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Abstract
Purpose: Automatic surgical instruction generation is a crucial part for intra-operative surgical assistance. However, under-
standing and translating surgical activities into human-like sentences are particularly challenging due to the complexity of
surgical environment and the modal gap between images and natural languages. To this end, we introduce SIG-Former, a
transformer-backboned generation network to predict surgical instructions from monocular RGB images.
Methods: Taking a surgical image as input, we first extract its visual attentive feature map with a fine-tuned ResNet-101
model, followedby transformer attention blocks to correspondinglymodel its visual representation, text embedding andvisual–
textual relational feature. To tackle the loss-metric inconsistency between training and inference in sequence generation, we
additionally apply a self-critical reinforcement learning approach to directly optimize the CIDEr score after regular training.
Results: We validate our proposed method on DAISI dataset, which contains 290 clinical procedures from diverse medical
subjects. Extensive experiments demonstrate that our method outperforms the baselines and achieves promising performance
on both quantitative and qualitative evaluations.
Conclusion: Our experiments demonstrate that SIG-Former is capable of mapping dependencies between visual feature and
textual information. Besides, surgical instruction generation is still at its preliminary stage. Future works include collecting
large clinical dataset, annotating more reference instructions and preparing pre-trained models on medical images.

Keywords Surgical instruction generation · Transformer · Image captioning · Reinforcement learning

Introduction

With the increasing demands of surgical training, intra-
operative surgical assistance and decision support in modern
clinical rooms, digital context-aware surgical system is an
essential component toward next-generation surgery. It aims
to leverage the available information inside operation rooms
to assist clinicians during surgical practices. Among all the
related techniques, surgical instruction generation is a pro-
cess of generating human-like guidance from surgical views.
It is particularly important when an emergency situation
is detected or onsite mentoring is unavailable. However,
the complexity of operation environments, the high intra-
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procedure variance and low inter-procedure variance make
this task particularly challenging.

Previously, telementoring [4] is an alternative solution by
utilizing telecommunication techniques to provide remote
surgical guidance and technical assistance. But this tech-
nique highly hinges on the quality of telecommunication
systems and is always influenced by some legal and ethi-
cal issues [2,10]. More recently, transformative technologies
in computer-aided surgery bring potentials to understand
the surgical activities and provide context-aware assistance
from different perspectives. For example, [8,11,22,27] apply
vision-based deep learning methods for surgical workflow
analysis and fine-grained surgical gesture recognition. How-
ever, these techniques depend on pre-defined surgical phases
and gesture classes, which are incapable of understanding the
holistic surgical view and generating human-like instruction.

Medical report generation [5,6,13] is the closest topic to
our task, which automatically generates diagnostic report for
a patient with text descriptions and lists of tags from radi-
ology and pathology images. Nonetheless, medical report
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generation follows some templates, for instance, it always
includes few fixed sentence templates where each one
focuses on one specific topic. While in surgical instruction
generation task, the surgical content and the way describing
it are both diverse.

To the best of our knowledge, the only prior work of sur-
gical instruction generation task is [20]. In their study, the
authors collect a dataset called Database for AI Surgical
Instruction dataset (DAISI) and use bidirectional recurrent
neural network (RNN)method to build a baselinemodel. This
work, however, has two main limitations. On the one hand,
although the RNNs are designed to memorize the historical
information and generate sequences in arbitrary length, they
have limited representation ability and are bottlenecked by
the gradient vanishing and exploding problems [17]. On the
other hand, evaluating the quality of sentences in different
points of view is significant to verify their correctness. Nev-
ertheless, they use theBLEUscore [16] as the only evaluation
metrics, which is deficient.

In this paper, we propose SIG-Former, a transformer-
backboned encoder–decoder architecture along with self-
critical reinforcement optimization, to generate instruction
texts from surgical images.Our proposedmethods aremainly
based on two insights and observations: (1) With self-
attention and multi-head attention mechanism, transformers
can achieve great performance in sequence generation, for
example,machine translation and image captioning fromnat-
ural domain [7,23]. (2) Sequence generation tasks are often
trained with the teacher forcing mode [18]. That means dur-
ing the training procedure, the model uses the ground-truth
token to predict the next token, while it uses the previous
generated token to predict the next token during the infer-
ence stage. This discrepancy between training and inference
procedure causes accumulated errors.

