
International Journal of Computer Assisted Radiology and Surgery (2023) 18:509–516
https://doi.org/10.1007/s11548-022-02750-9

ORIG INAL ART ICLE

Bifurcation matching for consistent cerebral vessel labeling in CTA
of stroke patients

Leonhard Rist1,2 ·Oliver Taubmann2 · Florian Thamm1,2 · Hendrik Ditt2 ·Michael Sühling2 · Andreas Maier1

Received: 10 January 2022 / Accepted: 6 September 2022 / Published online: 1 October 2022
© The Author(s) 2022

Abstract
Purpose Vessel labeling is a prerequisite for comparing cerebral vasculature across patients, e.g., for straightened vessel
examination or for localization. Extracting vessels from computed tomography angiography scans may come with a trade-off
in segmentation accuracy. Vessels might be neglected or artificially created, increasing the difficulty of labeling. Related work
mainly focuses on magnetic resonance angiography without stroke and uses trainable approaches requiring costly labels.
Methods We present a robust method to identify major arteries and bifurcations in cerebrovascular models generated from
existing segmentations. To localize bifurcations of the Circle of Willis, candidate paths for the adjacent vessels of interest
are identified using registered landmarks. From those paths, the optimal ones are extracted by recursively maximizing an
objective function for all adjacent vessels starting from a bifurcation to avoid erroneous paths and compensate for stroke.
Results In 100 CTA stroke data sets for evaluation, 6 bifurcation locations are placed correctly in 85% of cases; 92.5% when
allowing a margin of 5mm. On average, 14 vessels of interest are found in 90% of the cases and traced correctly end-to-end
in 73.5%. The baseline achieves similar detection rates but only 35.5% of the arteries are traced in full.
Conclusion Formulating the vessel labeling process as a maximization task for bifurcation matching can vastly improve
accurate vessel tracing. The proposed algorithm only uses simple features and does not require expensive training data.

Keywords Vessel labeling · Vessel identification · CTA · Stroke

Introduction

TheCircle ofWillis (CoW) is a central structure in the human
cerebral vasculature which bundles the incoming blood and
redistributes it to all brain areas (configuration in Fig. 1). A
thrombus blocking a vessel limits the oxygen supply to the
brain, causing an ischemic stroke which is a leading cause
of disability in adults [1]. Computed Tomography Angiog-
raphy (CTA) is the modality of choice to visualize vessels
quickly and accurately. Since the location of an occlusion is
crucial for determining therapy, anatomical labeling of the
major arteries is highly important. It facilitates navigation
and serves as a prerequisite for comparing patients using
vessel straightening [2]. For such tasks, the complete vessel
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path, as opposed to the rough location only, is required. An
automatization can be helpful in the time-critical acute stroke
diagnosis.

High-quality segmentation of fine cerebral vessel struc-
tures is often achieved by Digital Subtraction Angiogra-
phy (DSA; requires two CT scans) or magnetic resonance
angiography (MRA), which may be infeasible due to time
constraints in case of suspected stroke, hence using such
data would not fit our requirements [3]. Vessel segmentation
in CTA scans is highly challenging. As manual annotation
of vessels is time-consuming, supervised machine learning
methods may not always be an option. However, there also
exist non-trainable segmentationmethods such as the region-
growing approach VirtualDSA++ by Thamm et al. [4] which
is used representative in this work. Due to factors, such as
noise or bones, segmentations obtained from CTA may be
of lower quality than ones based on MRA or DSA. As a
consequence, cerebrovascular models from CTA segmenta-
tions can be expected to have missing smaller structures or
to include artificial connections, leading to problems in the
labeling.
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Fig. 1 Normal configuration of
the CoW. Analyzed arteries are
on the left (inner underlined,
outgoing dotted), bifurcations of
interest are on the right

