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Abstract

Purpose: The success or failure of modern computer-assisted surgery
procedures hinges on the precise six-degree-of-freedom (6DoF) posi-
tion and orientation (pose) estimation of tracked instruments and
tissue. In this paper, we present HMD-EgoPose, a single-shot learning-
based approach to hand and object pose estimation and demon-
strate state-of-the-art performance on a benchmark dataset for
monocular red-green-blue (RGB) 6DoF marker-less hand and sur-
gical instrument pose tracking. Further, we reveal the capacity of
our HMD-EgoPose framework for performant 6DoF pose estima-
tion on a commercially available optical see-through head-mounted
display (OST-HMD) through a low-latency streaming approach.
Methods: Our framework utilized an efficient convolutional neural
network (CNN) backbone for multi-scale feature extraction and a set
of subnetworks to jointly learn the 6DoF pose representation of the
rigid surgical drill instrument and the grasping orientation of the hand
of a user. To make our approach accessible to a commercially avail-
able OST-HMD, the Microsoft HoloLens 2, we created a pipeline for
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low-latency video and data communication with a high-performance
computing workstation capable of optimized network inference.
Results: HMD-EgoPose outperformed current state-of-the-art
approaches on a benchmark dataset for surgical tool pose estimation,
achieving an average tool 3D vertex error of 11.0 mm on real data and
furthering the progress towards a clinically viable marker-free tracking
strategy. Through our low-latency streaming approach, we achieved
a round trip latency of 199.1 ms for pose estimation and augmented
visualization of the tracked model when integrated with the OST-HMD.
Conclusion: Our single-shot learned approach, which optimized 6DoF
pose based on the joint interaction between the hand of a user and a rigid
surgical drill, was robust to occlusion and complex surfaces and improved
on current state-of-the-art approaches to marker-less tool and hand
pose estimation. Further, we presented the feasibility of our approach
for 6DoF object tracking on a commercially available OST-HMD.

Keywords: Single-shot pose estimation, marker-less, deep learning,
head-mounted displays, augmented reality

1 Introduction

Augmented reality (AR) has been described as a potentially disruptive tech-
nology in the medical field due to its ability to enhance task localization and
accuracy via the direct visualization of three-dimensional (3D) augmented
virtual entities [1].

In the context of state-of-the-art AR-led surgical navigation systems, con-
tinuous and precise intraoperative localization of surgical tools with respect to
the patient anatomy is essential to the success of a procedure and safety of the
patient [2]. Recent work has highlighted the potential benefits of optical see-
through head-mounted displays (OST-HMDs) as the visualization medium for
leading surgical navigation, as opposed to the typical monitor-led display of
commercial surgical navigation suites [3]. Optical see-through HMDs allow for
elimination of the visual disconnect present between the information presented
on a monitor and the surgical scene [4] and, using context-aware predictions
from egocentric video, ensure that the current virtual augmentation meets the
current information needs of the user [5].

Recent work has indicated the applicability of OST-HMDs for leading surgi-
cal navigation in laparoscopic and endoscopic procedures [6], neurosurgery [7],
orthopedic surgery [8], targeted cardiac procedures [3], and general surgery [9];
however, there remains the concern of inconsistent intraprocedural instrument
position and orientation (pose) estimation contributing to failed registration
and tracking, and the potential for poor surgical outcomes [10].
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1.1 Related work

Marker-free object pose estimation remains a challenging and important prob-
lem in the context of computer vision and AR. There is a substantial body
of research work with proposed solutions to the problem of 6DoF object pose
recovery; prior strategies have included template-based [11], point-to-point
[12], conventional learning-based [13], and deep learning-based techniques [14].
Deep learning-led techniques are the current best-performing approaches in the
6DoF object pose estimation space and leverage large amounts of high-quality
curated data to learn deep discriminative feature representations [14].