Given a surgical image, we first extract its attention map
using a pre-trained ResNet-101 model [12]. Then we feed
the attention map into a transformer encoder to get the
position-wise latent feature map. The transformer encoder–
decoder attention module and decoder attention module
further models the visual-text dependency and token-wise
textual information. Furthermore, after the standard cross-
entropy training for some epochs, we employ the self-critical
reinforcement learning to alleviate aforementioned mis-
matching between training and inference.

We validate the effectiveness of our approach on DAISI
dataset. This work is an extended version fromMICCAI2021
conference paper [27], where we improve our training strat-
egy by exploring the data distribution. The results demon-
strate that our new training setup further improves the per-
formance of SIG-Former in surgical instruction generation.

Methods

The architecture of SIG-Former is shown in Fig. 1. It con-
sists of two parts: (1) surgical instruction generation with
a transformer-based encoder–decoder model (see Sect. 2.1)
and (2) self-critical reinforcement learning (see Sect. 2.2).

Surgical instruction generation with transformers

Rather than computing the tokens sequentially in recurrent
style, transformer [23] allows building non-local relation-
ships concurrently for different positions inside a sequence.
Our SIG-Former model has two components: a transformer
encoder and a transformer decoder, with each composed of
stacks of attentive layers. The encoder input is feature maps
from surgical images while the output is a sequence of tokens
(i.e., the surgical instructions).

Given a surgical image, we first extract its feature map,
with the dimension of 14× 14× 2048, using the last convo-
lutional layer of a pre-trained ResNet-101 [12]. We reduce
the feature map to 14 × 14 × 512 dimensions with a linear
embedding layer followed by a ReLU activation layer and a
dropout layer.We further flatten the featuremaps to the shape
of 196×512 and put this visual embedding as the entry token
to the first transformer encoder layer.

The transformer encoder aims to build position-wise rela-
tionships for input image regions. It is composed of a
sequence of six identical attentionmodules, where eachmod-
ule consists of a multi-head self-attention layer followed by
a feed-forward layer. For a given input X ∈ RN×D , where N
is the number of entries and D is the feature dimension, the
attention layer first linearly converts the input into queries
(Q = XWQ,WQ ∈ RD×Dk ), keys (K = XWK ,WK ∈
RD×Dk ) and values(V = XWV ,WV ∈ RD×Dv ). Then the
scaled-product attention can be computed by:

Attention(Q, K , V ) = Softmax

(
QKT

√
Dk

)
V (1)

where Dk is the dimension of queries and keys; Dv is the
dimension of values (Dk = Dv in our implementation). In
order to jointly access to different sub-spaces, the Multi-
head attention is applied (#heads=8). The outputs from 8
heads are then concatenated and multiplied by a learned pro-
jection matrix WO . The process can be represented as:

MultiHead(Q, K , V ) = Concat(head1, . . . , headh)WO

headi = Attention(XWQi , XWKi , XWVi ).

(2)
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Fig. 1 The architecture of our SIG-Former model

The next component applied to the output of each attention
layer is a position-wise feed-forward layer:

FFN(x) = max(0, xW1 + b1)W2 + b2, (3)

whereW1, b1 andW2, b2 are the learnable weights and biases
of two MLP layers.

The transformer decoder is also a sequential stack of six
identical attention modules, where each module has two lay-
ers of multi-head attention (one for the self-attention on
words and another for cross attention over the output from
the last encoder layer) followed by one position-wise feed-
forward layer. For the detailed explanation of the decoder,
we refer readers to [23].

Self-critical reinforcement optimization

Sequence generation models usually come with two short-
comings: (1) During the training process, the model predicts
next word using the previous ground-truth word. While in
inference, the model predicts the next word by feeding the
previous generated word as the input. This discrepancy is
called exposure bias [18] because the model is only exposed
to the training data distribution rather than its own predic-
tion. As the result, the error would be quickly accumulated if
initial predictions are wrong. (2) Another mismatching is in
the loss calculation. In the training stage, normally the word-

level cross-entropy loss is used to maximize the likelihood of
the next correct word. However, the non-differentiable lan-
guage evaluation metrics (e.g., BLEU or CIDEr) are applied
to evaluate the model performance.