Related work

Most published cerebral vessel labeling algorithms are
designed on MRA data and possibly unaware of such com-
plications. Bogunovic et al. [5] use maximum a posteriori
estimation after learning bifurcation features on a graph and
focus on robustness against anatomical variations without
explicitly considering stroke. Also relying on a small MRA
data set, Bilgel et al. [6] utilize belief propagation together
with a Random Forest classifier. In contrast, Dunås et al. [7]
label MRA segmentations by locating the longest segments
within a graph generated from a custom atlas which may
be problematic for the noisier CTA segmentations. Robben
et al. [8] tackle the problem earlier by first constructing an
overcomplete graph which is assumed to contain the correct
segmentation and optimize for the graph fulfilling the desired
labeling.

Fewer labeling approaches in literature focus on CT data.
Ghanvanti et al. [9] use micro-CT of mice in their anatomical
labeling, following the ideas of Bilgel and Bogunovic by
formulating a stochastic relaxation problem. Yao et al. [10]
proposed a graph convolutional approach to improve their
segmentation and then perform semantic labeling for head
and neck vessels on CTA data sets. Thriving for a simplistic
method, Shen et al. [2] register end and start artery key points
in the graph to label them via distance measures. Afterward,
they use a shortest-path algorithm to define the pathways
and employ a deep learning approach for the difficult area of
the ACA2 segment. However, they state no details regarding
their CTA segmentation approach and do not address the
problems such as artificial loops when using a shortest-path
algorithm.

Contribution

None of the methods above consider stroke and were often
designed on higher-quality MRA data while we evaluate
on practically relevant CTA data. Furthermore, virtually all
methods require training data in some form. To achieve

automated vessel labeling for ischemic stroke applications
without expensive annotations we propose a method com-
bining marker registration and graph-based recursion on
bifurcation level. This algorithm works on cerebrovascular
graph models created from a CTA vessel segmentation.

To obtain consistent labeling, we identify bifurcations by
determining and subsequently fusing optimal sub-graphs.
First, vessel scores are computed using a cost function incor-
porating the smoothness of the vessel course, length, radius
and distance to atlas key points. From each possible bifurca-
tion node, all paths are traced and rated recursively, starting at
its adjacent edges to determine the best candidate. This global
approach overcomes the issues of artificial multiple paths in
the vessel tree which may mislead locally operating methods
and improves robustness against occlusions.We compare our
method to a baseline based on registration of atlas landmarks
to demonstrate the benefit of a bifurcation- and graph-based
solution. Results are presented for the accuracy in identify-
ing 6 relevant bifurcations as well as for the detection and
path tracking accuracy of 14 major arteries, which are all
displayed in Fig. 1.

Method

Data

On a total of 105 thin-slice CTA data sets of stroke patients (5
patients for development; 100 for evaluation), vessel segmen-
tation was performed with the VirtualDSA++ [4] algorithm
to create cerebrovascular models. The segmentations of 66
cases exhibit missing segments in the arteries of Fig. 1mostly
due to stroke but occasionally also due to segmentation
inaccuracies which are treated equally in this work. Each
patient is represented as a graph G(V , E) where the nodes
V describe the bifurcations and endpoints of vessels and the
edges E describe the interconnecting vessel segments. Each
node v holds its position, each edge e contains a sequence of
points and radii r to define the vessel centerline. The number
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(a) Graph including multiple 
veins.

(b) ACA1 to ICA shortcut. (c) ICA S-curve with 
shortcuts.

(d) Shortcut and loop 
at ICA.

Fig. 2 Examples of vessel graphs and segmentation artifacts

of nodes and edges varies substantially as a consequence of
unequal imagingphases or varying amounts of contrast agent,
resulting sometimes in large graphs as shown in Fig. 2a.
Segmentation artifacts are shown in Fig. 2b–d, including
shortcuts or loops, which cause problems with shortest-path
approaches or naïve landmark registration. These errors are
also expected to occur in similar (region-based) segmentation
algorithms.