1.1.1 Object pose estimation

We can broadly categorize the deep learning-based 6DoF object pose esti-
mation from monocular red-green-blue (RGB) literature into single-shot and
iterative refinement approaches. Single-shot strategies have used a convolu-
tional neural network (CNN) to predict 6DoF object pose directly without
requiring multiple stages or hypothesis [15–17]. Iterative refinement techniques
have used a CNN to first predict the two-dimensional (2D) locations of the 3D
bounding boxes which define an object in image space, then obtain the 6DoF
object pose via perspective-n-point (PnP) or additional iterative refinement
like random sample consensus (RANSAC) [18–20]. Due to their indirect pose
estimation approach, iterative refinement-based techniques typically report
slower inference times and require more computational power than single-shot
approaches [17].

1.1.2 Hand pose estimation

Prior approaches to hand pose estimation from monocular RGB data have
focused on reducing the complexity of the problem by using a set of predefined
hand poses or simplified hand representations [21]. Several recent strategies
have focused on directly regressing the 3D skeleton joint positions from RGB
input frames [22, 23], where others have used parametric hand models with
shape and pose parameters to describe 3D hand mesh representations [24].

1.1.3 Joint hand and object pose estimation

Due to the nature of hand-object interactions, there are large mutual occlu-
sions which occur during object handling and manipulation, making accurate
pose estimation a difficult problem [25]. In recent work, Hasson et al. built
on the parametric hand model, MANO [24], and used a CNN-based approach
(HandObjectNet) to leverage constraints imposed by typical hand-object inter-
actions and reconstruct hand and object pose from monocular RGB video
[25, 26]. Related to the surgical domain, Hein et al. recorded a monocular
RGB-based benchmark dataset of hand and surgical tool interactions and
investigated the performance and feasibility of different learned approaches to
joint hand and object pose estimation [27].
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1.1.4 Objectives

Our goals were to design a single-shot network which improved on the accu-
racy and speed of prior 6DoF rigid object and hand pose estimation techniques
using monocular RGB data, and to demonstrate the feasibility of an OST-
HMD led tracking experience using a streaming approach with egocentric
video captured from the headset. With HMD-EgoPose, we demonstrated state-
of-the-art performance on a benchmark dataset for surgical drill and hand
pose estimation. Further, we revealed the feasibility of a low-latency stream-
ing approach to send egocentric monocular RGB data to a high-performance
computing workstation for optimized inference and enable 6DoF pose estima-
tion on a commercially available OST-HMD. Our code is publicly available at
https://github.com/doughtmw/hmd-ego-pose.

2 Materials and Methods

To jointly model the interactions between a surgical tool and the hand of a user,
we built our network based on the EfficientDet-D0 [28] backbone for multi-scale
feature extraction and took influence from the EfficientPose [17] architecture
to introduce several subnetworks, which achieved the goal of lightweight single-
shot 6DoF hand and tool pose estimation (Figure 1).

Our selection of EfficientDet-D0 as the base framework for our pose
detection strategy was informed by the results presented in EfficientPose
and our goal of optimal network latency. When compared with EfficientDet-
D0, Bukschat et al. reported a 3.1% accuracy improvement with a larger
EfficientDet-D3 backbone, at the cost of 2.91× slower model inference [17].

Fig. 1 Overview of HMD-EgoPose, the single-shot deep learning-based framework for the
prediction of relevant information regarding the joint hand and surgical tool representation
from a single monocular red-green-blue (RGB) input image frame.

2.1 Joint hand and tool estimation

Using a CNN-based approach, we proposed HMD-EgoPose, an architecture for
6DoF rigid object and hand pose estimation based on learned deep discrim-
inative features about joint hand-and-tool interactions. Our method takes as

https://github.com/doughtmw/hmd-ego-pose
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input monocular RGB video from an egocentric point of view that captures
the hands of a surgeon interacting with a rigid surgical tool and provides an
estimate of 6DoF pose of the surgical tool in frame and the 3D skeleton posi-
tions of hands. As with other marker-free strategies, the 3D geometry of the
tracked object must be known during training, and an identical 3D model must
be used for optimal inference.