In order to eliminate above discrepancies, following the
standard practice in image captioning from natural domain,
we first train our model with word-level cross-entropy and
then fine-tune the sequence generation model using self-
critical reinforcement learning approach. Consequently, in
the reinforcement fine-tuning step, we use predicted words
as the input to generate the next word in training and directly
optimize the model with CIDEr score as the reward. Because
it well correlates to human judgement [24].

Following the details from [19], given the model param-
eters θ , the policy pθ and sentence ws, the gradient for one
sample can be expressed as:

∇θ L(θ) = −Ews∼pθ [(r(ws) − b)∇θ log pθ (w
s)] (4)

where r(.) is the reward function, and b = rŵ is the self-
critical baseline, which is obtained by the current model
under the inference algorithm applied at the test time. As
the result, it increases the probability of high reward sample
and penalties the low reward sample. For detailed formula
derivation, please refer to [19].
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Fig. 2 Top-20 words distribution and sequence length distribution

Results and evaluation

Experimental details

Dataset. We evaluate our proposed method on the DAISI
dataset [20]. The dataset contains 17,256 color images of the
290 medical procedures from 20 clinical disciplines, includ-
ing laparoscopic inguinal hernia repair, open cricothyroido-
tomy, laparoscopic sleeve gastrectomy, etc. The availability
of the dataset is upon request from.1 Each procedure contains
surgical images with their corresponding text description of
how to complete a step in the procedure. We further clean
the dataset by deleting the irrelevant and noisy images and
captions, e.g., some images and captions only represent the
surgeon information of that particular procedure. Finally,
we get 16,413 images with one caption per image. Rather
than split the images randomly in [27], we split the data
intra-procedurally. That means inside each procedure, we
randomly assign 80% images for training, 10% for validation
and 10% for testing. We finally have 13,035 training images,
1618 validation images and 1760 test images.

Text Preprocessing. Text preprocessing is a significant
task for any natural language-related task. The unstructured
raw text data need to be converted to a more digestible and
predictable format such that the model can learn meaningful
feature and performbetter.We follow these four steps to clean
the raw text data: (1) Convert all the words into lower case;
(2) Expanding abbreviations, including English contractions
(e.g., “aren’t” to “are not”) and medical abbreviations (e.g.,

1 https://engineering.purdue.edu/starproj/.

“m.” to “muscle”); (3) Remove all numbers, whitespaces and
punctuation; (4) Tokenize the sentence intowords.Moreover,
we set the sentence length threshold to 16 and mark those
words as “UNK” if they appear less than 5 times in dataset,
which ends up with a 2212 words vocabulary. The top-20
word distribution and sentence length distribution are shown
in Fig. 2.

EvaluationMetrics.Automatically evaluating the quality
of text descriptions is important as human-based evaluation is
unaffordable. Following the standard evaluation protocol, we
apply the common metrics for evaluation, i.e., accumulated
1-4 BLEU [16], Rouge-L [14], METEOR [3], CIDEr [24]
and SPICE [1].

Implementation details

To comprehensively explore the performance of SIG-Former
in surgical instruction generation, we additionally imple-
ment two LSTM-based generation models as baselines. We
implement all methods using PyTorch and train them on two
GeForce RTX 2080 Ti GPUs.

Our method. We extract the input feature map with the
last convolutional layer of a pre-trained ResNet-101 [12],
which is followedby a spatial adaptivemax-pooling layer and
flattened to 196 × 2048 dimension. For the standard cross-
entropy training, we set the batch size to 16. The learning
rate of the model is initialized to 3 × 10−4 and follows the
learning rate scheduling strategy with 20,000 warm-up steps.
After 50 epochs training with cross-entropy loss, we employ
the self-critical reinforcement strategy to optimize the CIDEr
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Table 1 Comparison with the
state of the arts [20] for surgical
instruction generation task

Surgical instruction B1 B2 B3 B4 C M R S

DAISI (Bi-RNN) 21.0 14.4 11.3 9.3 8.32 10.3 22.0 12.1

LSTM [27] 43.7 39.4 37.3 36.2 34.0 24.9 44.6 40.2

Soft-attn [27] 43.2 38.7 36.3 34.9 32.4 24.3 43.7 38.0

Transformer only [27] 45.5 41.0 38.7 37.2 34.0 25.6 44.3 39.7

Transformer + rl (ours) [27] 52.8 48.7 46.4 44.9 42.7 30.7 53.1 48.4

LSTM 42.0 37.1 34.6 33.0 30.63 24.0 41.9 36.2

Soft-attn 44.6 39.7 37.1 35.5 32.79 24.8 44.9 38.9

Transformer only 52.4 48.0 45.5 43.8 41.32 29.9 52.8 46.7

Transformer + rl (ours) 56.1 52.2 49.8 48.2 45.61 32.7 56.6 50.9

B1, B2, B3, B4, C, M, R and S stand for 1–4 gram BLEU, CIDEr, METEOR, ROUGE-L and SPICE score,
respectively. The upper and the lower part of this table present the evaluations on random data split and the
intra-procedure data split, respectively. rl indicates reinforcement learning