Algorithm

Registration

A brain atlas [11] was used in combination with a vessel
atlas [12] (containing non-vessel-specific probabilities) to
draw landmarks for the arteries of interest, cf. Fig. 3. By
non-rigidly registering the brain atlas to the patient volume,
these landmarks can be transformed accordingly. The brain
vasculature is rich in variations and may not match the soft-
tissue-based registration perfectly. Therefore, we also rigidly
align the landmarks to the segmented centerlines using the
Iterative Closest Point (ICP) algorithm [13].

Candidate graphs

The next goal is to create candidate sub-graphs for each artery
based on distance measurements. These measurements will
be utilized below to identify bifurcations and to eliminate
unlikely vessel segments to limit the search space. A distance
score da(e) for the artery a and vessel segment e holding N
centerline points with positions xn , n ∈ {1, . . . , N } is com-
puted by using a set of M landmarks x(a)

m , m ∈ {1, . . . , M}:

da(e) = 1

N

N∑

n=0

sn +
√√√√ 1

N

N∑

n=0

(sn − min
0<i≤N

(si ))2,

with sn = min
0<m≤M

(‖xn − x(a)
m ‖2). (1)

For each artery landmark set, the Euclidean distance from all
centerline points per segment/edge is computed to the clos-
est landmark and averaged over the segment to calculate a
distance value. Points that match one of the two landmarks
at the ends of the artery are omitted. The distance value is
extended by a spread computation to punish segments per-
pendicular to our marker array. For this purpose, we modify
the standard deviation by utilizing the minimum instead of
themean to detectwhether a segment is parallel or perpendic-
ular to our landmark groups. All segments for which da(e) is
smaller than a threshold of 2cm are combined to a candidate
sub-graph per artery, see Fig. 3. This empirical value limits
the search space for the next step while serving as an upper
bound to compensate for registration errors and positional
variations. It is also consistent with the evaluation range for
outgoing vessels, see section “Evaluation”.

Bifurcation matching

To achieve consistent labeling the endpoints of the three ves-
sels belonging to a bifurcation must be equal. Our goal is to
find the best matching node for each bifurcation first instead
of directly matching the most likely arteries in terms of dis-
tance to landmarks. Deformations of the vascular tree can
thus be compensated and the labeled vessel transitions are
always consistent. The second important concept is the con-
sideration of all paths artery starting from this node. Since
vessel edges can have different lengths over all patients it is
insufficient to only consider local neighborhoods.

We design a cost function q to create scores for whole
vessel paths with regard to specific arteries and evaluate it for
all possible outgoing vessel paths for one candidate node. The
scores over all three arteries of a bifurcation are then averaged
and the node with the best score is assigned. Therefore, even
with missing vessels, e.g., due to stroke, it is still possible
to match a bifurcation if the rest of the vessels match well
enough to create a high score. In defining the cost for a vessel
path, we consider the vessel length l, the distance d to the
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Fig. 3 Algorithm pipeline using
the example of the Media
bifurcation creation

landmark points, the radius r as well as the angle α between
adjacent edges.

The length is important as major arteries are expected to
be long. Conversely, a larger distance d should lead to a lower
score. Furthermore, the vessel path should be smooth, mean-
ing angles between adjacent edges are expected to be close
to α = 180◦. The angle between two edges is linearly trans-
formed into a weight w in the range [0.2; 1.0] by utilizing
the dot product.

This weight should affect all subsequent edge scores, so
its cumulative product will be used in combination with the
value itself. The influence of the radius should be rather low
with δ = 0.1. The scoring function ca(e, w) for one edge e
and a set of N weights w is defined as

ca(e, w) = (wN + ∏N
i wi )

2
· le
da(e)

· (1 + δ · re). (2)