2.1.1 Multiscale feature fusion

To address scaling issues common to CNNs, Tan and Le have proposed the
EfficientNet framework, generated from a compound scaling method which
uniformly scales the network width, depth, and resolution based on a fixed
set of scaling coefficients [29]. Building off of the EfficientNet backbone, Tan
et al. introduced EfficientDet, a network which incorporated a weighted bi-
directional feature pyramid network (BiFPN) for multi-scale feature fusion to
effectively represent and process multi-scale features for object detection [28].
To extend the state-of-the-art 2D object detection performance of EfficientDet
into our 3D task, we took influence from the EfficientPose [17] architecture and
introduced a series of subnetworks to estimate the 3D vertex positions of the
hands of a user and 6DoF transformation (rotation and translation) describing
the pose of the object in frame. As in similar object detection frameworks
like YOLO [30], EfficientDet does not directly predict 2D bounding boxes, but
instead predicts the probabilities that correspond to tiled anchor boxes across
an image, with a unique set of predictions given for each anchor box [28]. In
our network, the features contained within each anchor box serve as input to
the subnetworks described.

2.1.2 Rotation network

Our rotation subnetwork used an axis-angle representation and directly
regressed a rotation vector (r ∈ SO(3)) from convolutional features extracted
within each anchor box. To train our rotation subnetwork for axis-angle rota-
tion prediction, we used the average squared distance between points of the
correct model pose (r) and their corresponding predictions (r̃) [16]. We defined
our rotation loss as:

RLoss(r̃, r) =
1

2m

∑
x∈M

‖r̃x− rx‖2 (1)

where M is the set of 3D model points, m is the number of points in the set,
r denotes the axis-angle rotation for the ground truth pose, and r̃ indicates
the axis-angle rotation for the predicted pose.



6 HMD-EgoPose: Marker-Less Pose Estimation for Surgical Guidance

2.1.3 Translation network

Taking influence from PoseCNN [16], our translation subnetwork regressed
a 2D object center point c = (cx, cy)ᵀ in pixel coordinates and a transla-
tion distance component tz, separately, from convolutional features extracted
within each anchor box. A translation vector (t ∈ R3) for the object was
then composed using the object center point c, the distance component tz,
and knowledge of the camera intrinsic parameters. The missing translation
components, tx and ty were computed as follows:

tx =
(cx − px) · tz

fx
, (2)

ty =
(cy − py) · tz

fy
(3)

where the principal point p = (px, py)ᵀ and focal lengths fx, fy were derived
from the camera intrinsic parameters. We modeled our translation loss using
the smoothed L1 loss between the ground truth translation (t) and the
predicted translation (t̃) as:

TLoss(t̃, t) =
1

2m

∑
x∈M

smoothL1(t̃x− tx), (4)

where

smoothL1 =

{
0.5x2, if |x| < 1,

|x| − 0.5, otherwise
(5)

and where M is the set of 3D model points, m is the number of points in the set,
t denotes the translation for the ground truth pose, and t̃ indicates the transla-
tion for the predicted pose. The final 6DoF transformation, T, for the predicted
object pose was composed of the rotation matrix R ∈ R3×3, computed
from the axis-angle rotation representation r, and translation components as
T = [R | t] ∈ R4×4.

2.1.4 Hand network

Our hand subnetwork used a vector representation to model a 3D skeleton
described by a total of 21 3D joint poses (h ∈ R3×21). The ground truth hand
data used in training is in an identical vector format. Unlike other parametric
approaches like MANO [24] which generated a representative 3D hand mesh
model from the 3D skeleton data, we instead directly regressed the 3D hand
skeleton vector from convolutional features extracted from within each anchor
box.

To train our hand subnetwork for the prediction of the 3D skeleton vertices
of the hand, we used the average squared distance between points of the correct



HMD-EgoPose: Marker-Less Pose Estimation for Surgical Guidance 7

hand skeleton pose (h) and their corresponding predictions (h̃). We defined
our hand vertex loss as:

HLoss(h̃,h) =
1

2m

∑
x∈M

smoothL1(h̃x− hx), (6)

where M is the set of 3D model points, m is the number of points in the set,
h denotes the ground truth hand vertex vector, and h̃ indicates the predicted
hand vertex vector.