score with the fixed learning rate of 1× 10−5 for another 10
epochs. The batch size for this stage is set to five.

LSTM-based methods. We further provide two LSTM-
based baselines for the surgical instruction task (LSTM and
LSTM-based soft-attention model) similar to [25,26], as this
task is fairly new and LSTM is a milestone work for pro-
cessing sequences. We also use the last convolutional layer
of a pre-trained ResNet-101 to extract visual features for
these two baselines. We apply an average pooling and obtain
2048-d feature for vanilla LSTM. It is trained with the initial
learning rate to 5 × 10−4 and batch size to 16 for 70 epochs
using cross-entropy loss.

The LSTM-based soft-attention model shares the same
feature map (196 × 2048 dimension) with our SIG-Former
model. For the cross-entropy training stage, we initialize
the learning rate to 5 × 10−4 and batch size to 16. For the
reinforcement optimization step, the learning rate is fixed to
1 × 10−5 with batch size at five.

All the models are optimized using the ADAM optimizer.

Comparison with the state of the arts

Since we clean the data by removing noisy and inappropri-
ate image-text pairs, a new evaluation benchmark is required.
We re-implement the state-of-the-art network Bi-RNN [20]
for comparison, as their code is not publicly available. Fol-
lowing the details of Bi-RNN, we extract the 4096-d feature
using the last convolutional layer of a pre-trained VGG16
network [21]. The Bi-RNN model is trained 50 epochs with
learning rate at 5 × 10−4 and batch size at 10.

Rather than randomly split the data as in [27], we split
the data intra-procedurally such that the model is able to get
some prior information during the test stage (see Sect. 3.1).
We compare the performance of our method with the state-
of-the-art and other baseline methods in Table 1. To verify
the efficacy of reinforcement learning, we also ablate our

method by removing it in evaluation, which is denoted by
“Transformer only” in Table 1.

It can be seen that Bi-RNN method shows a relatively
lower performance than other proposed baselines on all the
evaluation metrics. For example, CIDEr [24] is an evalua-
tion metric specifically designed for image captioning task
based on the consensus between predicted instructions and
reference descriptions. The CIDEr score of Bi-RNN is 30%
lower than ours, which indicates the weakness of a sim-
ple RNN model in catching visual–textual relationship for
instruction generation. For other three proposed approaches,
transformer model with reinforcement learning outperforms
all other methods on all evaluation metrics. The promising
results of transformer models indicate the robustness of the
encoder–decoder attentive layers.

From another perspective, one intuitive difference
between natural domain image captioning and surgical
instruction generation is that there are strong contextual
relationship and temporal dependency between images in
the same type of surgical operations, which is particularly
important for surgical content analysis. In Table 1, we see
the intra-procedure split further improves the model perfor-
mance,where the scores of transformer-onlymodel show≈ 7
points higher than its performance in random split. Since for
the intra-procedure setting, 80% of the images in the same
procedure are assigned to the training set and the rest are in
the validation and test set, each model is equipped with more
prior information from the training set.

Figure 3 shows the qualitative comparisons.We randomly
select 9 images with predicted instructions from the best
LSTM model and our SIG-Former.
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Fig. 3 Qualitative evaluation for SIG-Former. We randomly select 9 images with predicted instructions from LSTM and SIG-Former
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Table 2 Ablative study to
understand the functionality of
each module

Surgical instruction B1 B2 B3 B4 C M R S

LSTM 42.0 37.1 34.6 33.0 30.63 24.0 41.9 36.2

Soft-attn 44.6 39.7 37.1 35.5 32.79 24.8 44.9 38.9

Soft-attn + rl 44.9 39.7 37.3 35.4 33.06 24.8 45.2 39.3

Transformer only 52.4 48.0 45.5 43.8 41.32 29.9 52.8 46.7

Transformer + rl (ours) 56.1 52.2 49.8 48.2 45.61 32.7 56.6 50.9

B1, B2, B3, B4, C, M, R and S stand for 1–4 gram BLEU, CIDEr, METEOR, ROUGE-L and SPICE score,
respectively

