinematic data. Although kinematic 
data has an advantage over video data in capturing three-dimensional motion infor-
mation, kinematic data does not contain contextual and semantic information such as 
the smoothness and strength of the movement, and the interaction between tools and 
tissue. Therefore, it may be a future direction to integrate video and kinematic data for 
more accurate ranking predictions with the expense of increasing computational costs. 
As a result, the assessment of surgical skill needs further investigation to perform in an 
objective way. Current progress in kinematic sensor data analysis is considered as a 
powerful complementary tool to manual assessment. It is reasonable to suggest that 
assessing surgical skill requires multiple simultaneous assessments, including machine-
learning-based decision support systems as offered in the present study.  
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TABLES 
 
Table 1. Methods for computerized assessment of surgical skills 
 

Reference Data Type Task Dataset 

Fard et al. [4] Kinematic Classification JIGSAWS 

Fawas et al., [7] Kinematic Classification JIGSAWS 

Wang and Fey, [6] Kinematic Classification JIGSAWS 

Zia and Essa, [5] Kinematic Regression JIGSAWS 

Dougthy et al., [15] Video Ranking JIGSAWS 

Fawas et al., [7] Kinematic Regression JIGSAWS 

Funke et al., [9] Video Classification JIGSAWS 

Nguyen et al., [10] Kinematic Classification JIGSAWS 

Li et al., [16] Video Ranking JIGSAWS 

Ogul et al., [17] Kinematic Ranking JIGSAWS 

Zhang et al., [8] Kinematic Classification JIGSAWS 

Kelly et al., [12] Kinematic Classification In-house 

Lavanchy et al., [13] Video Classification In-house 

Perez-Escamirosa et al., [14] Video Classification In-house 

This study Kinematic 
Ranking 

Regression 
Monitoring 

JIGSAWS, 
ROSMA 

 

 

Table 2. Conditions for correct predictions of pairwise ranking 

Ranking type pmn Ground truth 

Ternary 
≥ 0.5+ Ԑ m›n 
≥ 0.5- Ԑ and < 0.5+ Ԑ m≡n 
< 0.5- Ԑ m‹n 

Binary ≥ 0.5 m›n 
< 0.5 m‹n 

 

 

Table 3. Results of pairwise ranking with the present framework. 

Surgery type Ternary ranking  
(including skill equivalence) 

Binary ranking  
(excluding skill equivalence) 

 Acc Acc 
Knot tying 79.2 83.65 
Needle passing 78.87 82.48 
Suturing 69.29 72.89 
AVG 75.8 79.67 

 
 
  



Table 4. Results of pairwise ranking excluding skill equivalence 

Method Action data Surgery type Accuracy (%) 

Doughty et al. [15] Video - 70.1 
Li et al. [16] Video - 73.1 

Ogul et al. [17] Kinematic 

Knot tying 79.6 
Needle passing 77.5 
Suturing 63.5 
Average 73.5 

Present study Kinematic 

Knot tying 83.7 
Needle passing 82.5 
Suturing 72.9 
Average 79.7 

 

 

Table 5. Results of pairwise ranking with present framework on ROSMA. 

Action Acc 
Wire chaser 75.6 
Post and sleeve 75.1 
Pee on a peg 74.9 
AVG 75.2 

 

 

Table 6. Comparison of regression models for surgical skill assessment in SCC. 

Method Knot tying Needle passing Suturing 

Zia and Essa [5] 0.66 0.45 0.59 

Fawas et al. [7] 0.65 0.57 0.60 

Present method  
(with actual ranks) 0.99 0.99 0.99 

Present method  
(with predicted ranks) 0.71 0.65 0.59 

 

 

Table 7. Performance of our method in individual progress monitoring. 

Action 
Ranking accuracy (%) 

Present method 
Wire chaser 73.9 

Post and sleeve 66.7 
Pee on a peg 69.4 

Average 70.0 
  



FIGURES 
 
Fig.1 General framework for pairwise ranking of surgery actions. 

 
 
 
 

Fig 2. ROC curves for binary ranking for surgical skill assessment for (a) knot tying, (b) needle passing, 
(c) suturing. 
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Fig 3. Scatter plots for predicted skill scores vs actual scores for the tasks of (a) knot tying, (b) needle 
passing, and (c) suturing 
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