2.2 Datasets

We used the synthetic and real datasets presented by Hein, et al [27] for
benchmarking the performance of HMD-EgoPose. Both datasets used the Col-
ibri II battery powered orthopedic drill (DePuy Synthes, Raynham, MA, U.S)
for rigid tool tracking and incorporated hand information while grasping the
instrument. Images were annotated with the 6DoF tool pose of the instrument
in frame and the 3D hand joints of the user grasping the tool.

2.2.1 Synthetic Colibri dataset

The synthetic Colibri (SynColibri) dataset included a total of 10, 500 image
frames (256× 256 pixel resolution), created through a detailed synthetic data
generation pipeline [27]. More details on the data generation pipeline are
available from the authors [27].

Our framework was implemented using the PyTorch (https://pytorch.org/,
accessed on 23 February 2022) deep learning library. We trained our network
on the SynColibri dataset for 500 epochs with a batch size of 32. For all
experiments, we used a computing workstation with an AMD Ryzen 9 3900X
CPU and a single NVIDIA RTX 3090 GPU with 24 GB GDDR6X memory. For
optimization on the SynColibri dataset, we used the Adam [31] optimizer and
an initial learning rate of 1e−4. During training on both the SynColibri and
real Colibri (RealColibri) datasets, we performed extensive 6D augmentation
of input data including random rotations, scaling, and translations as well as
color space augmentation like adjusting contrast and brightness [17]. For both
the SynColibri and RealColibri dataset, we replicated the same five-fold cross-
validation strategy as in [27] to assess variance across data splits and ensure
our results are directly comparable to benchmarks.

2.2.2 Real Colibri dataset

The RealColibri dataset included a total of 3, 746 frames (256 × 256 pixel
resolution) extracted from a total of 11 individual recordings and captured
through use of a mock operating room and human cadaveric specimen with an
open incision [27].

We fine-tuned our network on the RealColibri dataset, using the best per-
forming weights from network training on the SynColibri dataset, for 500

https://pytorch.org/
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epochs with a batch size of 32. For optimization on the RealColibri dataset, we
used stochastic gradient descent (SGD) with a momentum of 0.9 and a reduced
learning rate of 1e−5. We found the Adam optimizer led to faster convergence
and better results on the SynColibri dataset; on the RealColibri dataset, the
SGD optimizer with a reduced learning rate provided more stable convergence
and results.

2.3 Evaluation metrics

We measured the mean 3D errors of our predicted rigid surgical drill pose
relative to the ground truth pose (ADDtool) and provided assessments of posi-
tional error (in mm) and rotational error (in degrees) at the tip of the 3D drill
model. We defined our measure of mean 3D errors of surgical drill pose as:

ADDtool =
1

m

∑
x∈M

‖(Rx + t)− (R̃x + t̃)‖ (7)

where m is the number of points in the 3D model set, R and R̃, and t and t̃
are the ground truth and predicted rotation matrices and translation vectors
respectively. The 3D model points of the rigid surgical drill model set are repre-
sented by x. Additionally, we assessed the performance of our 3D hand vertex
predictions by computing the mean end-point error across the 21 predicted
joints (ADDhand) [26, 27]. We described our measure of hand vertex error as:

ADDhand =
1

m

∑
x∈M

‖hx− h̃‖ (8)

where m is the number of points in the 3D set, and h and h̃ are the ground
truth and predicted hand vertex vectors respectively. To evaluate the runtime
performance of our network, we included an estimate of the total number of
parameters in each model, the model size, the FLOPS for an input image of
size (1, 3, 256, 256), and the inference time (latency) measured using a single
NVIDIA RTX 3090 GPU and a batch size of 1 across 1000 samples of the
testing data.