Next, we define the function q to recursively compute the
maximum score for a vessel path starting at a node v and edge
e. To navigate through the candidate edge set Ea we define
the neighboring edge set of an edge e without the edges at
one of its adjacent nodes v as ne(e, v). The corresponding
node connecting e with ne(e, v), i.e., its other adjacent node,
is defined as nv(e, v):

qa(e, v, Ea, w) =

⎧
⎪⎪⎨

⎪⎪⎩

ca(e, w) ne(e, v) = ∅,

ca(e, w) ne(e, v) /∈ Ea,

ca(e, w) + max
f ∈ne(e,v)

(qa( f , ṽ, Ea\{e}, w̃)) otherwise,

with ṽ = nv(e, v) and w̃ = w ∪ {w(e, f )}. (3)

The first recursive function call at a bifurcation candidate
node b and its adjacent edge e1 for the artery a1 is executed
using qa1(e1, b,Ga1 , [1]).
The best bifurcation points are now calculated by applying
above functions on all adjacent edges of a node for all three
expected arteries (see example of ICA, ACA1 and A. media
for theMedia-L bifurcation in Fig. 3). Hence, for a node with
3 neighbors, 6 different configurations are calculated and the
three values of qa for each artery are averaged, respectively.
Using themaximum of these values over all possible bifurca-
tion nodes,we receive the optimal node. Possible bifurcations
nodes are within a 1.5cm distance to the endpoint landmarks
of their arteries. This process is repeated for all bifurca-
tions until each has been assigned to a graph node, together
with three optimal pathways for its adjacent arteries which
form a bifurcation sub-graph. The resulting six bifurcation
graphs may, however, overlap and thus need to be fused for
a complete labeling. Note that it is possible that vessels or
bifurcations are not matched at all, e.g., in case of strokes,
segmentation errors or anatomical variants.

Fusion

Thebifurcation sub-graphs contain the inner arteriesAComm,
ACA1 and the A. basilaris twice while the rest are outer
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arteries and only included once. The inner arteries of the
respective candidate graphs need to be merged according to
their overlap. When that intersection is ∅, the shortest path
between the endpoints of the candidate edges is chosen.Outer
edges are included as computed by the bifurcation optimiza-
tion. Since their length varies and may exceed the provided
landmarks, tracing is applied at their ends by repeatedly
including the next edgewith the largest transition angle above
120◦. Furthermore, the two Anterior bifurcations might be
incorrectly matched onto the same node due to the similarity
of the two ACA2s. However, this double assignment would
indicate the presence of only a single ACA2 which is exhib-
ited in some CoW variants. To distinguish these cases, the
second best node for the bifurcation with the lower score
(e.g., left) is checked. If its score is within an empirically
determined range of 80% of the best score (e.g., right), the
bifurcation is reassigned to this second-best location as it can
be assumed that two ACA2s exist. Special handling of this
area is also done e.g., by Shen et al. [2]; whereby the anterior
arteries are in general not relevant for stroke.

Evaluation

Baseline

We use a naïve distance-driven baseline approach to show
the advantage of using the proposed recursive scheme over a
simple matching. The edges are sorted in descending order
by their radius and are processed successively. The distance
from the edge to the landmark sets is computed analogously
to the distance computation for the creation of the candi-
date graphs, including the registration, ICP matching and
distance metric of Eq. 1. An edge is assigned to the clos-
est artery landmark set if the distance metric is below 2cm
(as in the proposed algorithm) and if one of their neighbor-
ing edges has already been assigned to the same set. For the
first assigned edge, only the first of those conditions needs to
be satisfied. This process is repeated until there is no more
change. Next, the shortest-path-algorithm is executed for all
node pairs within the matched artery edge sets and its longest
paths is selected as the final result for one artery to avoid
branching. This approach is hence similar to Shen et al. [2]
without the trainable extension.

Metrics

Previous work used simple evaluation schemes such as clas-
sification into correct/incorrect [2] or accepted short artery
segments (e.g., 10mm anywhere in the A. basilaris [7])
which may be insufficient for high precision tasks. Hence,
we suggest a finer evaluation framework with multiple sub-
classes listed in Table 1. First and most importantly, it is
reportedwhether thewhole vessel pathwas labeled correctly.