Discussion

Ablation study

To explore the effectiveness of each single design in our
method, we decompose our network into six configurations
as follows:

C1: LSTM only
C2: Soft-attention only
C3: Transformer only
C4: Soft-attention + Self-critical reinforcement learning
C5: Transformer + Self-critical reinforcement learning

The results are presented in Table 2, from which we observe
that:

C1 versus C2: We add the soft-attention on top of the
LSTM model such that each word position can sequentially
access different image regions to make prediction.

C1versusC2 andC3:Without using any sequence-aligned
recurrent units, the transformer attention mechanism pro-
cesses the sequence as a whole. Comparing with other base-
lines, transformer backboned framework improves the per-
formance over all evaluationmetrics, which demonstrates the
capability of transformers in processingmulti-modal context.

C2 versus C4: and C3 versus C5: After the standard train-
ing stage with cross-entropy loss, we use the reinforcement
learning to directly optimize the CIDEr score. From Table 2,
we see that this optimization step not only improves the
CIDEr score, but also improves the results on other met-
rics. Specifically, there is an obvious improvement for the
transformer-only model.

Limitations and challenges

In this section, we discuss the limitations and challenges in
the surgical instruction generation task.

1. Limited dataset scale. Surgical instruction generation is
a multi-modal task which relates to visual, textual and
dependencies between them, where the parameter space
is much larger than those single-modal tasks (e.g., classi-

fication or objection detection). It requires large amount
of data to tune complex hyper-parameters and prevent
overfitting. In natural image domain, the COCO image
captioning task [15] has more than 120k samples, while
theDAISI dataset has less than 20K images. Furthermore,
from the comparisons in Table 1, contextual information
contributes to the performance of the models. However,
the dataset contains only one sample for few surgical pro-
cedures, thus only spatial-based prior information can
be learned. If we can build a larger dataset, not only
the spatial information but also the contextual temporal
relationships can be learned to improve the instruction
generation.

2. No fine-grained supervisions. In natural image domain,
a large dataset (e.g., COCO or ImageNet [9]) is usually
pre-trained to support downstream tasks such as object
detection and attribute feature identification. Nonethe-
less, these pre-trained models are difficult to be applied
in medical domain as labeling surgical images requires
expert annotators.

3. One reference instruction per image. In real case, the con-
tent for a same image can be explained in multiple ways.
COCO image captioning dataset [15] equips one image
with 5 different references, while we have only one in the
DAISI dataset, where an appropriate prediction could be
ignoredonly because it has a different instruction descrip-
tion.

Conclusion

In this paper, we propose a self-critical transformer, named
bySIG-Former, to generate surgical instructions given from a
monocular image. The network is composed of a transformer
encoder to model visual features, a transformer decoder to
model textual information and an encoder–decoder to catch
multi-model dependencies. In addition, we use the reinforce-
ment learning approach to alleviate the discrepancy between
training and inference by directly optimizing the CIDEr
metric. The performance of our method demonstrates the
effectiveness of attention blocks in handling multi-modal
sequence-to-sequence problem.

123



2210 International Journal of Computer Assisted Radiology and Surgery (2022) 17:2203–2210

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Informed consent This article does not contain patient data.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Anderson P, Fernando B, Johnson M, Gould S (2016) Spice:
semantic propositional image caption evaluation. In:European con-
ference on computer vision, pp 382–398. Springer

2. Antoniou SA, Antoniou GA, Franzen J, Bollmann S, Koch OO,
Pointner R, Granderath FA (2012) A comprehensive review of
telementoring applications in laparoscopic general surgery. Surg
Endosc 26(8):2111–2116

3. Banerjee S, Lavie A (2005) Meteor: an automatic metric for MT
evaluation with improved correlation with human judgments. In:
Proceedings of the ACL workshop on intrinsic and extrinsic eval-
uation measures for machine translation and/or summarization, pp
65–72

4. Bilgic E, Turkdogan S, Watanabe Y, Madani A, Landry T, Lavigne
D, Feldman LS, Vassiliou MC (2017) Effectiveness of telemen-
toring in surgery compared with on-site mentoring: a systematic
review. Surg Innov 24(4):379–385