2.4 Low-latency streaming for head-mounted display led
pose estimation

We used the Microsoft HoloLens 2 (https://www.microsoft.com/en-us/
hololens, accessed on 23 February 2022) OST-HMD to record egocentric video
frames and display 6DoF pose estimations of the tracked surgical drill as an
augmented 3D virtual model. To estimate the required intrinsic parameters
for computing 6DoF object pose, we performed a standard camera calibration
procedure of the RGB photo-video camera sensor (896× 504 pixels). Intrinsic
parameters including focal length (fx, fy), principal points (px, py), and skew
(s) were computed to describe perspective projection to relate 3D points in the

https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
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camera coordinate frame to their 2D image projections [32]. In our setup, the
computing workstation relied on knowledge of the HoloLens 2 camera intrinsic
parameters during computation of 6DoF object pose.

2.4.1 Video streaming from head-mounted display to desktop

We requested egocentric input video frames of size 896 × 504 pixels from
the HoloLens 2 photo-video RGB camera at 30 frames per second (FPS).
We built our application using the Unity C# development platform (https:
//unity.com/, accessed on 23 February 2022) and implemented our video
and data communication protocol using the WebRTC library (https://github.
com/microsoft/MixedReality-WebRTC, accessed on 23 February 2022) to
enable low-latency communication with our remote desktop peer. With a
WebRTC C++ dynamic link library (DLL), we used the universal datagram
protocol (UDP) and an H.264 codec for streaming video frames in a com-
pressed YUV420 representation from the HoloLens 2 to our high-performance
computing workstation.

2.4.2 Optimized inference on a computing workstation

The high-performance computing workstation included a WebRTC C# Net
Core project to receive and unpack the incoming YUV420 video frames from
the HoloLens 2 to an RGB representation at the original 896×504 pixels and 30
FPS representation. We used a C++ DLL and OpenCV (https://opencv.org/,
accessed on 23 February 2022) within the C# project for optimal pre-processing
of the incoming video frames, including image normalization and bilinear inter-
polation to a size of 256× 256 pixels. For optimal GPU inference, we used the
NVIDIA TensorRT software development kit (https://developer.nvidia.com/
tensorrt, accessed on 23 February 2022) and ONNX library (https://onnx.ai/,
accessed on 23 February 2022). Following network inference, filtering of the
resulting predictions included rescaling, clipping and non-maximum suppres-
sion to arrive at a final 6DoF pose prediction result. Using a WebRTC data
channel, we sent the resulting axis-angle rotation and translation vectors as a
combined 24-byte array to the HoloLens 2 device.

3 Results and Discussion

In this section, we evaluated the performance of HMD-EgoPose relative to cur-
rent state-of-the-art approaches and assessed the performance and feasibility
of 6DoF pose estimation on a commercially available OST-HMD through our
low-latency streaming approach and computing workstation.

3.1 Experimental results

Hein et al. have presented several strategies for surgical drill and hand pose
estimation from monocular RGB data for the synthetic drill dataset based off
of the PVNet [18] and HandObjectNet [26] frameworks. PVNet focuses solely

https://unity.com/
https://unity.com/
https://github.com/microsoft/MixedReality-WebRTC
https://github.com/microsoft/MixedReality-WebRTC
https://opencv.org/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://onnx.ai/
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on 6DoF object pose estimation and does not consider the joint interaction
of the hand of a user with the object [18]. PVNet indirectly estimates object
pose using a set of 2D keypoints that correspond to the 3D bounding box cen-
ter and selected 3D locations across the surface of the model. To estimate a
segmentation mask and 2D vector field for each keypoint, PVNet uses a sim-
ilar architecture as a U-Net [33]. A RANSAC-based voting scheme is used to
recover 2D keypoints from their respective 2D vector fields. The final 6DoF
tool pose is recovered using a perspective-n-point (PnP) approach to minimize
the Mahalanobis distance based on the mean and covariance of the keypoint
predictions and the ground truth keypoints. Instead of solely focusing on 6DoF
object pose alone, HandObjectNet considers the joint interaction of the hands
of a user and the surgical drill [27]. HandObjectNet uses a shared ResNet-18
[34] encoder and decoders for both the hand and object [26]. The hand decoder
branch estimates 18 pose parameters, consisting of 15 coefficients to describe
the hand configuration and 3 parameters to detail the axis-angle representa-
tion of the hand, and 10 shape parameters to describe the MANO hand model
[24]. The object branch regresses an axis-angle rotation vector, 2D transla-
tion vector, and a focal-normalized depth offset; the 3D translation is then
composed using knowledge of the camera intrinsic parameters [26].