Note that one needs to differentiate between vessels inside,
leading to the CoW and those leading away from it, see
Fig. 1. The vessels inside the CoW can be clearly defined
by their bordering bifurcations while the rest of them only
have one bordering bifurcation. Outgoing vessels, however,
soon branch into multiple sub-arteries making it harder to
define a single correct path. Hence, we evaluate only within
a distance of up to 2cm after the bifurcation which includes
more than the important first segments of the A. media and
posterior (M1 and P1). Since the incoming vessels, ICA and
A. vertebralis, can be defined much more clearly, their whole
segmented length will be assessed in the evaluation. The
placement of the bifurcation is also reported as it influences
the performance of the labeling. The category “≤ 5mm”
reports if a bifurcation is placed incorrectly, but within 5mm
from the real bifurcation, i.e., only slightly off but still located
on two correct arteries.

Results

Bifurcations

The results are presented in Table 2, showing a labeling accu-
racy of 84.8%, which can be extended to 92.5% if slightly
misplaced bifurcations are included as well, meaning that
7.5% of the bifurcations were not placed in the correct area.
With 91% and 94%, the Vertebral and Posterior branch-
ings are matched most reliably. Within a 5mm tolerance, all
bifurcations accuracies are over 90%.Without our consistent
labeling design, the baseline does not focus on bifurcations
(defined in the same manner as for our algorithm: classified
as correct when all three arteries end at the same node), lead-
ing to lower accuracies for this secondary task with a mean
of 26.8% (34.8% within 5mm) which are thus not reported
in detail.

Vessel labeling

The baseline and proposed method are evaluated manually
using the model and CTA scan according to Table 1. Looking
at the overall mean calculated from the values in Fig. 4, our
proposed method achieves a detection rate (TPSUM and TN)
of close to 90% on average over all vessels, with complete
labeling in 73.5% of cases (TN and TP* only). Examples
of complete labelings are presented in Fig. 5a, b. While the
baseline approach also has a good overall detection rate of
86.6%, the fraction of completely labeled cases is only 35.5%
on average.

The artery with the highest failure rate in both our method
and the baseline is the small AComm with 25% incorrect
estimations for our method and 55% for the baseline. Note
that AComm is missing 41 times in our data sets which
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Table 1 Result categorization
classes and subclasses used for
evaluation

Correct TP* Complete Vessel is labeled completely correct

TP− Underestimated Main part of the vessel found, not complete

TP+ Overestimated Complete vessel found plus additional part

TP± Misestimated Both over- and underestimated

TPSUM Detected Sum of all above

TN Dismissed Vessel not detected (vessel not present)

False FN Not detected Vessel not found (vessel present)

FP+ Misplaced Incorrect vessel labeled (vessel present)

FP− Wrongly detected Incorrect vessel labeled (vessel not present)

Table 2 Bifurcation accuracies

Labeling Vertebral (%) Posterior (%) Media L (%) Media R (%) ACA L (%) ACA R (%) Mean (%)

Correct 91 94 83 81 83 77 84.8

≤ 5mm 91 95 93 93 93 90 92.5

False 9 5 7 7 7 10 7.5

Each value represents the average rate over all 100 patients. “≤ 5mm” also includes bifurcations within a 5mm distance

was detected correctly in 82.9% of the missing cases by
our method. The lowest rates for complete estimation are
observed for the long ICAs (e.g., 114 TP* vs. 186 TPSUM).
The problems presented in Fig. 2 were, however, typically
resolved as demonstrated in Fig. 5c, d. Underestimation of
the ICA is directly related to the overestimation for ACA1
and A. media.

While A. basilaris and PCA L have high complete esti-
mation rates (TN, TP*) with 87% and 89%, the rate for PCA
R is significantly lower, caused by 9 patients with the fetal
variant on the right side compared to 2 on the left side. In
this variant, one PCA is not connected to the A. basilaris but
originates from the ICA resulting in mislabeling and hence
in only one correct prediction for the PCA R, see Fig. 5e.
However, when a PCA was detected correctly it was also
completely labeled in 97.8% (left) and 97.5% (right) of the
cases.