5. Bustos A, Pertusa A, Salinas JM, de la Iglesia-VayáM (2020) Pad-
chest: a large chest X-ray image dataset with multi-label annotated
reports. Med Image Anal 66:101797

6. Chen Z, Song Y, Chang TH, Wan X (2020) Generating radiology
reports viamemory-driven transformer. In: Proceedings of the 2020
conference on empirical methods in natural language processing
(EMNLP), pp 1439–1449

7. Cornia M, Stefanini M, Baraldi L, Cucchiara R (2020) Meshed-
memory transformer for image captioning. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp 10578–10587

8. Czempiel T, Paschali M, Keicher M, Simson W, Feussner H,
Kim ST, Navab N (2020) Tecno: surgical phase recognition with
multi-stage temporal convolutional networks. In: International
conference on medical image computing and computer-assisted
intervention, pp 343–352. Springer

9. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Ima-
genet: a large-scale hierarchical image database. In: 2009 IEEE

conference on computer vision and pattern recognition, pp 248–
255. IEEE

10. Erridge S, Yeung DK, Patel HR, Purkayastha S (2019) Telemen-
toring of surgeons: a systematic review. Surg Innov 26(1):95–111

11. Funke I, Bodenstedt S,OehmeF, BechtolsheimFv,Weitz J, Speidel
S (2019) Using 3D convolutional neural networks to learn spa-
tiotemporal features for automatic surgical gesture recognition in
video. In: International conference on medical image computing
and computer-assisted intervention, pp 467–475. Springer

12. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 770–778

13. JingB,XieP,XingE (2018)On the automatic generationofmedical
imaging reports. In: Proceedings of the 56th annual meeting of the
association for computational linguistics (volume 1: long papers),
pp 2577–2586

14. Lin CY (2004) Rouge: A package for automatic evaluation of sum-
maries. In: Text summarization branches out, pp 74–81

15. Lin TY,MaireM, Belongie S, Hays J, Perona P, RamananD,Dollár
P, Zitnick CL (2014) Microsoft coco: common objects in context.
In: European conference on computer vision, pp 740–755. Springer

16. Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method
for automatic evaluation of machine translation. In: Proceedings
of the 40th annual meeting of the association for computational
linguistics, pp 311–318

17. PascanuR,MikolovT,BengioY (2013)On the difficulty of training
recurrent neural networks. In: International conference onmachine
learning, pp 1310–1318

18. Ranzato M, Chopra S, Auli M, Zaremba W (2016) Sequence level
training with recurrent neural networks. In: 4th international con-
ference on learning representations, ICLR 2016

19. Rennie SJ, Marcheret E, Mroueh Y, Ross J, Goel V (2017) Self-
critical sequence training for image captioning. In: Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp 7008–7024

20. Rojas-Muñoz E, Couperus K, Wachs J (2020) DAISI: database for
AI surgical instruction. arXiv preprint arXiv:2004.02809

21. Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition

22. Twinanda AP, Shehata S, Mutter D, Marescaux J, De Mathelin M,
Padoy N (2016) Endonet: a deep architecture for recognition tasks
on laparoscopic videos. IEEE Trans Med Imaging 36(1):86–97

23. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In:
Advances in neural information processing systems, vol 30

24. Vedantam R, Lawrence Zitnick C, Parikh D (2015) CIDEr:
consensus-based image description evaluation. In: Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp 4566–4575

25. Vinyals O, Toshev A, Bengio S, Erhan D (2015) Show and tell: a
neural image caption generator. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp 3156–3164

26. Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel
R, Bengio Y (2015) Show, attend and tell: neural image caption
generation with visual attention. In: International conference on
machine learning, pp 2048–2057

27. Zhang J, Nie Y, Chang J, Zhang JJ (2021) Surgical instruction gen-
eration with transformers. In: International conference on medical
image computing and computer-assisted intervention, pp 290–299.
Springer

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2004.02809

	SIG-Former: monocular surgical instruction generation with transformers
	Abstract
	Introduction
	Methods
	Surgical instruction generation with transformers
	Self-critical reinforcement optimization

	Results and evaluation
	Experimental details
	Implementation details
	Comparison with the state of the arts

	Discussion
	Ablation study
	Limitations and challenges

	Conclusion
	References