3.1.1 Synthetic Colibri dataset

Table 1 compares the performance and latency of our approach relative to other
state-of-the-art techniques on the SynColibri surgical drill dataset. Our HMD-
EgoPose framework outperformed the HandObjectNet [26, 27] and PVNet
[18, 27] techniques in measures of tool ADD and rotational error at the drill
bit tip. Our approach used 3× fewer network parameters, required 3× less
memory for deployment, achieved 3× faster FLOPS, and required less time
for inference than HandObjectNet, the previous best performing approach.
Across the synthetic dataset, we achieved an average tool 3D vertex (ADDtool)
accuracy of 11.17 mm. Figure 2(a-d) includes a sample image frame from
the SynColibri dataset with corresponding network predictions for 3D hand
vertices and 6DoF rigid surgical drill pose as compared to the ground truth
labels.

3.1.2 Real Colibri dataset

Table 2 describes the performance and latency of our approach relative to other
state-of-the-art techniques on the RealColibri surgical drill dataset. Our HMD-
EgoPose framework outperformed the HandObjectNet [26, 27] and PVNet
[18, 27] techniques in measures of tool ADD and rotational and translational
error at the drill bit tip. Across the real dataset, we achieved an average tool 3D
vertex (ADDtool) accuracy of 11.00 mm. Figure 2(e-h) shows a sample image
frame from the real Colibri dataset with corresponding network predictions
for 3D hand vertices and 6DoF rigid surgical drill pose as compared to the
ground truth labels. Even with significant mutual occlusion of the hand of a
user and the surgical drill, there was good agreement between the 6DoF tool
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Table 1 Networks trained and evaluated on the synthetic Colibri surgical drill dataset
(mean ± standard deviation). We have directly included the tool ADD, hand ADD, drill
tip error, and drill tip direction error results reported by Hein et al. for comparison to our
approach [27].

HMD-EgoPose HandObjectNet [27] PVNet [27]

Tool ADD (mm) 11.17 ± 9.17 16.73 ± 16.97 20.59 ± 52.14
Drill Tip Error (mm) 34.81 ± 36.01 44.45 ± 59.72 31.10 ± 67.18
Drill Bit Direction Error (deg) 5.40 ± 6.98 6.59 ± 10.18 7.11 ± 21.78
Hand ADD (mm) 19.79 ± 7.72 17.15 ± 10.58 —
Network Paramters (M) 3.92 12.49 12.96
Network Size (MB) 16.3 53.1 51.9
FLOPS (B) 1.38 4.76 30.96
Latency (ms) 19.8 ± 2.3 21.5 ± 3.3 52.4 ± 8.2

Fig. 2 Sample three-dimensional (3D) hand vertex and six-degree-of-freedom (6DoF) object
pose estimates are shown relative to ground truth labels for image samples from the synthetic
Colibri (a-d) and real Colibri (e-h) datasets. Predicted labels for hand vertices and model
pose are shown in red, and ground truth labels for hand vertices and model pose are in blue.
The 2D projections of 3D hand vertices (a, e) and 2D projections of 3D model points (b, f)
are shown on the related input image frame. A view from the top (c, g) and the right (d,
h) are included to show the 3D model and hand vertex prediction agreement from different
view perspectives.

pose and the ground truth information due to the jointly learned hand and
tool representation of HMD-EgoPose. Table 3 indicates the performance of
our proposed HMD-EgoPose approach when (1) trained and evaluated solely
on the RealColibri dataset (no pre-training on the SynColibri dataset); and
(2) trained solely on the SynColibri dataset and evaluated on the RealColibri
dataset.
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Table 2 Networks pretrained on synthetic data and finetuned and evaluated on real
Colibri surgical drill dataset (mean ± standard deviation). We have directly included the
tool ADD, hand ADD, drill tip error, and drill tip direction error results reported by Hein
et al. for comparison to our approach [27].