Among the 100 test data sets, we encountered 66 patients
with strokes or missing segments due to segmentation errors
in critical areas, most often in the A. media. Summarized
over both media arteries, 27 arteries were incomplete and 13
completely missing. Overall, the method could match 26 (22
complete) of the interrupted and recognized 10 of themissing
ones as such, thus working in 90% of cases with an occluded
A. media which matches the overall mean.

Discussion

Our results demonstrate that inclusion of bifurcation match-
ing improves the labeling of the artery paths. We modified
the approach by Shen et al. [2] by using landmark registration

and the shortest-path algorithm without the trainable part to
construct a baseline. Even though it performs similarly for
a rough detection of the arteries compared to the proposed
approach, it leads to some kind of misestimation in almost
2/3 of all cases, rendering it infeasible for, e.g., straightening
techniques. Furthermore, the labeling of the CoW may not
be consistent as transitions between neighboring arteries are
not enforced.

The problem of high FP and FN rates at the AComm (less
relevant for stroke analysis) is caused by the length compo-
nent of the score leading to overestimation of the short artery
and hence defying the desired purpose here. In general, the
anterior, especially ACA2, is the hardest part of the vessel
labeling [2] and, with a detection rate (TN and TPSUM) of
86%, our algorithm is quite stable regardingmissing A. com-
municans leading to only one ACA2.

The fetal variant of the PCA is the most obvious failure
case of the algorithm caused by the fixed consistent bifur-
cation condition of the method. In general the detection rate
in all posterior arteries is robust as they are mostly straight
vessels, with less complex geometry. Using the example of
the clinically highly relevant A. media stroke case, we still
achieve detection rates of 90% and can handle completely
missing sub-trees as well as incomplete vessels.

We were able to show the benefit of our recursive
bifurcation-based method when it comes to complete label-
ing, i.e., tracing completely correct from start to end node,
which is essential for many applications. This method was
developed on a very small set of five patients and generalized
well over unseen data.
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Fig. 4 Results per artery for the
proposed method (upper bar)
and the baseline (lower bar).
Yellow outline indicates fraction
of perfectly labeled cases

(a) Missing ICA and A. media
on the anatomical left side. 

(b) Patient with right media
stroke and visible veins.

(c) Dismissed shortcut
between ICA (grass
green) and ACA1 (blue).

(d) Correctly dismissed 
two shortcuts in the S–
curve of the ICA (pink).

(e) PCA fetal variant
with no connection to the
A. basilaris (red).

Fig. 5 Labeled vessel graphs in row one and special cases in row 2. Each color represents a different vessel while white represents the unlabeled
segments
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Conclusion

In summary, we presented a robust algorithm for labeling
the major brain vessels along the CoW in CTA scans of
stroke patients. It is designed for artifact-prone cerebrovascu-
lar models derived from existing CTA segmentations, which
can suffer from erroneous vessel paths. It is the first algorithm
of its kind to be specifically evaluated on stroke patients.
The method works on vessel graphs and recursively calcu-
late scores for multiple paths. This score only relies on basic
features such as smoothness at transitions, radius, length
and distance to atlas landmarks. Maximizing these scores,
six bifurcation points are identified along with 14 arteries
around the CoW. This approach allows to obtain consistent
and full labeling of the CoW. We show that while a purely
atlas-distance driven method achieves similar vessel detec-
tion rates, it fails to provide complete labeling. The algorithm
was developed on 5 and evaluated on 100 CTA data sets,
including 66 cases with stroke or missing segments in the
area around the CoW. Overall, we could find/detect arteries
in 90% of the cases on average and were able to trace the
full vessel path in 74%. A 90% detection accuracy is also
achieved in cases with an A. media stroke.
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