HMD-EgoPose HandObjectNet [27] PVNet [27]

Tool ADD (mm) 11.00 ± 7.27 13.78 ± 5.28 39.72 ± 66.49
Drill Tip Error (mm) 28.07 ± 19.81 66.11 ± 26.91 72.80 ± 105.66
Drill Bit Direction Error (deg) 3.89 ± 2.74 8.71 ± 3.98 13.41 ± 33.78
Hand ADD (mm) 17.35 ± 8.09 9.78 ± 4.54 —

Table 3 HMD-EgoPose performance when trained on the RealColibri or SynColibri
dataset only and evaluated on the RealColibri dataset (mean ± standard deviation).

HMD-EgoPose performance
Trained/Evaluated on

RealColibri Only

Trained on SynColibri
Only, Evaluated on

RealColibri

Tool ADD (mm) 17.16 ± 11.01 53.77 ± 49.86
Drill Tip Error (mm) 41.76 ± 27.59 251.38 ± 237.93
Drill Bit Direction Error (deg) 5.58 ± 3.68 37.54 ± 41.20
Hand ADD (mm) 19.47 ± 10.20 63.06 ± 33.62

3.2 Feasibility assessment of streaming to a
head-mounted display

In Figure 3, we include a set of sample images from an experiment where a user
was asked to hold the 3D printed surgical drill model and move the drill as if
they were replicating the movements typical to its use in an orthopedic proce-
dure. As indicated in the sample frames, there was good agreement between
both the predicted and ground truth surgical drill pose estimates. We assessed
the mean 2D registration accuracy between the 3D printed surgical drill model
and the 3D virtual model visually by capturing 25 still-frame images and mea-
suring the error at three landmark positions: the drill chuck (where the drill
bit attachment would be inserted), the base of the drill handle, and the cir-
cle on the top back surface of the drill just above where a user would grasp.
We assessed the mean 2D Euclidean error at these three landmark positions
across the image set as 37.97± 26.41 pixels (mean ± standard deviation).

In our feasibility assessment, the network was used exclusively by the
HoloLens 2 and the computing workstation. Across 25 measurements, we com-
puted the average available network bandwidth as 3.17 ± 1.75 Mbps and
network latency as 4.84± 1.83 ms between the HoloLens 2 and the computing
workstation over our local Wi-Fi connection, with a peak measured bitrate of
8.04 Mbps.

Across 100 consecutive image frames, we characterized the average pixel-
to-photon latency – the cumulative time required for streaming of egocentric
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video to our high-performance computing workstation, performing GPU infer-
ence, returning the results to the HoloLens 2, and rendering them on-screen
– as 199.1 ± 30.3 ms (roughly 5 FPS). Of this, roughly 160 ms was required
for video frame transmission, 6 ms for frame resizing and rescaling, 12 ms
for GPU inference in TensorRT and post prediction filtering, 8 ms for return
transmission of the predicted 6DoF transformation to the HoloLens 2, and
16 ms for rendering of the updated virtual model pose. Additional qualita-
tive videos demonstrating the performance of HMD-EgoPose during network
inference are available in the supplementary material. Importantly, we used a
threading approach to offload the update of 6DoF pose results off of the main
rendering thread so as not to slow the HoloLens 2 app operation to 5 FPS.
With our approach, we achieved rendering performance at 50-60 FPS, video
capture at 30 FPS, and update of the 6DoF pose predictions at 5 FPS.

To assess the latency of our network when run directly on the computing
hardware of the HoloLens 2: the on-board CPU, we performed an identical
experiment and measured a pixel-to-photon latency of 1097.54 ± 220.21 ms
across 100 consecutive frames. Unfortunately, due to limited GPU support on
the HoloLens 2, it is more efficient to perform CPU-based inference [5]. Though
our HMD-EgoPose model is compact in terms of size and FLOPS, many of
the network layers and operations of the BiFPN are inefficient to perform on
a CPU, contributing to the slow on-device performance of roughly 1 FPS.

Fig. 3 Sample images demonstrating the real-world tracking accuracy of our network for
rigid surgical drill pose estimation on the HoloLens 2 head-mounted display while using a
representative three-dimensional (3D) printed model with identical geometry as the Col-
ibri II surgical drill. (a-d) Images captured using the HoloLens 2 photo-video camera prior
to launching our tracking application. We include four separate grasping poses of the 3D
printed surgical drill model. (e-h) Single frames replicating the grasping poses from images
(a-d) captured using the HoloLens 2 mixed reality capture capabilities after launching our
tracking application. The two-dimensional (2D) views are created by the mixed reality cap-
ture application using the right eye camera of the 3D stereo view on the headset, which is
known to introduce an offset in the position of virtual models. Pose predictions from our
HMD-EgoPose network are applied to the 3D surgical drill model displayed in red.
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3.3 Limitations

As we were unfortunately not able to access the specific Colibri II surgical
drill model used in collection of the SynColibri benchmark dataset, we created
a representative 3D printed surgical drill model of identical geometry to use
for qualitative evaluation. Even though our 3D printed model did not have a
similar color or texture scheme as the real drill, we were able to demonstrate
promising tracking performance using our HMD-EgoPose network. As is visi-
ble in the supplementary video material, due to the heavy cropping of input
training data to center on the surgical drill, our network loses tracking when
the drill moves away from the center of the image frame. A future fix for this
problem could be to train a lightweight object detection framework for pre-
diction of a 2D bounding box around the surgical drill for use in adaptive
cropping of input video frames.

Another limitation of this work is with regard to the tracking latency and
performance. In our current implementation, we achieved a pixel-to-photon
latency of 199.1 ms, resulting in tracking performance of roughly 5 FPS. We set
out to optimize the latency of image frame preprocessing and GPU-based infer-
ence; however, the main contributor to latency was the roughly 160 ms that
was required for image data transmission from the HoloLens 2 to the comput-
ing workstation. We anticipate that there could have been further reductions
to network latency by reducing frame size to the desired 256 × 256 pixels on
the HoloLens 2 prior to transmission to reduce packet size. Over 100 consec-
utive measurements, we quantified the mean time for frame resizing on the
HoloLens 2 using nearest neighbour interpolation as 44.04±28.49 ms, meaning
that any reduction in transmission time would need to be greater than 44.04
ms to improve the overall pixel-to-photon latency.

4 Conclusion

The focus of this work was to contribute to the improvement of egocentric
6DoF object and hand pose estimation strategies from monocular RGB data
through further investigating the mutual interactions of the hand of a user
and a surgical instrument. With HMD-EgoPose, we demonstrated state-of-the-
art performance in hand and surgical drill pose estimation as well as network
inference speed through our single-shot pose estimation approach. Further, we
showed the feasibility of a low-latency streaming method to enable AR-based
egocentric surgical navigation on a commercially available OST-HMD, opening
numerous possible avenues for use in surgical tool tracking, 3D to 3D OST-
HMD display calibration, and tracking of other rigid landmark objects in the
operating room.

Our HMD-EgoPose framework for egocentric surgical tool and hand track-
ing provides researchers with the means for improved tracking accuracy and
robustness to occlusion during challenging 3D tasks in AR-led surgical naviga-
tion and, with future developments to the network architecture and training
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dataset diversity, could contribute to improved patient outcomes. With mod-
ifications to the training dataset for the specific intervention, we expect that
our modular framework could have significant implications in many other sur-
gical interventions which rely on the tracking of surgical tools or instruments
for guidance.
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